[1] |
S. Zhang, M. Ma, X. Xiang, W. Cai, W. Feng, Z. Ma. Potential to decarbonize the commercial building operation of the top two emitters by 2060. Resour Conserv Recycl, 185 (2022), Article 106481.
|
[2] |
Y. Ke, J. Chen, C. Lin, S. Wang, Y. Zhou, J. Yin, et al. Smart windows: electro-, thermo-, mechano-, photochromics, and beyond. Adv Energy Mater, 9 (39) (2019), Article 1902066.
|
[3] |
S. Wang, T. Jiang, Y. Meng, R. Yang, G. Tan, Y. Long. Scalable thermochromic smart windows with passive radiative cooling regulation. Science, 374 (6574) (2021), pp. 1501-1504.
|
[4] |
Y. Zhou, S. Wang, J. Peng, Y. Tan, C. Li, F.Y.C. Boey, et al. Liquid thermo-responsive smart window derived from hydrogel. Joule, 4 (11) (2020), pp. 2458-2474.
|
[5] |
H. Poirazis, Å. Blomsterberg, M. Wall. Energy simulations for glazed office buildings in Sweden. Energy Build, 40 (7) (2008), pp. 1161-1170.
|
[6] |
A. Kirimtat, B.K. Koyunbaba, I. Chatzikonstantinou, S. Sariyildiz. Review of simulation modeling for shading devices in buildings. Renew Sustainable Energy Rev, 53 (2016), pp. 23-49.
|
[7] |
A. Hawas, A. Al-Habaibeh. An innovative approach towards enhancing energy conservation in buildings via public engagement using DIY infrared thermography surveys. Energy Built Environ, 3 (1) (2022), pp. 1-15.
|
[8] |
B. Chen, M. Zhang, Y. Hou, H. Wang, R. Zhang, Y. Fan, et al. Energy saving thermal adaptive liquid gating system. Innovation, 3 (3) (2022), Article 100231.
|
[9] |
Y. Fan, X. Xia. A multi-objective optimization model for energy-efficiency building envelope retrofitting plan with rooftop PV system installation and maintenance. Appl Energy, 189 (2017), pp. 327-335.
|
[10] |
M. Mandalaki, K. Zervas, T. Tsoutsos, A. Vazakas. Assessment of fixed shading devices with integrated PV for efficient energy use. Sol Energy, 86 (9) (2012), pp. 2561-2575.
|
[11] |
N. Skandalos, D. Karamanis. An optimization approach to photovoltaic building integration towards low energy buildings in different climate zones. Appl Energy, 295 (2021), Article 117017.
|
[12] |
X. Zhang, S.K. Lau, S.S.Y. Lau, Y. Zhao. Photovoltaic integrated shading devices (PVSDs): a review. Sol Energy, 170 (2018), pp. 947-968.
|
[13] |
E. Taveres-Cachat, G. Lobaccaro, F. Goia, G. Chaudhary. A methodology to improve the performance of PV integrated shading devices using multi-objective optimization. Appl Energy, 247 (2019), pp. 731-744.
|
[14] |
K. Kant, R. Pitchumani, A. Shukla, A. Sharma. Analysis and design of air ventilated building integrated photovoltaic (BIPV) system incorporating phase change materials. Energy Convers Manage, 196 (2019), pp. 149-164.
|
[15] |
M. Mandalaki, T. Tsoutsos, N. Papamanolis. Integrated PV in shading systems for Mediterranean countries: balance between energy production and visual comfort. Energy Build, 77 (2014), pp. 445-456.
|
[16] |
T. Hwang, S. Kang, J.T. Kim. Optimization of the building integrated photovoltaic system in office buildings—focus on the orientation, inclined angle and installed area. Energy Build, 46 (2012), pp. 92-104.
|
[17] |
W. Long, X. Chen, Q. Ma, X. Wei, Q. Xi. An evaluation of the PV integrated dynamic overhangs based on parametric performance design method: a case study of a student apartment in China. Sustainability, 14 (13) (2022), p. 7808.
|
[18] |
A. Kirimtat, M.F. Tasgetiren, P. Brida, O. Krejcar. Control of PV integrated shading devices in buildings: a review. Build Environ, 214 (2022), Article 108961.
|
[19] |
N. Mohtashami, N. Fuchs, M. Fotopoulou, P. Drosatos, R. Streblow, T. Osterhage, et al. State of the art of technologies in adaptive dynamic building envelopes (ADBEs). Energies, 15 (3) (2022), p. 829.
|
[20] |
R. Rotas, M. Fotopoulou, P. Drosatos, D. Rakopoulos, N. Nikolopoulos. Adaptive dynamic building envelopes with solar power components: annual performance assessment for two pilot sites. Energies, 16 (5) (2023), p. 2148.
|
[21] |
H.K. Abdullah, H.Z. Alibaba. Retrofits for energy efficient office buildings: integration of optimized photovoltaics in the form of responsive shading devices. Sustainability, 9 (11) (2017), p. 2096.
|
[22] |
B. Svetozarevic, M. Begle, P. Jayathissa, S. Caranovic, R.F. Shepherd, Z. Nagy, et al. Dynamic photovoltaic building envelopes for adaptive energy and comfort management. Nat Energy, 4 (8) (2019), pp. 671-682.
|
[23] |
M.A. Paydar. Optimum design of building integrated PV module as a movable shading device. Sustainable Cities Soc, 62 (2020), Article 102368.
|
[24] |
M. Krarti. Evaluation of PV integrated sliding-rotating overhangs for US apartment buildings. Appl Energy, 293 (2021), Article 116942.
