利用ALOS PALSAR图像测量赤道电离层闪烁

Yifei Ji, Zhen Dong, Yongsheng Zhang, Feixiang Tang, Wenfei Mao, Haisheng Zhao, Zhengwen Xu, Qingjun Zhang, Bingji Zhao, Heli Gao

工程(英文) ›› 2025, Vol. 47 ›› Issue (4) : 70-85.

PDF(5177 KB)
PDF(5177 KB)
工程(英文) ›› 2025, Vol. 47 ›› Issue (4) : 70-85. DOI: 10.1016/j.eng.2024.01.027
研究论文
Article

利用ALOS PALSAR图像测量赤道电离层闪烁

作者信息 +

Equatorial Ionospheric Scintillation Measurement in Advanced Land Observing Satellite Phased Array-Type L-Band Synthetic Aperture Radar Observations

Author information +
History +

摘要

电离层闪烁导致的幅度条纹在先进陆地观测卫星(ALOS )相位阵列提质L波段合成孔径雷达(PALSAR)的许多赤道午夜观测结果中呈现。这种电离层现象会妨碍PALSAR干涉和极化测量应用,当前已针对其形成机理、形状以及“消极”影响展开了深入研究,但这种现象同时为发现和测量电离层闪烁提供了一种“积极”途径。本文提出了一种基于PASLAR幅度条纹图像的电离层闪烁测量方法:(1)子孔径处理有助于恢复单视复图像中被“虚化”的条纹,通过对子孔径图像的频域带阻滤波处理可提取幅度条纹样式;(2)基于提取的幅度条纹样式,可估计幅度功率谱密度函数(SDF);(3)对长波数区域(低频区域)的估计和理论SDF进行拟合,即可得到闪烁强度CkL和谱指数p;(4)另一关键参数,闪烁指数S4既可以直接从幅度条纹样式中计算得到,也可以利用闪烁强度CkL和谱指数p的测量结果间接推导得到。利用两组PALSAR幅度条纹图像对所提方法进行了充分的验证,通过对比直接测量和间接推导S4以及对比距离线和方位线测量结果实现了利用SAR数据自身的验证,通过对比PALSAR与实际GPS测量结果实现了交叉验证。处理结果表明,所提方法具备从空间对电离层闪烁参数实现稳健的、高分辨测量。

Abstract

Amplitude stripes imposed by ionospheric scintillation have been frequently observed in many of the equatorial nighttime acquisitions of the Advanced Land Observing Satellite (ALOS) Phased Array-type L-band Synthetic Aperture Radar (PALSAR). This type of ionospheric artifact impedes PALSAR interferometric and polarimetric applications, and its formation cause, morphology, and negative influence have been deeply investigated. However, this artifact can provide an alternative opportunity in a positive way for probing and measuring ionosphere scintillation. In this paper, a methodology for measuring ionospheric scintillation parameters from PALSAR images with amplitude stripes is proposed. Firstly, sublook processing is beneficial for recovering the scattered stripes from a single-look complex image; the amplitude stripe pattern is extracted via band-rejection filtering in the frequency domain of the sublook image. Secondly, the amplitude spectrum density function (SDF) is estimated from the amplitude stripe pattern. Thirdly, a fitting scheme for measuring the scintillation strength and spectrum index is conducted between the estimated and theoretical long-wavelength SDFs. In addition, another key parameter, the scintillation index, can be directly measured from the amplitude stripe pattern or indirectly derived from the scintillation strength and spectrum index. The proposed methodology is fully demonstrated on two groups of PALSAR acquisitions in the presence of amplitude stripes. Self-validation is conducted by comparing the measured and derived scintillation index and by comparing the measurements of range lines and azimuth lines. Cross-validation is performed by comparing the PALSAR measurements with in situ Global Position System (GPS) measurements. The processing results demonstrate a powerful capability to robustly measure ionospheric scintillation parameters from space with high spatial resolution.

关键词

合成孔径雷达 / 电离层探测 / 电离层闪烁 / 幅度条纹 / GPS电离层测量

Keywords

Synthetic aperture radar / Ionospheric sounding / Ionospheric scintillation / Amplitude stripes / Global Position System ionospheric measurement

引用本文

导出引用
Yifei Ji, Zhen Dong, Yongsheng Zhang. 利用ALOS PALSAR图像测量赤道电离层闪烁. Engineering. 2025, 47(4): 70-85 https://doi.org/10.1016/j.eng.2024.01.027

