全球城市三维结构制图揭示城市垂直维度利用的增强和显著的建筑空间不平等

Xiaoping Liu, Xinxin Wu, Xuecao Li, Xiaocong Xu, Weilin Liao, Limin Jiao, Zhenzhong Zeng, Guangzhao Chen, Xia Li

工程(英文) ›› 2025, Vol. 47 ›› Issue (4) : 86-99.

PDF(4259 KB)
PDF(4259 KB)
工程(英文) ›› 2025, Vol. 47 ›› Issue (4) : 86-99. DOI: 10.1016/j.eng.2024.01.025
研究论文
Article

全球城市三维结构制图揭示城市垂直维度利用的增强和显著的建筑空间不平等

作者信息 +

Global Mapping of Three-Dimensional Urban Structures Reveals Escalating Utilization in the Vertical Dimension and Pronounced Building Space Inequality

Author information +
History +

摘要

城市三维建筑结构在制定城市气候减缓政策和促进城市可持续发展方面起着关键作用。遗憾的是,由于数据收集和模型校准过程等方面的困难,目前尚缺乏详细且一致的在全球范围内三维建筑空间数据集。在本研究中,我们在建立全球海量三维建筑样本库的基础上,结合SAR、光学影像、地形信息、建成环境等多源遥感特征,构建了高精度的制图模型,并研制了全球首套500 m分辨率的城市三维建筑结构数据集(GUS-3D),包括建筑体积、高度和占地面积等要素信息。根据该数据产品,我们发现2015年全球建筑总体积超过1万亿立方米。在1985年至2015年期间,三维建筑体积增长幅度略有增加(即从1985-2000期间的166.02 km3增加到2000-2015期间的175.08 km3),而二维建筑占地面积(22.51 × 103 km2 vs. 13.29 × 103 km2)和城市范围(157 × 103 km2 vs. 133.8 × 103 km2)的扩张幅度显著减少,这一趋势突显了城市土地垂直维度利用强度的不断增强。此外,我们发现全球城市间建筑空间供给和不平等存在显著的异质性。这种不平等性在许多人口稠密的亚洲城市中尤为明显,而这一点在以往经济不平等研究中往往被忽视。GUS-3D数据集为发现城市三维扩张规律、评估人均建筑空间提供重要数据支撑,并有望为众多城市相关研究拓展至三维视角的提供可靠的数据基础。

Abstract

Three-dimensional (3D) urban structures play a critical role in informing climate mitigation strategies aimed at the built environment and facilitating sustainable urban development. Regrettably, there exists a significant gap in detailed and consistent data on 3D building space structures with global coverage due to the challenges inherent in the data collection and model calibration processes. In this study, we constructed a global urban structure (GUS-3D) dataset, including building volume, height, and footprint information, at a 500 m spatial resolution using extensive satellite observation products and numerous reference building samples. Our analysis indicated that the total volume of buildings worldwide in 2015 exceeded 1 × 1012 m3. Over the 1985 to 2015 period, we observed a slight increase in the magnitude of 3D building volume growth (i.e., it increased from 166.02 km3 during the 1985–2000 period to 175.08 km3 during the 2000–2015 period), while the expansion magnitudes of the two-dimensional (2D) building footprint (22.51 × 103 vs 13.29 × 103 km2) and urban extent (157 × 103 vs 133.8 × 103 km2) notably decreased. This trend highlights the significant increase in intensive vertical utilization of urban land. Furthermore, we identified significant heterogeneity in building space provision and inequality across cities worldwide. This inequality is particularly pronounced in many populous Asian cities, which has been overlooked in previous studies on economic inequality. The GUS-3D dataset shows great potential to deepen our understanding of the urban environment and creates new horizons for numerous 3D urban studies.

关键词

三维 (3-D) / 全球制图 / 建筑体量 / 建筑高度 / 建筑空间不平等性

Keywords

Three-dimensional / Global mapping / Building volume / Building height / Building space inequality

引用本文

导出引用
Xiaoping Liu, Xinxin Wu, Xuecao Li. 全球城市三维结构制图揭示城市垂直维度利用的增强和显著的建筑空间不平等. Engineering. 2025, 47(4): 86-99 https://doi.org/10.1016/j.eng.2024.01.025