|
[25] |
H. Hu, W. Xu, A. Li, J. Chu, Y. Lv. Sensitivity analysis and prediction of shading effect of external venetian blind for nearly zero-energy buildings in China. J Build Eng, 41 (2021), Article 102401.
|
[26] |
S.H. Kim, I.T. Kim, A.S. Choi, M. Sung. Evaluation of optimized PV power generation and electrical lighting energy savings from the PV blind-integrated daylight responsive dimming system using LED lighting. Sol Energy, 107 (2014), pp. 746-757.
|
[27] |
S. Hong, A.S. Choi, M. Sung. Development and verification of a slat control method for a bi-directional PV blind. Appl Energy, 206 (2017), pp. 1321-1333.
|
[28] |
S. Verbeke, A. Audenaert. Thermal inertia in buildings: a review of impacts across climate and building use. Renewable Sustainable Energy Rev, 82 (Pt 3) (2018), pp. 2300-2318.
|
[29] |
Y. Meng, T. Li, G. Liu, S. Xu, T. Ji. Real-time dynamic estimation of occupancy load and an air-conditioning predictive control method based on image information fusion. Build Environ, 173 (2020), Article 106741.
|
[30] |
W. Li, L. Yang, Y. Ji, P. Xu. Estimating demand response potential under coupled thermal inertia of building and air-conditioning system. Energy Build, 182 (2019), pp. 19-29.
|
[31] |
R. Singh, I.J. Lazarus, V.V.N. Kishore. Uncertainty and sensitivity analyses of energy and visual performances of office building with external venetian blind shading in hot-dry climate. Appl Energy, 184 (2016), pp. 155-170.
|
[32] |
Y. Liang, H. Wu, G. Huang, J. Yang, H. Wang. Thermal performance and service life of vacuum insulation panels with aerogel composite cores. Energy Build, 154 (2017), pp. 606-617.
|
[33] |
A. Boyano, P. Hernandez, O. Wolf. Energy demands and potential savings in European office buildings: case studies based on EnergyPlus simulations. Energy Build, 65 (2013), pp. 19-28.
|
[34] |
W. Wei, X. Jin, Q. Dong, L. Ni, S. Zhao, W. Wang, et al. Frosting performance variations of variable-frequency air source heat pump in different climatic regions. Appl Therm Eng, 219 (Pt A) ( 2023), Article 119356.
|
[35] |
D.B. Crawley, L.K. Lawrie, F.C. Winkelmann, W.F. Buhl, Y.J. Huang, C.O. Pedersen, et al. EnergyPlus: creating a new-generation building energy simulation program. Energy Build, 33 (4) (2001), pp. 319-331.
|
[36] |
W. Lu. Dynamic shading and glazing technologies: improve energy, visual, and thermal performance. Energy Built Environ, 5 (2) (2024), pp. 211-229.
|
[37] |
J. Peng, D.C. Curcija, L. Lu, S.E. Selkowitz, H. Yang, W. Zhang. Numerical investigation of the energy saving potential of a semi-transparent photovoltaic double-skin facade in a cool-summer Mediterranean climate. Appl Energy, 165 (2016), pp. 345-356.
|
[38] |
R.K. Strand. Incorporating two-dimensional conduction modeling techniques into an energy simulation program: the EnergyPlus radiant system example. Energy Build, 274 (2022), Article 112405.
|
[39] |
E.M. Saber, S.E. Lee, S. Manthapuri, W. Yi, C. Deb. PV (photovoltaics) performance evaluation and simulation-based energy yield prediction for tropical buildings. Energy, 71 (2014), pp. 588-595.
|
[40] |
H. Huo, W. Xu, A. Li, Y. Lv, C. Liu. Analysis and optimization of external venetian blind shading for nearly zero-energy buildings in different climate regions of China. Sol Energy, 223 (2021), pp. 54-71.
|
[41] |
K. Brecl, M. Topič. Self-shading losses of fixed free-standing PV arrays. Renewable Energy, 36 (11) (2011), pp. 3211-3216.
|
[42] |
P. Jayathissa, M. Luzzatto, J. Schmidli, J. Hofer, Z. Nagy, A. Schlueter. Optimising building net energy demand with dynamic BIPV shading. Appl Energy, 202 (2017), pp. 726-735.
|
[43] |
X. Li, J. Peng, N. Li, Y. Wu, Y. Fang, T. Li, et al. Optimal design of photovoltaic shading systems for multi-story buildings. J Cleaner Prod, 220 (2019), pp. 1024-1038.
|
[44] |
iea. org [Internet]. Paris: International Energy Agency; c 2022 [cited 2022 Dec 26]. Available from:
|
[45] |
P.J. Dale, M.A. Scarpulla. Efficiency versus effort: a better way to compare best photovoltaic research cell efficiencies>. Sol Energy Mater Sol Cells, 251 (2023), Article 112097.
|
[46] |
Y. Zhao, S. Yuan, Q. Chang, Z. Zhou, D. Kou, W. Zhou, et al. Controllable formation of ordered vacancy compound for high efficiency solution processed Cu(In,Ga)Se2 solar cells. Adv Funct Mater, 31 (10) (2021), Article 2007928.
|
[47] |
J. Jeong, M. Kim, J. Seo, H. Lu, P. Ahlawat, A. Mishra, et al. Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature, 592 (7854) (2021), pp. 381-385.
|
[48] |
V. Apostolopoulos, I. Mamounakis, A. Seitaridis, N. Tagkoulis, D.S. Kourkoumpas, P. Iliadis, et al. An integrated life cycle assessment and life cycle costing approach towards sustainable building renovation via a dynamic online tool. Appl Energy, 334 (2023), Article 120710.
|