3D打印医疗器械和组织结构的工艺、材料和监管考量

Wei Long Ng, Jia An, Chee Kai Chua

工程(英文) ›› 2024, Vol. 36 ›› Issue (5) : 146-166.

PDF(3972 KB)
PDF(3972 KB)
工程(英文) ›› 2024, Vol. 36 ›› Issue (5) : 146-166. DOI: 10.1016/j.eng.2024.01.028
研究论文
Article

3D打印医疗器械和组织结构的工艺、材料和监管考量

作者信息 +

Process, Material, and Regulatory Considerations for 3D Printed Medical Devices and Tissue Constructs

Author information +
History +

摘要

三维(3D)打印是一种高度自动化的平台,能够以逐层方式沉积材料,按需制造预先确定的3D复杂结构。这是一种针对于制造个性化医疗器械、甚至专用于患者的组织构造物而言非常有前景的技术。每种类型的3D打印技术都有其独特的优势和局限性,选择合适的3D打印技术在很大程度上取决于其预期用途。在这篇综述论文中,我们展示并强调了3D打印个性化医疗器械的一些关键工艺(打印参数、构建方向、构建位置和支撑结构)、材料(批次之间的一致性、回收利用、蛋白质吸附、生物相容性和降解性能)和监管考量(无菌性和力学性能)。本综述论文的目标是让读者对3D打印的各种关键考量(工艺、材料和监管)有很好的理解,这对于生产制造已经改善的、专用于患者的3D打印医疗器械和组织构造物至关重要。

Abstract

Three-dimensional (3D) printing is a highly automated platform that facilitates material deposition in a layer-by-layer approach to fabricate pre-defined 3D complex structures on demand. It is a highly promising technique for the fabrication of personalized medical devices or even patient-specific tissue constructs. Each type of 3D printing technique has its unique advantages and limitations, and the selection of a suitable 3D printing technique is highly dependent on its intended application. In this review paper, we present and highlight some of the critical processes (printing parameters, build orientation, build location, and support structures), material (batch-to-batch consistency, recycling, protein adsorption, biocompatibility, and degradation properties), and regulatory considerations (sterility and mechanical properties) for 3D printing of personalized medical devices. The goal of this review paper is to provide the readers with a good understanding of the various key considerations (process, material, and regulatory) in 3D printing, which are critical for the fabrication of improved patient-specific 3D printed medical devices and tissue constructs.

关键词

3D打印 / 生物打印 / 生物制造 / 医疗器械 / 组织结构

Keywords

3D printing / Bioprinting / Biofabrication / Medical devices / Tissue constructs

引用本文

导出引用
Wei Long Ng, Jia An, Chee Kai Chua. 3D打印技术在医疗器械与组织工程中的应用——工艺、材料及监管要求. Engineering. 2024, 36(5): 146-166 https://doi.org/10.1016/j.eng.2024.01.028