参考文献

[1]
Güneralp B, Zhou Y, Ürge-Vorsatz D, Gupta M, Yu S, Patel PL, et al.Global scenarios of urban density and its impacts on building energy use through 2050.Proc Natl Acad Sci USA 2017; 114(34):8945-8950.
[2]
Zhou Y, Smith SJ, Zhao K, Imhoff M, Thomson A, Bond-Lamberty B, et al.A global map of urban extent from nightlights.Environ Res Lett 2015; 10(5):054011.
[3]
Li M, Koks E, Taubenböck H, van J Vliet.Continental-scale mapping and analysis of 3D building structure.Remote Sens Environ 2020; 245:111859.
[4]
Li X, Zhou Y, Gong P, Seto KC, Clinton N.Developing a method to estimate building height from Sentinel-1 data.Remote Sens Environ 2020; 240:111705.
[5]
Gong P, Li X, Wang J, Bai Y, Chen B, Hu T, et al.Annual maps of global artificial impervious area (GAIA) between 1985 and 2018.Remote Sens Environ 2020; 236:111510.
[6]
Liu X, Huang Y, Xu X, Li X, Li X, Ciais P, et al.High-spatiotemporal-resolution mapping of global urban change from 1985 to 2015.Nat Sustain 2020; 3(7):564-570.
[7]
Clarke LE, Jiang K, Akimoto K, Babiker M, Blanford GJ, Fisher-Vanden K, et al.Chapter 6: assessing transformation pathways.In: IPCC Working Group III, editor. Climate change 2014: mitigation of climate change. Report. Cambridge: Cambridge University Press; 2014.
[8]
Glaeser E.Triumph of the city: how urban spaces make us human.Penguin Press, New York City (2011)
[9]
Hassan AM, El AAF Mokadem, Megahed NA, Eleinen OMA.Improving outdoor air quality based on building morphology: numerical investigation.Front Archit Res 2020; 9(2):319-334.
[10]
Jalayer F, de R Risi, de F Paola, Giugni M, Manfredi G, Gasparini P, et al.Probabilistic GIS-based method for delineation of urban flooding risk hotspots.Nat Hazards 2014; 73(2):975-1001.
[11]
Javanroodi K, Nik VM, Scartezzini JL.Quantifying the impacts of urban morphology on modifying microclimate conditions in extreme weather conditions.J Phys Conf Ser 2021; 2042(1):012058.
[12]
Pandey B, Brelsford C, Seto KC.Infrastructure inequality is a characteristic of urbanization.Proc Natl Acad Sci USA 2022; 119(15):e2119890119.
[13]
Ghosh T, Coscieme L, Anderson SJ, Sutton PC.Building Volume Per Capita (BVPC): a spatially explicit measure of inequality relevant to the SDGs.Front Sustain Cities 2020; 2:37.
[14]
Omer MAB, Noguchi T.A conceptual framework for understanding the contribution of building materials in the achievement of Sustainable Development Goals (SDGs).Sustain Cities Soc 2020; 52:101869.
[15]
Adshead D, Thacker S, Fuldauer LI, Hall JW.Delivering on the Sustainable Development Goals through long-term infrastructure planning.Global Environ Change 2019; 59:101975.
[16]
.un.org [Internet]. New York City: United Nations; c2022 [cited 2022 Dec 28]. Available from: https://unstats.un.org/sdgs/metadata/?Text&Goal=15&Target.
[17]
Reddy A, Leslie TF.Volume per capita as a useful measure of residential space.Urban Geogr 2015; 36(7):1099-1112.
[18]
Ren Q, He C, Huang Q, Shi P, Zhang D, Güneralp B.Impacts of urban expansion on natural habitats in global drylands.Nat Sustainability 2022; 5(10):869-878.
[19]
Chen G, Li X, Liu X, Chen Y, Liang X, Leng J, et al.Global projections of future urban land expansion under shared socioeconomic pathways.Nat Commun 2020; 11(1):537.
[20]
Henderson JV, Venables AJ, Regan T, Samsonov I.Building functional cities.Science 2016; 352(6288):946-947.
[21]
Bhardwaj G, Esch T, Lall SV, Marconcini M, Soppelsa ME, Wahba S.Cities, crowding, and the coronavirus: predicting contagion risk hotspots [Internet].Washington, DC: The World Bank; 2020 Apr 21 [cited 2022 Dec 28]. Available from: http://hdl.handle.net/10986/33648.
[22]
Soergel U, Michaelsen E, Thiele A, Cadario E, Thoennessen U.Stereo analysis of high-resolution SAR images for building height estimation in cases of orthogonal aspect directions.ISPRS J Photogramm Remote Sens 2009; 64(5):490-500.
[23]
Mathews AJ, Frazier AE, Nghiem SV, Neumann G, Zhao Y.Satellite scatterometer estimation of urban built-up volume: validation with airborne lidar data.Int J Appl Earth Obs Geoinformation 2019; 77:100-107.
[24]
Park Y, Guldmann JM.Creating 3D city models with building footprints and LIDAR point cloud classification: a machine learning approach.Comput Environ Urban Syst 2019; 75:76-89.
