用于可穿戴和自供电温度-压缩应变双参数传感的废棉纤维热电气凝胶

何昕阳, 刘明远, 蔡佳欣, 李臻, 滕志霖, 郝云娜, 崔一帆, 俞建勇, 王黎明, 覃小红

工程(英文) ›› 2024, Vol. 39 ›› Issue (8) : 235-243.

PDF(3902 KB)
PDF(3902 KB)
工程(英文) ›› 2024, Vol. 39 ›› Issue (8) : 235-243. DOI: 10.1016/j.eng.2024.01.015
研究论文
Article

用于可穿戴和自供电温度-压缩应变双参数传感的废棉纤维热电气凝胶

作者信息 +

Waste Cotton-Derived Fiber-Based Thermoelectric Aerogel for Wearable and Self-Powered Temperature-Compression Strain Dual-Parameter Sensing

Author information +
History +

摘要

随着全球经济的快速发展和人口的增长,大量的废旧纺织品也随之产生。这导致了有限资源的浪费和由于处置不当而造成的环境污染问题。对废弃纺织品进行合理回收,并将其转化为高附加值的新兴产品,如智能可穿戴器件,这是令人着迷的。在这里,我们提出了一种新的路线,通过一步冻干工艺将废棉织物转化为三维弹性纤维基热电气凝胶,其具有解耦的自供电温度-压缩应变双参数传感的特性。热电气凝胶的压缩响应时间为0.2 s,塞贝克系数为43 μV·K−1,导热系数小于0.04 W·m−1·K−1。三甲氧基(甲基)硅烷(MTMS)和纤维素的交联使气凝胶具有优异的弹性,使其可以用作猜谜游戏和面部表情识别的压缩应变传感器。此外,基于热电效应,气凝胶可以在自供电模式下以输出的热电压作为刺激信号进行温度检测和区分。另外,将气凝胶制备的阵列器件与无线传输模块连接而制成的可穿戴系统,可以在手机应用程序中发出温度警报,而不会由于抓握过程中产生的压缩应变而产生信号干扰。因此,我们的策略对于减少全球环境污染具有重要意义,并为将废旧纺织品转化为高附加值的智能可穿戴设备提供了一条启发性的途径。

Abstract

The rapid development of the global economy and population growth are accompanied by the production of numerous waste textiles. This leads to a waste of limited resources and serious environmental pollution problems caused by improper disposal. The rational recycling of wasted textiles and their transformation into high-value-added emerging products, such as smart wearable devices, is fascinating. Here, we propose a novel roadmap for turning waste cotton fabrics into three-dimensional elastic fiber-based thermoelectric aerogels by a one-step lyophilization process with decoupled self-powered temperature-compression strain dual-parameter sensing properties. The thermoelectric aerogel exhibits a fast compression response time of 0.2 s, a relatively high Seebeck coefficient of 43 μ V K - 1, and an ultralow thermal conductivity of less than 0.04 W m - 1 K - 1. The cross-linking of trimethoxy(methyl)silane (MTMS) and cellulose endowed the aerogel with excellent elasticity, allowing it to be used as a compressive strain sensor for guessing games and facial expression recognition. In addition, based on the thermoelectric effect, the aerogel can perform temperature detection and differentiation in self-powered mode with the output thermal voltage as the stimulus signal. Furthermore, the wearable system, prepared by connecting the aerogel-prepared array device with a wireless transmission module, allows for temperature alerts in a mobile phone application without signal interference due to the compressive strains generated during gripping. Hence, our strategy is significant for reducing global environmental pollution and provides a revelatory path for transforming waste textiles into high-value-added smart wearable devices.

关键词

废旧纺织品 / 高附加值回收 / 热电 / 弹性 / 解耦传感

Keywords

Waste textiles / High value-added recycling / Thermoelectrics / Elasticity / Decoupled sensing

引用本文

导出引用
何昕阳, 刘明远, 蔡佳欣. 用于可穿戴和自供电温度-压缩应变双参数传感的废棉纤维热电气凝胶. Engineering. 2024, 39(8): 235-243 https://doi.org/10.1016/j.eng.2024.01.015