参考文献

[1]
M. Di Prima, J. Coburn, D. Hwang, J. Kelly, A. Khairuzzaman, L. Ricles. Additively manufactured medical products—the FDA perspective. 3D Print Med, 2 ( 2016), pp. 1-6
[2]
Y. Zhang, J. Xia, J. Zhang, J. Mao, H. Chen, H. Lin, et al.. Validity of a soft and flexible 3D-printed Nissen fundoplication model in surgical training. Int J Bioprint, 8 (2) ( 2022), p. 546
[3]
C. Borràs-Novell, M.G. Causapié, M. Murcia, D. Djian, Ó. García-Algar.Development of a 3D individualized mask for neonatal non-invasive ventilation. Int J Bioprint, 8 (2) ( 2022), p. 516
[4]
H.W. Kang, S.J. Lee, I.K. Ko, C. Kengla, J.J. Yoo, A. Atala. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol, 34 (3) ( 2016), pp. 312-339
[5]
W.L. Ng, C.K. Chua, Y.F. Shen.Print me an organ! Why we are not there yet. Prog Polym Sci, 97 ( 2019), p. 101145
[6]
M.H. Kathawala, W.L. Ng, D. Liu, M.W. Naing, W.Y. Yeong, K.L. Spiller, et al.. Healing of chronic wounds: an update of recent developments and future possibilities. Tissue Eng Part B, 25 (5) ( 2019), pp. 429-444
[7]
W.L. Ng, A. Chan, Y.S. Ong, C.K. Chua. Deep learning for fabrication and maturation of 3D bioprinted tissues and organs. Virtual Phys Prototyp, 15 (3) ( 2020), pp. 340-358
[8]
J.M. Lee, W.L. Ng, W.Y. Yeong.Resolution and shape in bioprinting: strategizing towards complex tissue and organ printing. Appl Phys Rev, 6 (1) ( 2019), p. 011307
[9]
MarketsandMarkets.3D printing medical devices market size by component (3D printer, 3D bioprinter, material, software, service), technology (EBM, DMLS, SLS, SLA, DLP, Polyjet), application (surgical guides, prosthetics, implants), end user & region-global forecast to 2028. Report. Northbrook:3D Printing Medical Devices Market; 2023.
[10]
S. Santoni, S.G. Gugliandolo, M. Sponchioni, D. Moscatelli, B.M. Colosimo. 3D bioprinting: current status and trends—a guide to the literature and industrial practice. Biodes Manuf, 5 (1) ( 2022), pp. 14-42
[11]
P. Honigmann, N. Sharma, R. Schumacher, J. Rueegg, M. Haefeli, F. Thieringer.In-hospital 3D printed scaphoid prosthesis using medical-grade polyetheretherketone (PEEK) biomaterial. BioMed Res Int, 2021 ( 2021), p. 1301028
[12]
J.S. Cuellar, D. Plettenburg, A.A. Zadpoor, P. Breedveld, G. Smit. Design of a 3D-printed hand prosthesis featuring articulated bio-inspired fingers. Proc Inst Mech Eng H, 235 (3) ( 2021), pp. 336-345
[13]
C.D. Fay, A. Jeiranikhameneh, S. Sayyar, S. Talebian, A. Nagle, K. Cheng, et al.. Development of a customised 3D printer as a potential tool for direct printing of patient-specific facial prosthesis. Int J Adv Manuf Technol, 120 (11-12) ( 2022), pp. 7143-7155
[14]
R. Rodriguez Colon, V.V. Nayak, P.E.L. Parente, P. Leucht, N. Tovar, C.C. Lin, et al.. The presence of 3D printing in orthopedics: a clinical and material review. J Orthop Res, 41 (3) ( 2023), pp. 601-613
[15]
S. Petersmann, J.A. Smith, U. Schäfer, F. Arbeiter. Material extrusion-based additive manufacturing of polyetheretherketone cranial implants: mechanical performance and print quality. J Mater Res Technol, 22 ( 2023), pp. 642-657
[16]
P. Jeyachandran, S. Bontha, S. Bodhak, V.K. Balla, M. Doddamani.Material extrusion additive manufacturing of bioactive glass/high density polyethylene composites. Compos Sci Technol, 213 ( 2021), p. 108966
[17]
M. Juneja, N. Thakur, D. Kumar, A. Gupta, B. Bajwa, P. Jindal. Accuracy in dental surgical guide fabrication using different 3-D printing techniques. Addit Manuf, 22 ( 2018), pp. 243-255
[18]