[25]
Yu B, Liu H, Wu J, Hu Y, Zhang L.Automated derivation of urban building density information using airborne LiDAR data and object-based method.Landscape Urban Plann 2010; 98(3,4):210-219.
[26]
Liasis G, Stavrou S.Satellite images analysis for shadow detection and building height estimation.ISPRS J Photogramm Remote Sens 2016; 119:437-450.
[27]
Gei Cß, Leichtle T, Wurm M, Pelizari PA, Standfu Iß, Zhu XX, et al.Large-area characterization of urban morphology—mapping of built-up height and density using TanDEM-X and Sentinel-2 Data.IEEE J Sel Top Appl Earth Obs Remote Sens 2019; 12(8):2912-2927.
[28]
Frantz D, Schug F, Okujeni A, Navacchi C, Wagner W, van S der Linden, et al.National-scale mapping of building height using Sentinel-1 and Sentinel-2 time series.Remote Sens Environ 2021; 252:112128.
[29]
Mahtta R, Mahendra A, Seto KC.Building up or spreading out? Typologies of urban growth across 478 cities of 1 million+.Environ Res Lett 2019; 14(12):124077.
[30]
Frolking S, Milliman T, Seto KC, Friedl MA.A global fingerprint of macro-scale changes in urban structure from 1999 to 2009.Environ Res Lett 2013; 8(2):024004.
[31]
Falcone JA.US national categorical mapping of building heights by block group from Shuttle Radar Topography Mission data [Internet].Reston: The U.S. Geological Survey; 2016 Dec 21 [cited 2022 Dec 28]. Available from: https://doi.org/10.5066/F7W09416.
[32]
Esch T, Brzoska E, Dech S, Leutner B, Palacios-Lopez D, Metz-Marconcini A, et al.World Settlement Footprint 3D—a first three-dimensional survey of the global building stock.Remote Sens Environ 2022; 270:112877.
[33]
Wu WB, Ma J, Banzhaf E, Meadows ME, Yu ZW, Guo FX, et al.A first Chinese building height estimate at 10 m resolution (CNBH-10 m) using multi-source earth observations and machine learning.Remote Sens Environ 2023; 291:113578.
[34]
Li M, Wang Y, Rosier JF, Verburg PH, van J Vliet.Global maps of 3D built-up patterns for urban morphological analysis.Int J Appl Earth Obs Geoinf 2022; 114:103048.
[35]
Zhou Y, Li X, Chen W, Meng L, Wu Q, Gong P, et al.Satellite mapping of urban built-up heights reveals extreme infrastructure gaps and inequalities in the Global South.Proc Natl Acad Sci USA 2022; 119(46):e2214813119.
[36]
Shimada M, Itoh T, Motooka T, Watanabe M, Shiraishi T, Thapa R, et al.New global forest/non-forest maps from ALOS PALSAR data (2007–2010).Remote Sens Environ 2014; 155:13-31.
[37]
Vermote E, Justice C, Claverie M, Franch B.Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product.Remote Sens Environ 2016; 185(2):46-56.
[38]
Koppel K, Zalite K, Voormansik K, Jagdhuber T.Sensitivity of Sentinel-1 backscatter to characteristics of buildings.Int J Remote Sens 2017; 38(22):6298-6318.
[39]
Chander G, Markham BL, Helder DL.Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors.Remote Sens Environ 2009; 113(5):893-903.
[40]
Takaku J, Tadono T, Tsutsui K, Ichikawa M.Validation of “AW3D” global DSM generated from ALOS PRISM.ISPRS Ann Photogramm Remote Sens Spat Inf Sci 2016; 3:25-31.
[41]
Li X, Gong P, Zhou Y, Wang J, Bai Y, Chen B, et al.Mapping global urban boundaries from the global artificial impervious area (GAIA) data.Environ Res Lett 2020; 15(9):094044.
[42]
Weng Q.Remote sensing of impervious surfaces in the urban areas: requirements, methods, and trends.Remote Sens Environ 2012; 117:34-49.
[43]
Gorelick N, Hancher M, Dixon M, Ilyushchenko S, Thau D, Moore R.Google Earth Engine: planetary-scale geospatial analysis for everyone.Remote Sens Environ 2017; 202:18-27.
[44]
Chen T, Guestrin C.XGBoost: a scalable tree boosting system.In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; 2016 Aug 13–17; San Francisco, C A, US A. New York City: Association for Computing Machinery; 2016. p. 785–94.
[45]
Xavier G, Yoshua B.Understanding the difficulty of training deep feedforward neural networks.In: Teh YW, Titterington DM, editors. Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics; 2010 May 13–15; Cagliari, Italy. Brookline: Machine Learning Research Press; 2010. p. 249–56.
[46]
Breiman L.Random forests.Mach Learn 2001; 45(1):5-32.