参考文献

[1]
Ishimaru A, Kuga Y, Liu J, Kim Y, Freeman T.Ionospheric effects on synthetic aperture radar at 100 MHz to 2 GHz.Radio Sci 1999; 34(1):257-268.
[2]
Xu ZW, Wu J, Wu ZS.A survey of ionosphere effects on space-based radar.Waves Random Media 2004; 14(2):S189.
[3]
Belcher DP.Theoretical limits on SAR imposed by the ionosphere.IET Radar Sonar Navig 2008; 2(6):435-448.
[4]
Meyer FJ.Performance requirements for ionospheric correction of low-frequency SAR data.IEEE Trans Geosci Remote Sens 2011; 49(10):3694-3702.
[5]
Meyer FJ, Nicoll JB.Prediction, detection, and correction of Faraday rotation in full-polarimetric L-band SAR data.IEEE Trans Geosci Remote Sens 2008; 46(10):3076-3086.
[6]
Meyer F, Bamler R, Jakowski N, Fritz T.The potential of low-frequency SAR systems for mapping ionospheric TEC distributions.IEEE Geosci Remote Sens Lett 2006; 3(4):560-564.
[7]
Yang Z, Zhang Q, Ding X, Chen W.Analysis of the quality of daily DEM generation with geosynchronous InSAR.Engineering 2020; 6(8):913-918.
[8]
Liao H, Meyer FJ, Scheuchl B, Mouginot J, Joughin I, Rignot E.Ionospheric correction of InSAR data for accurate ice velocity measurement at polar regions.Remote Sens Environ 2018; 209:166-180.
[9]
Zhang B, Ding X, Amelung F, Wang C, Xu W, Zhu W, et al.Impact of ionosphere on InSAR observation and coseismic slip inversion: improved slip model for the 2010 Maule, Chile, earthquake.Remote Sens Environ 2021; 267:112733.
[10]
Meyer FJ, Chotoo K, Chotoo SD, Huxtable BD, Carrano CS.The influence of equatorial scintillation on L-band SAR image quality and phase.IEEE Trans Geosci Remote Sens 2016; 54(2):869-880.
[11]
Kim JS, Papathanassiou KP, Sato H, Quegan S.Detection and estimation of equatorial spread F scintillations using synthetic aperture radar.IEEE Trans Geosci Remote Sens 2017; 55(12):6713-6725.
[12]
Ji Y, Zhang Y, Zhang Q, Dong Z.Comments on “the influence of equatorial scintillation on L-band SAR image quality and phase”.IEEE Trans Geosci Remote Sens 2019; 57(9):7300-7301.
[13]
Ji Y, Zhang Y, Dong Z, Zhang Q, Li D, Yao B.Impacts of ionospheric irregularities on L-band geosynchronous synthetic aperture radar.IEEE Trans Geosci Remote Sens 2020; 58(6):3941-3954.
[14]
Ji Y, Dong Z, Zhang Y, Zhang Q, Yu L, Qin B.Measuring ionospheric scintillation parameters from SAR images using phase gradient autofocus: a case study.IEEE Trans Geosci Remote Sens 2022; 60:5200212.
[15]
Ji Y, Dong Z, Zhang Y, Zhang Q.An autofocus approach with applications to ionospheric scintillation compensation for spaceborne SAR images.IEEE Trans Aerosp Electron Syst 2022; 58(2):989-1004.
[16]
Xu ZW, Wu J, Wu ZS.Potential effects of the ionosphere on space-based SAR imaging.IEEE Trans Antenna Propag 2008; 56(7):1968-1975.
[17]
Wang C, Zhang M, Xu ZW, Chen C, Sheng DS.Effects of anisotropic ionospheric irregularities on space-borne SAR imaging.IEEE Trans Antenna Propag 2014; 62(9):4664-4673.
[18]
Wang C, Zhang M, Xu ZW, Chen C, Guo LX.Cubic phase distortion and irregular degradation on SAR imaging due to the ionosphere.IEEE Trans Geosci Remote Sens 2015; 53(6):3442-3451.
[19]
Hu C, Li Y, Dong X, Wang R, Ao D.Performance analysis of L-band geosynchronous SAR imaging in the presence of ionospheric scintillation.IEEE Trans Geosci Remote Sens 2017; 55(1):159-172.
[20]
Mannix CR, Belcher DP, Cannon PS.Measurement of ionospheric scintillation parameters from SAR images using corner reflectors.IEEE Trans Geosci Remote Sens 2017; 55(12):6695-6702.
[21]
Belcher DP, Mannix CR, Cannon PS.Measurement of the ionospheric scintillation parameter CkL from SAR images of clutter.IEEE Trans Geosci Remote Sens 2017; 55(10):5937-5943.
[22]
Ji Y, Zhang Q, Zhang Y, Dong Z.L-band geosynchronous SAR imaging degradations imposed by ionospheric irregularities.Sci China Inf Sci 2017; 60:060308.
[23]
Ji Y, Zhang Q, Zhang Y, Dong Z, Yao B.Spaceborne P-band SAR imaging degradation by anisotropic ionospheric irregularities: a comprehensive numerical study.IEEE Trans Geosci Remote Sens 2020; 58(8):5516-5526.