S. Rothlauf, S. Pieralli, C. Wesemann, F. Burkhardt, K. Vach, F. Kernen, et al.. Influence of planning software and template design on the accuracy of static computer assisted implant surgery performed using guides fabricated with material extrusion technology: an in vitro study. J Dent, 132 ( 2023), p. 104482
[19]
F. Burkhardt, B.C. Spies, C. Wesemann, C.G. Schirmeister, E.H. Licht, F. Beuer, et al.. Cytotoxicity of polymers intended for the extrusion-based additive manufacturing of surgical guides. Sci Rep, 12 (1) ( 2022), p. 7391
[20]
M. Higgins, S. Leung, N. Radacsi.3D printing surgical phantoms and their role in the visualization of medical procedures. Ann 3D Print Med, 6 ( 2022), p. 100057
[21]
P. Turek, G. Budzik. Estimating the accuracy of mandible anatomical models manufactured using material extrusion methods. Polymers, 13 (14) ( 2021), p. 2271
[22]
P. Ravi, L.L. Chepelev, G.V. Stichweh, B.S. Jones, F.J. Rybicki. Medical 3D printing dimensional accuracy for multi-pathological anatomical models 3D printed using material extrusion. J Digit Imaging, 35 (3) ( 2022), pp. 613-622
[23]
N.G. Skrzypczak, N.G. Tanikella, J.M. Pearce. Open source high-temperature RepRap for 3-D printing heat-sterilizable PPE and other applications. HardwareX, 8 ( 2020), p. e00130
[24]
M. Tarfaoui, M. Nachtane, I. Goda, Y. Qureshi, H. Benyahia. 3D printing to support the shortage in personal protective equipment caused by COVID-19 pandemic. Materials, 13 (15) ( 2020), p. 3339
[25]
A. Leucht, A.C. Volz, J. Rogal, K. Borchers, P.J. Kluger.Advanced gelatin-based vascularization bioinks for extrusion-based bioprinting of vascularized bone equivalents. Sci Rep, 10 (1) ( 2020), p. 5330
[26]
S. Pant, S. Subramanian, S. Thomas, S. Loganathan, R.B. Valapa.Tailoring of mesoporous bioactive glass composite scaffold via thermal extrusion based 3D bioprinting and scrutiny on bone tissue engineering characteristics. Microporous Mesoporous Mater, 341 ( 2022), p. 112104
[27]
H. Zhu, M. Monavari, K. Zheng, T. Distler, L. Ouyang, S. Heid, et al.. 3D bioprinting of multifunctional dynamic nanocomposite bioinks incorporating Cu-doped mesoporous bioactive glass nanoparticles for bone tissue engineering. Small, 18 (12) ( 2022), p. 2104996
[28]
G. Ratheesh, C. Vaquette, Y. Xiao.Patient-specific bone particles bioprinting for bone tissue engineering. Adv Healthc Mater, 9 (23) ( 2020), p. 2001323
[29]
A. Lee, A.R. Hudson, D.J. Shiwarski, J.W. Tashman, T.J. Hinton, S. Yerneni, et al.. 3D bioprinting of collagen to rebuild components of the human heart. Science, 365 (6452) ( 2019), pp. 482-487
[30]
E. Mirdamadi, J.W. Tashman, D.J. Shiwarski, R.N. Palchesko, A.W. Feinberg. FRESH 3D bioprinting a full-size model of the human heart. ACS Biomater Sci Eng, 6 (11) ( 2020), pp. 6453-6459
[31]
N. Noor, A. Shapira, R. Edri, I. Gal, L. Wertheim, T. Dvir.3D printing of personalized thick and perfusable cardiac patches and hearts. Adv Sci, 6 (11) ( 2019), p. 1900344
[32]
D. Bejleri, B.W. Streeter, A.L.Y. Nachlas, M.E. Brown, R. Gaetani, K.L. Christman, et al.. A bioprinted cardiac patch composed of cardiac-specific extracellular matrix and progenitor cells for heart repair. Adv Healthc Mater, 7 (23) ( 2018), p. 1800672
[33]
K. Flégeau, A. Puiggali-Jou, M. Zenobi-Wong. Cartilage tissue engineering by extrusion bioprinting utilizing porous hyaluronic acid microgel bioinks. Biofabrication, 14 (3) ( 2022), p. 034105
[34]
E.E. Beketov, E.V. Isaeva, N.D. Yakovleva, G.A. Demyashkin, N.V. Arguchinskaya, A.A. Kisel, et al.. Bioprinting of cartilage with bioink based on high-concentration collagen and chondrocytes. Int J Mol Sci, 22 (21) ( 2021), p. 11351
[35]