参考文献

[1]
R. De Silva, N. Byrne. Utilization of cotton waste for regenerated cellulose fibers: influence of the degree of polymerization on mechanical properties. Carbohydr Polym, 174 (2017), pp. 89-94.
[2]
H. Liu, W. Fan, Y. Miao, H. Dou, Y. Shi, S. Wang, et al. Closed-loop recycling of colored regenerated cellulose fibers from the dyed cotton textile waste. Cellulose, 30 (4) (2023), pp. 2597-2610.
[3]
H. Sezgin, M. Kucukali-Ozturk, O.B. Berkalp, I. Yalcin-Enis. Design of composite insulation panels containing 100% recycled cotton fibers and polyethylene/polypropylene packaging wastes. J Clean Prod, 304 (2021), p. 127132.
[4]
S. Weber, J. Lynes, S.B. Young. Fashion interest as a driver for consumer textile waste management: reuse, recycle or disposal. Int J Consum Stud, 41 (2) (2017), pp. 207-215.
[5]
H.S. Chang, B.M. Lee, A. Hwang, J.M. Yun, J.H. Choi. Preparation and characterization of free-standing electrode materials from waste cotton fabrics for electric double-layer capacitors. Fibers Polym, 23 (8) (2022), pp. 2188-2195.
[6]
P. Pan, Y. Hu, K.S. Wu, Z.L. Cheng, Z. Shen, L.Y. Jiang, et al. Growth of ZnCo2O4 nanocubes on flexible biochar substrate derived from natural silk waste fabric for lithium-ion battery anode. J Alloys Compd, 814 (2020), p. 152306.
[7]
X.Y. He, B.Y. Li, J.X. Cai, H.H. Zhang, C.Z. Li, X.X. Li, et al. A waterproof, environment-friendly, multifunctional, and stretchable thermoelectric fabric for continuous self-powered personal health signal collection at high humidity. SusMat, 3 (5) (2023), pp. 709-720.
[8]
K. Dong, X. Peng, Z.L. Wang. Fiber/fabric-based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence. Adv Mater, 32 (5) (2020), p. 1902549.
[9]
X. He, J. Shi, Y. Hao, L. Wang, X. Qin, J. Yu. PEDOT: PSS/CNT composites based ultra-stretchable thermoelectrics and their application as strain sensors. Compos Commun., 27 (2021), p. 100822.
[10]
L. Huang, S.Z. Lin, Z.S. Xu, H. Zhou, J.J. Duan, B. Hu, et al. Fiber-based energy conversion devices for human-body energy harvesting. Adv Mater, 32 (5) (2020), p. 1902034.
[11]
J. Wang, X.H. Li, Y.L. Zi, S.H. Wang, Z.L. Li, L. Zheng, et al. A flexible fiber-based supercapacitor-triboelectric-nanogenerator power system for wearable electronics. Adv Mater, 27 (33) (2015), pp. 4830-4836.
[12]
He X, Cai J, Liu M, Ni X, Liu W, Guo H, et al. Multifunctional, wearable, and wireless sensing system via thermoelectric fabrics. Engineering, 2024; 35:158-67. Google Scholar.
[13]
H.Y. Chen, L.L. Zhou, Z. Fang, S.Z. Wang, T. Yang, L.P. Zhu, et al. Piezoelectric nanogenerator based on in situ growth all-inorganic CsPbBr3 perovskite nanocrystals in PVDF fibers with long-term stability. Adv Funct Mater, 31 (19) (2021), Article 2011073.
[14]
T. Chen, L.B. Qiu, Z.B. Cai, F. Gong, Z.B. Yang, Z.S. Wang, et al. Intertwined aligned carbon nanotube fiber based dye-sensitized solar cells. Nano Lett, 12 (5) (2012), pp. 2568-2572.
[15]
L.S. Zhang, S.P. Lin, T. Hua, B.L. Huang, S.R. Liu, X.M. Tao. Fiber-based thermoelectric generators: materials, device structures, fabrication, characterization, and applications. Adv Energy Mater, 8 (5) (2018), p. 1700524.
[16]
T.M. Zhao, Y.M. Fu, C.X. Sun, X.S. Zhao, C.X. Jiao, A. Du, et al. Wearable biosensors for real-time sweat analysis and body motion capture based on stretchable fiber-based triboelectric nanogenerators. Biosens Bioelectron, 205 (2022), p. 114115.
[17]
Q. Yang, S. Yang, P. Qiu, L. Peng, T.R. Wei, Z. Zhang, et al. Flexible thermoelectrics based on ductile semiconductors. Science, 377 (6608) (2022), pp. 854-858.
[18]
S. Yang, P. Qiu, L. Chen, X. Shi. Recent developments in flexible thermoelectric devices. Small Sci., 1 (7) (2021), p. 2100005.
[19]