[24]
Ji Y, Dong Z, Zhang Y, Zhang Q, Yao B.Extended scintillation phase gradient autofocus in future spaceborne P-band SAR mission.Sci China Inf Sci 2021; 64:212303.
[25]
Ji Y, Yu C, Zhang Q, Dong Z, Zhang Y, Wang Y.An ionospheric phase screen projection method of phase gradient autofocus in spaceborne SAR.IEEE Geosci Remote Sens Lett 2022; 19:4504205.
[26]
Tang F, Ji Y, Zhang Y, Dong Z, Wang Z, Zhang Q, et al.Drifting ionospheric scintillation simulation for L-band geosynchronous SAR.IEEE J Sel Top Appl Earth Obs Remote Sens 2023; 17:842-854.
[27]
Carrano CS, Groves KM, Caton RG.Simulating the impacts of ionospheric scintillation on L band SAR image formation.Radio Sci 2012; 47(4):1-14.
[28]
Belcher DP, Cannon PS.Amplitude scintillation effects on SAR.IET Radar Sonar Navig 2014; 8(6):658-666.
[29]
Mohanty S, Singh G.Improved POLSAR model-based decomposition interpretation under scintillation conditions.IEEE Trans Geosci Remote Sens 2019; 57(10):7567-7578.
[30]
Gomba G, de F Zan.Bayesian data combination for the estimation of ionospheric effects in SAR interferograms.IEEE Trans Geosci Remote Sens 2017; 55(11):6582-6593.
[31]
Roth AP, Huxtable BD, Chotoo K, Chotoo SD, Caton RG.Detection and mitigation of ionospheric stripes in PALSAR data.In: Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium; 2012 Jul 22–27; Munich, Germany. Piscataway: IEE E; 2012. p. 1621–4.
[32]
Gama FF, Wiederkehr NC, Bispo PC.Removal of ionospheric effects from Sigma naught images of the ALOS/PALSAR-2 satellite.Remote Sens 2022; 14(4):962.
[33]
Mohanty S, Khati U, Singh G, Chandrasekharb E.Correction of amplitude scintillation effect in fully polarimetric SAR coherency matrix data.ISPRS J Photogramm Remote Sens 2020; 164:184-199.
[34]
Gan N, Ji Y, Tang F, Zhang Y, Dong Z.Correcting and measuring ionospheric scintillation amplitude stripes in L-band SAR images.IEEE Geosci Remote Sens Lett 2022; 19:4515505.
[35]
Monhanty S, Singh G, Carrano CS, Sripathi S.Ionospheric scintillation observation using space-borne synthetic aperture radar data.Radio Sci 2018; 53(10):1187-1202.
[36]
Monhanty S, Carrano CS, Singh G.Effect of anisotropy on ionospheric scintillations observed by SAR.IEEE Trans Geosci Remote Sens 2019; 57(9):6888-6899.
[37]
Kim JS, Papathanassiou K.SAR observation of ionosphere using range/azimuth sub-bands.In: Proceedings of the 10th European Conference on Synthetic Aperture Radar; 2014 Jun 3–5; Berlin, Germany. Frankfurt: VD E; 2014.
[38]
Kim JS, Sato H, Papathanassiou K.Estimation of drift of equatorial ionosphere of post sunset-sector by means of low frequency space-borne SAR.In: Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium; 2016 Jul 10–15; Beijing, China. Piscataway: IEE E; 2016. p. 6946–9.
[39]
Rino CL.A power law phase screen model for ionospheric scintillation: 1. Weak scatter.Radio Sci 1979; 14(6):1135-1145.
[40]
Rino CL.A power law phase screen model for ionospheric scintillation: 2. Strong scatter.Radio Sci 1979; 14(6):1147-1155.
[41]
Rino CL.The theory of scintillation with applications in remote sensing.Wiley & Sons, Inc., Hoboken (2011)
[42]
Yeh KC, Liu CH.Radio wave scintillations in the ionosphere.Proc IEEE 1982; 70(4):324-360.
[43]
Rino CL.Double-passage radar cross section enhancements.Radio Sci 1994; 29(2):495-501.
[44]
Rino C, Yokoyama T, Carrano C.Dynamic spectral characteristics of high-resolution simulated equatorial plasma bubbles.Prog Earth Planet Sci 2018; 5(83):1-13.
[45]
Rino C, Yokoyama T, Carrano C.A three-dimensional stochastic structure model derived from high-resolution isolated equatorial plasma bubble simulations.Earth Planets Space 2023; 75(1):64.
[46]
Rino C, Carrano C.On the characterization of intermediate-scale ionospheric structure.Radio Sci 2018; 53(11):1316-1327.
PDF(5177 KB)

Accesses

Citation

Detail

段落导航
相关文章

/