L. Trachsel, C. Johnbosco, T. Lang, E.M. Benetti, M. Zenobi-Wong. Double-network hydrogels including enzymatically crosslinked poly-(2-alkyl-2-oxazoline)s for 3D bioprinting of cartilage-engineering constructs. Biomacromolecules, 20 (12) ( 2019), pp. 4502-4511
[36]
W.L. Ng, J.M. Lee, M. Zhou, W.Y. Yeong. Hydrogels for 3-D bioprinting-based tissue engineering. R. Narayan ( Ed.),Rapid prototyping of biomaterials ( 2nd ed.), Woodhead Publishing, Cambridge ( 2020), pp. 183-204
[37]
E.O. Osidak, V.I. Kozhukhov, M.S. Osidak, S.P. Domogatsky.Collagen as bioink for bioprinting: a comprehensive review. Int J Bioprint, 6 (3) ( 2020), p. 270
[38]
Y. Yang, R. Xu, C. Wang, Y. Guo, W. Sun, L. Ouyang.Recombinant human collagen-based bioinks for the 3D bioprinting of full-thickness human skin equivalent. Int J Bioprint, 8 (4) ( 2022), p. 611
[39]
S. Liu, H. Zhang, T. Ahlfeld, D. Kilian, Y. Liu, M. Gelinsky, et al.. Evaluation of different crosslinking methods in altering the properties of extrusion-printed chitosan-based multi-material hydrogel composites. Biodes Manuf, 6 (2) ( 2023), pp. 150-173
[40]
Ng WL, Yeong WY, Naing MW.Potential of bioprinted films for skin tissue engineering. In:Proceedings of the 1st International Conference on Progress in Additive Manufacturing; 2014 May 26- 28 ; Singapore. Hoboken: Research Publishing; 2014. p. 441-6.
[41]
G. Goh, Y. Yap, H. Tan, S. Sing, G. Goh, W. Yeong. Process-structure-properties in polymer additive manufacturing via material extrusion: a review. Crit Rev Solid State Mater Sci, 45 (2) ( 2020), pp. 113-133
[42]
M.A. Gibson, N.M. Mykulowycz, J. Shim, R. Fontana, P. Schmitt, A. Roberts, et al.. 3D printing metals like thermoplastics: fused filament fabrication of metallic glasses. Mater Today, 21 (7) ( 2018), pp. 697-702
[43]
M. Sarraf, E. Rezvani Ghomi, S. Alipour, S. Ramakrishna, S.N. Liana. A state-of-the-art review of the fabrication and characteristics of titanium and its alloys for biomedical applications. Biodes Manuf, 5 (2) ( 2022), pp. 371-395
[44]
T. Yu, Z. Zhang, Q. Liu, R. Kuliiev, N. Orlovskaya, D. Wu. Extrusion-based additive manufacturing of yttria-partially-stabilized zirconia ceramics. Ceram Int, 46 (4) ( 2020), pp. 5020-5027
[45]
A. Zou, H. Liang, C. Jiao, M. Ge, X. Yi, Y. Yang, et al.. Fabrication and properties of CaSiO3/Sr3(PO4)2 composite scaffold based on extrusion deposition. Ceram Int, 47 (4) ( 2021), pp. 4783-4792
[46]
S.H. Masood. Advances in fused deposition modeling. S. Hashmi, G. Ferreira Batalha, C.J. Van Tyne, B. Yilbas (Eds.), Comprehensive materials processing, Elsevier, Amsterdam ( 2014), pp. 69-91
[47]
J. Huang, Q. Chen, H. Jiang, B. Zou, L. Li, J. Liu, et al.. A survey of design methods for material extrusion polymer 3D printing. Virtual Phys Prototyp, 15 (2) ( 2020), pp. 148-162
[48]
F. Tamburrino, S. Graziosi, M. Bordegoni. The influence of slicing parameters on the multi-material adhesion mechanisms of FDM printed parts: an exploratory study. Virtual Phys Prototyp, 14 (4) ( 2019), pp. 316-332
[49]
J.A. Lewis. Direct ink writing of 3D functional materials. Adv Funct Mater, 16 (17) ( 2006), pp. 2193-2204
[50]
T.D. Brown, P.D. Dalton, D.W. Hutmacher. Direct writing by way of melt electrospinning. Adv Mater, 23 (47) ( 2011), pp. 5651-5657
[51]
W.L. Ng, W.Y. Yeong, M.W. Naing. Polyelectrolyte gelatin-chitosan hydrogel optimized for 3D bioprinting in skin tissue engineering. Int J Bioprint, 2 (1) ( 2016), pp. 53-62
[52]
P. Zhuang, W.L. Ng, J. An, C.K. Chua, L.P. Tan. Layer-by-layer ultraviolet assisted extrusion-based (UAE) bioprinting of hydrogel constructs with high aspect ratio for soft tissue engineering applications. PLoS One, 14 (6) ( 2019), p. e0216776
[53]
T.J. Coogan, D.O. Kazmer. Bond and part strength in fused deposition modeling. Rapid Prototyp J, 23 (2) ( 2017), pp. 414-422
