[1] |
A. Gupta, R.K. Jha. A survey of 5G network: architecture and emerging technologies. IEEE Access, 3 (2015), pp. 1206-1232
|
[2] |
J. Kim, J. Moon, Y.Y. Woo, S. Hong, I. Kim, J. Kim, et al. Analysis of a fully matched saturated Doherty amplifier with excellent efficiency. IEEE Trans Microw Theory Tech, 56 (2) (2008), pp. 328-338
|
[3] |
W. Chen, S. Zhang, Y. Liu, Y. Liu, F. Ghannouchi. A concurrent dual-band uneven Doherty power amplifier with frequency-dependent input power division. IEEE Trans Circuits Syst I, 61 (2) (2014), pp. 552-561
|
[4] |
D. Gustafsson, J.C. Cahuana, D. Kuylenstierna, I. Angelov, C. Fager. A GaN MMIC modified Doherty PA with large bandwidth and reconfigurable efficiency. IEEE Trans Microw Theory Tech, 62 (12) (2014), pp. 3006-3016
|
[5] |
Y. Park, J. Lee, S. Jee, S. Kim, C.H. Kim, B. Park, et al. GaN HEMT MMIC Doherty power amplifier with high gain and high PAE. IEEE Microw Wirel Compon Lett, 25 (3) (2015), pp. 187-189
|
[6] |
X. Zhou, S.Y. Zheng, W.S. Chan, S. Chen, D. Ho. Broadband efficiency-enhanced mutually coupled harmonic post matching Doherty power amplifier. IEEE Trans Circuits Syst I, 64 (7) (2017), pp. 1758-1771
|
[7] |
D.F. Kimball, J. Jeong, C. Hsia, P. Draxler, S. Lanfranco, W. Nagy, et al. High-efficiency envelope-tracking W-CDMA base-station amplifier using GaN HFETs. IEEE Trans Microw Theory Tech, 54 (11) (2006), pp. 3848-3856
|
[8] |
F. Raab. Efficiency of outphasing RF power-amplifier systems. IEEE Trans Commun, 33 (10) (1985), pp. 1094-1099
|
[9] |
V. Camarchia, J. Fang, J.M. Rubio, M. Pirola, R. Quaglia. 7 GHz MMIC GaN Doherty power amplifier with 47% efficiency at 7 dB output back-off. IEEE Microw Wirel Compon Lett, 23 (1) (2013), pp. 34-36
|
[10] |
Giofrè R, Piazzon L, Colantonio P, Giannini F, Camarchia V, Quaglia R, et al. GaN-MMIC Doherty power amplifier with integrated reconfigurable input network for microwave backhaul applications. In: Proceedings of IEEE MTT-S International Microwave Symposium; 2015 May 17-22; Phoenix, AZ, USA; 2015.
|
[11] |
Ayad M, Byk E, Neveux G, Camiade M, Barataud D. Single and dual input packaged 5.5-6.5 GHz, 20 W, quasi-MMIC GaN-HEMT Doherty power amplifier. In: Proceedings of IEEE MTT-S International Microwave Symposium; 2017 Jun 4-9; Honololu, HI, USA; 2017.
|
[12] |
R. Quaglia, V. Camarchia, J.J.M. Rubio, M. Pirola, G. Ghione. A 4-W Doherty power amplifier in GaN MMIC technology for 15- GHz applications. IEEE Microw Wirel Compon Lett, 27 (4) (2017), pp. 365-367
|
[13] |
J. Lee, D.H. Lee, S. Hong. A Doherty power amplifier with a GaN MMIC for femtocell base stations. IEEE Microw Wirel Compon Lett, 24 (3) (2014), pp. 194-196
|
[14] |
Jee S, Park Y, Cho Y, Lee J, Kim S, Kim B. A highly linear dual-band Doherty power amplifier for femto-cell base stations. In: Proceedings of IEEE MTT-S International Microwave Symposium; 2015 May 17-22; Phoenix, AZ, USA; 2015.