Y.Q. Fu, S.L. Kang, H. Gu, L.L. Tan, C.W. Gao, Z.J. Fang, et al. Superflexible inorganic Ag2Te0.6S0.4 fiber with high thermoelectric performance. Adv Sci, 10 (13) (2023), p. 2207642.
[20]
X. He, X. Zhang, H. Zhang, C. Li, Q. Luo, X. Li, et al. Facile fabrication of stretchable and multifunctional thermoelectric composite fabrics with strain-enhanced self-powered sensing performance. Compos Commun., 35 (2022), p. 101275.
[21]
X.Y. He, J. Shi, Y.N. Hao, M.T. He, J.X. Cai, X.H. Qin, et al. Highly stretchable, durable, and breathable thermoelectric fabrics for human body energy harvesting and sensing. Carbon Energy., 4 (4) (2022), pp. 621-632.
[22]
H.X. Li, D. Zhang, C. Wang, Y.L. Hao, Y. Zhang, Y. Li, et al. 3D extruded graphene thermoelectric threads for self-powered oral health monitoring. Small, 19 (26) (2023), p. 2300908.
[23]
J. Liu, Y.H. Jia, Q.L. Jiang, F.X. Jiang, C.C. Li, X.D. Wang, et al. Highly conductive hydrogel polymer fibers toward promising wearable thermoelectric energy harvesting. ACS Appl Mater Interfaces, 10 (50) (2018), pp. 44033-44040.
[24]
L. Liu, J. Chen, L.R. Liang, L. Deng, G.M.A. Chen. PEDOT:PSS thermoelectric fiber generator. Nano Energy, 102 (2022), p. 107678.
[25]
X.L. Shi, W.Y. Chen, T. Zhang, J. Zou, Z.G. Chen. Fiber-based thermoelectrics for solid, portable, and wearable electronics. Energy Environ Sci, 14 (2) (2021), pp. 729-764.
[26]
J. Zhang, T. Zhang, H. Zhang, Z.X. Wang, C. Li, Z. Wang, et al. Single-crystal SnSe thermoelectric fibers via laser-induced directional crystallization: from 1D fibers to multidimensional fabrics. Adv Mater, 32 (36) (2020), p. 2002702.
[27]
T. Zhang, K.W. Li, J. Zhang, M. Chen, Z. Wang, S.Y. Ma, et al. High-performance, flexible, and ultralong crystalline thermoelectric fibers. Nano Energy, 41 (2017), pp. 35-42.
[28]
N.X. Wen, Z. Fan, S.T. Yang, Y.P. Zhao, C.W. Li, T.Z. Cong, et al. High-performance stretchable thermoelectric fibers for wearable electronics. Chem Eng J, 426 (2021), p. 130816.
[29]
T. Sun, B. Zhou, Q. Zheng, L. Wang, W. Jiang, G.J. Snyder. Stretchable fabric generates electric power from woven thermoelectric fibers. Nat Commun, 11 (1) (2020), p. 572.
[30]
X. Wang, L. Liang, H. Lv, Y. Zhang, G. Chen. Elastic aerogel thermoelectric generator with vertical temperature-difference architecture and compression-induced power enhancement. Nano Energy, 90 (2021), p. 106577.
[31]
S. Han, N.U.H. Alvi, L. Granlöf, H. Granberg, M. Berggren, S. Fabiano, et al. A multiparameter pressure-temperature-humidity sensor based on mixed ionic-electronic cellulose aerogels. Adv Sci, 6 (8) (2019), Article 1802128.
[32]
M. Li, J. Chen, W. Zhong, M. Luo, W. Wang, X. Qing, et al. Large-area, wearable, self-powered pressure-temperature sensor based on 3D thermoelectric spacer fabric. ACS Sens, 5 (8) (2020), pp. 2545-2554.
[33]
H. Li, Y. Liu, S. Liu, P. Li, C. Zhang, C. He. Wet-spun flexible carbon nanotubes/polyaniline fibers for wearable thermoelectric energy harvesting. Compos Part A-Appl S, 166 (2023), p. 107386.
[34]
C. Xu, S. Yang, P. Li, H. Wang, H. Li, Z. Liu. Wet-spun PEDOT:PSS/CNT composite fibers for wearable thermoelectric energy harvesting. Compos Commun, 32 (2022), p. 101179.
[35]
X. He, J. Gu, Y. Hao, M. Zheng, L. Wang, J. Yu, et al. Continuous manufacture of stretchable and integratable thermoelectric nanofiber yarn for human body energy harvesting and self-powered motion detection. Chem Eng J, 450 (2022), p. 137937.
[36]
H. He, Y. Qin, J. Liu, Y. Wang, J. Wang, Y. Zhao, et al. A wearable self-powered fire warning e-textile enabled by aramid nanofibers/MXene/silver nanowires aerogel fiber for fire protection used in firefighting clothing. Chem Eng J, 460 (2023), p. 141661.
PDF(3902 KB)

Accesses

Citation

Detail

段落导航
相关文章

/