[54]
IOP. A study on the influence of process parameters on the mechanical properties of 3D printed ABS composite.In: Processingof the IOP conference series: materials science and engineering. Bristol: IOP Publishing; 2016. p. 012109.
[55]
J. Yin, C. Lu, J. Fu, Y. Huang, Y. Zheng. Interfacial bonding during multi-material fused deposition modeling (FDM) process due to inter-molecular diffusion. Mater Des, 150 ( 2018), pp. 104-112
[56]
J. Lyu, S. Manoochehri. Online convolutional neural network-based anomaly detection and quality control for fused filament fabrication process. Virtual Phys Prototyp, 16 (2) ( 2021), pp. 160-177
[57]
M. Suzuki, C.A. Wilkie. The thermal degradation of acrylonitrile-butadiene-styrene terpolymei as studied by TGA/FTIR. Polym Degrad Stabil, 47 (2) ( 1995), pp. 217-221
[58]
C.S. Davis, K.E. Hillgartner, S.H. Han, J.E. Seppala. Mechanical strength of welding zones produced by material extrusion additive manufacturing. Addit Manuf, 16 ( 2017), pp. 162-166
[59]
A.A. D’Amico, A. Debaie, A.M. Peterson. Effect of layer thickness on irreversible thermal expansion and interlayer strength in fused deposition modeling. Rapid Prototyp J, 23 (5) ( 2017), pp. 943-953
[60]
O.S. Carneiro, A. Silva, R. Gomes. Fused deposition modeling with polypropylene. Mater Des, 83 ( 2015), pp. 768-776
[61]
D.J. Braconnier, R.E. Jensen, A.M. Peterson.Processing parameter correlations in material extrusion additive manufacturing. Addit Manuf, 31 ( 2020), p. 100924
[62]
Gregorian A, Elliott B, Navarro R, Ochoa F, Singh H, Monge E, et al. Accuracy improvement in rapid prototyping machine ( FDM-1650). In: Proceedingsof the 2001 International Solid Freeform Fabrication Symposium; Aug 6-8 2001 ; Austin, TX, USA. Austin:The University of Texas at Austin; 2001. p. 77-84.
[63]
R. Pennington, N. Hoekstra, J. Newcomer. Significant factors in the dimensional accuracy of fused deposition modelling. Proc Inst Mech Eng, 219 (1) ( 2005), pp. 89-92
[64]
R. Anitha, S. Arunachalam, P. Radhakrishnan. Critical parameters influencing the quality of prototypes in fused deposition modelling. J Mater Process Technol, 118 (1-3) ( 2001), pp. 385-388
[65]
J. Tyberg, J.H. Bøhn. FDM systems and local adaptive slicing. Mater Des, 20 (2-3) ( 1999), pp. 77-82
[66]
P.M. Pandey, N.V. Reddy, S.G. Dhande. Real time adaptive slicing for fused deposition modelling. Int J Mach Tools Manuf, 43 (1) ( 2003), pp. 61-71
[67]
P.M. Pandey, N.V. Reddy, S.G. Dhande. Improvement of surface finish by staircase machining in fused deposition modeling. J Mater Process Technol, 132 (1-3) ( 2003), pp. 323-331
[68]
K. Thrimurthulu, P.M. Pandey, N.V. Reddy. Optimum part deposition orientation in fused deposition modeling. Int J Mach Tools Manuf, 44 (6) ( 2004), pp. 585-594
[69]
L. Galantucci, F. Lavecchia, G. Percoco. Quantitative analysis of a chemical treatment to reduce roughness of parts fabricated using fused deposition modeling. CIRP Ann, 59 (1) ( 2010), pp. 247-250
[70]
L.M. Galantucci, F. Lavecchia, G. Percoco. Experimental study aiming to enhance the surface finish of fused deposition modeled parts. CIRP Ann, 58 (1) ( 2009), pp. 189-192
[71]
P.M. Pandey, K. Thrimurthulu, N.V. Reddy. Optimal part deposition orientation in FDM by using a multicriteria genetic algorithm. Int J Prod Res, 42 (19) ( 2004), pp. 4069-4089
[72]
T. Gao, G.J. Gillispie, J.S. Copus, Y.J. Seol, A. Atala, J.J. Yoo, et al.. Optimization of gelatin-alginate composite bioink printability using rheological parameters: a systematic approach. Biofabrication, 10 (3) ( 2018), p. 034106
[73]