|
[15] |
C.H. Kim, B. Park. Fully-integrated two-stage GaN MMIC Doherty power amplifier for LTE small cells. IEEE Microw Wirel Compon Lett, 26 (11) (2016), pp. 918-920
|
[16] |
Maroldt S, Ercoli M. 3.5-GHz ultra-compact GaN class-E integrated Doherty MMIC PA for 5G massive-MIMO base station applications. In: Proceedings of the 12th European Microwave Integrated Circuits Conference; 2017 Oct 8-10; Nuremberg, Germany; 2017.
|
[17] |
Ishikawa R, Takayama Y, Honjo K. Fully integrated asymmetric Doherty amplifier based on two-power-level impedance optimization. In: Proceedings of the 13th European Microwave Integrated Circuits Conference; 2018 Sep 23-25; Madrid, Spain; 2018.
|
[18] |
S.H. Li, S.S.H. Hsu, J. Zhang, K.C. Huang. Design of a compact GaN MMIC Doherty power amplifier and system level analysis with X-parameters for 5G communications. IEEE Trans Microw Theory Tech, 66 (12) (2018), pp. 5676-5684
|
[19] |
T. Qiang, C. Wang, N.Y. Kim. A compact high-reliability high-performance 900-MHz WPD using GaAs-IPD technology. IEEE Microw Wirel Compon Lett, 26 (7) (2016), pp. 498-500
|
[20] |
H. Jeon, K.W. Kobayashi. Comparison of 5-GHz quadrature couplers using GaAs and silicon-based IPD technologies. IEEE Microw Wirel Compon Lett, 28 (9) (2018), pp. 756-758
|
[21] |
C.H. Kim, S. Jee, G.D. Jo, K. Lee, B. Kim. A 2.14-GHz GaN MMIC Doherty power amplifier for small-cell base stations. IEEE Microw Wirel Compon Lett, 24 (4) (2014), pp. 263-265
|
[22] |
D.P. Nguyen, B.L. Pham, A.V. Pham. A compact Ka-band integrated Doherty amplifier with reconfigurable input network. IEEE Trans Microw Theory Tech, 67 (1) (2019), pp. 205-215
|
[23] |
D. Kang, D. Kim, J. Moon, B. Kim. Broadband HBT Doherty power amplifiers for handset applications. IEEE Trans Microw Theory Tech, 58 (12) (2010), pp. 4031-4039
|
[24] |
S. Jee, J. Lee, J. Son, S. Kim, C.H. Kim, J. Moon, et al. Asymmetric broadband Doherty power amplifier using GaN MMIC for femto-cell base-station. IEEE Trans Microw Theory Tech, 63 (9) (2015), pp. 2802-2810
|
[25] |
G. Lv, W. Chen, X. Liu, F.M. Ghannouchi, Z. Feng. A fully integrated C-band GaN MMIC Doherty power amplifier with high efficiency and compact size for 5G application. IEEE Access, 7 (2019), pp. 71665-71674
|
[26] |
G. Nikandish, R.B. Staszewski, A. Zhu. Bandwidth enhancement of GaN MMIC Doherty power amplifiers using broadband transformer-based load modulation network. IEEE Access, 7 (2019), pp. 119844-119855
|
[27] |
R.J. Liu, X.W. Zhu, J. Xia, D. Xia, L. Zhang, C. Yu. Design methodology using single resonate block for harmonic impedance matching in GaN MMIC Doherty amplifier. IEEE Microw Wirel Compon Lett, 31 (4) (2021), pp. 397-400
|
[28] |
J. Pang, C. Chu, J. Wu, Z. Dai, M. Li, S. He, et al. Broadband GaN MMIC Doherty power amplifier using continuous-mode combining for 5G sub-6 GHz applications. IEEE J Solid State Circuits, 57 (7) (2022), pp. 2143-2154
|