[47]
Chen B, Wu S, Song Y, Webster C, Xu B, Gong P.Contrasting inequality in human exposure to greenspace between cities of Global North and Global South.Nat Commun 2022; 13(1):4636.
[48]
Wang Q, Fan J, Kwan MP, Zhou K, Shen G, Li N, et al.Examining energy inequality under the rapid residential energy transition in China through household surveys.Nat Energy 2023; 8(3):251-263.
[49]
Xu R, Yue W, Wei F, Yang G, Chen Y, Pan K.Inequality of public facilities between urban and rural areas and its driving factors in ten cities of China.Sci Rep 2022; 12(1):13244.
[50]
Scrucca F, Ingrao C, Barberio G, Matarazzo A, Lagioia G.On the role of sustainable buildings in achieving the 2030 UN sustainable development goals.Environ Impact Assess Rev 2023; 100:107069.
[51]
Park Y, Guldmann JM, Liu D.Impacts of tree and building shades on the urban heat island: combining remote sensing, 3D digital city and spatial regression approaches.Comput Environ Urban Syst 2021; 88:101655.
[52]
Miao C, Yu S, Hu Y, Zhang H, He X, Chen W.Review of methods used to estimate the sky view factor in urban street canyons.Build Environ 2020; 168:106497.
[53]
Jiao L.Urban land density function: a new method to characterize urban expansion.Landscape Urban Plann 2015; 139:26-39.
[54]
Frolking S, Mahtta R, Milliman T, Seto KC.Three decades of global trends in urban microwave backscatter, building volume and city GDP.Remote Sens Environ 2022; 281:113225.
[55]
Balk DL, Nghiem SV, Jones BR, Liu Z, Dunn G.Up and out: a multifaceted approach to characterizing urbanization in Greater Saigon, 2000–2009.Landscape Urban Plann 2019; 187:199-209.
[56]
Population Division of the Department of Economic and Social Affairs, United Nations.World urbanization prospects 2018: highlights.Report. New York City: United Nations; 2018.
[57]
Ni H, Yu L, Gong P, Li X, Zhao J.Urban renewal mapping: a case study in Beijing from 2000 to 2020.J Remote Sens 2023; 3:0072.
[58]
Qi Z, Gar-On A Yeh, Li X, Liu X.A land clearing index for high-frequency unsupervised monitoring of land development using multi-source optical remote sensing images.ISPRS J Photogramm Remote Sens 2022; 187:393-421.
[59]
Wang N, Li W, Tao R, Du Q.Graph-based block-level urban change detection using Sentinel-2 time series.Remote Sens Environ 2022; 274:112993.
[60]
City Mayors Statistics.Europe’s largest cities [Internet].London: The City Mayors Foundation; 2021 [cited 2022 Dec 28]. Available from: http://www.citymayors.com/features/euro_cities1.html.
[61]
Seto KC, Golden JS, Alberti M, Turner BL II.Sustainability in an urbanizing planet.Proc Natl Acad Sci USA 2017; 114(34):8935-8938.
[62]
Population Division of the Department of Economic and Social Affairs, United Nations.World social report 2020: inequality in a rapidly changing world.Report. New York City: United Nations; 2020.
[63]
Smith SK, Rayer S, Smith EA.Aging and disability: implications for the housing industry and housing policy in the United States.J Am Plann Assoc 2008; 74(3):289-306.
[64]
Whittemore AH, Curran-Groome W.A case of (decreasing) American exceptionalism.J Am Plann Assoc 2022; 88(3):335-351.
[65]
Motesharrei S, Rivas J, Kalnay E, Asrar GR, Busalacchi AJ, Cahalan RF, et al.Modeling sustainability: population, inequality, consumption, and bidirectional coupling of the Earth and human systems.Natl Sci Rev 2016; 3(4):470-494.
[66]
Piketty T.Capital in the twenty-first century.Harvard University Press, Cambridge (2014)
[67]
Sachs J, Lafortune G, Kroll C, Fuller G, Woelm F.Sustainable development report 2022: from crisis to sustainable development: the SDGs as roadmap to 2030 and beyond (includes the SDG index and dashboards).Report. Cambridge: Cambridge University Press; 2022.
[68]
.data.worldbank. org [Internet]. Washington, D C: The World Bank Group. [cited 2022 Dec 18]. Available from: https://data.worldbank.org/indicator/S I.PO V.GIN I.
[69]
Horowitz JM, Igielnik R, Kochhar R.Most Americans say there is too much economic inequality in the U.S., but fewer than half call it a top priority. Report. Washington, D C: Pew Research Center; 2020.
PDF(4259 KB)

Accesses

Citation

Detail

段落导航
相关文章

/