R. Chand, B.S. Muhire, S. Vijayavenkataraman.Computational fluid dynamics assessment of the effect of bioprinting parameters in extrusion bioprinting. Int J Bioprint, 8 (2) ( 2022), p. 545
[74]
S. Han, C.M. Kim, S. Jin, T.Y. Kim. Study of the process-induced cell damage in forced extrusion bioprinting. Biofabrication, 13 (3) ( 2021), p. 035048
[75]
I.T. Ozbolat, M. Hospodiuk. Current advances and future perspectives in extrusion-based bioprinting. Biomaterials, 76 ( 2016), pp. 321-343
[76]
C. Mandrycky, Z. Wang, K. Kim, D.H. Kim. 3D bioprinting for engineering complex tissues. Biotechnol Adv, 34 (4) ( 2016), pp. 422-434
[77]
L.E. Bertassoni, J.C. Cardoso, V. Manoharan, A.L. Cristino, N.S. Bhise, W.A. Araujo, et al.. Direct-write bioprinting of cell-laden methacrylated gelatin hydrogels. Biofabrication, 6 (2) ( 2014), p. 024105
[78]
K. Hölzl, S. Lin, L. Tytgat, S. Van Vlierberghe, L. Gu,A. Ovsianikov. Bioink properties before, during and after 3D bioprinting. Biofabrication, 8 (3) ( 2016), p. 032002
[79]
H. Li, S. Liu, L. Lin. Rheological study on 3D printability of alginate hydrogel and effect of graphene oxide. Int J Bioprint, 2 (2) ( 2016), pp. 163-175
[80]
J. Jia, D.J. Richards, S. Pollard, Y. Tan, J. Rodriguez, R.P. Visconti, et al.. Engineering alginate as bioink for bioprinting. Acta Biomater, 10 (10) ( 2014), pp. 4323-4331
[81]
J. Yin, M. Yan, Y. Wang, J. Fu, H. Suo. 3D bioprinting of low-concentration cell-laden gelatin methacrylate (GelMA) bioinks with a two-step cross-linking strategy. ACS Appl Mater Interfaces, 10 (8) ( 2018), pp. 6849-6857
[82]
Q. Liu, J. Yang, Y. Wang, T. Wu, Y. Liang, K. Deng, et al.. Direct 3D bioprinting of tough and antifatigue cell-laden constructs enabled by a self-healing hydrogel bioink. Biomacromolecules, 24 (6) ( 2023), pp. 2549-2562
[83]
H. Jongprasitkul, S. Turunen, V.S. Parihar, M. Kellomäki. Sequential cross-linking of gallic acid-functionalized gelma-based bioinks with enhanced printability for extrusion-based 3D bioprinting. Biomacromolecules, 24 (1) ( 2023), pp. 502-514
[84]
R. Zgeib, X. Wang, A. Zaeri, F. Zhang, K. Cao, R.C. Chang.Development of a low-cost quad-extrusion 3D bioprinting system for multi-material tissue constructs. Int J Bioprint, 10 (1) ( 2024), p. 0159
[85]
H. Hwangbo, H. Lee, E.J. Jin, J. Lee, Y. Jo, D. Ryu, et al.. Bio-printing of aligned GelMa-based cell-laden structure for muscle tissue regeneration. Bioact Mater, 8 ( 2022), pp. 57-70
[86]
W.L. Ng, W.Y. Yeong, M.W. Naing. Development of polyelectrolyte chitosan-gelatin hydrogels for skin bioprinting. Procedia CIRP, 49 ( 2016), pp. 105-112
[87]
A. Skardal, J. Zhang, L. McCoard, S. Oottamasathien, G.D. Prestwich. Dynamically crosslinked gold nanoparticle-hyaluronan hydrogels. Adv Mater, 22 (42) ( 2010), pp. 4736-4740
[88]
A. Skardal, J. Zhang, G.D. Prestwich. Bioprinting vessel-like constructs using hyaluronan hydrogels crosslinked with tetrahedral polyethylene glycol tetracrylates. Biomaterials, 31 (24) ( 2010), pp. 6173-6181
[89]
D. Petta, A. Armiento, D. Grijpma, M. Alini, D. Eglin, M. D’Este. 3D bioprinting of a hyaluronan bioink through enzymatic- and visible light-crosslinking. Biofabrication, 10 (4) ( 2018), p. 044104
[90]
L.L. Wang, C.B. Highley, Y.C. Yeh, J.H. Galarraga, S. Uman, J.A. Burdick.Three-dimensional extrusion bioprinting of single- and double-network hydrogels containing dynamic covalent crosslinks. J Biomed Mater Res A, 106 (4) ( 2018), p. 86575
[91]
L. Hockaday, K. Kang, N. Colangelo, P. Cheung, B. Duan, E. Malone, et al.. Rapid 3D printing of anatomically accurate and mechanically heterogeneous aortic valve hydrogel scaffolds. Biofabrication, 4 (3) ( 2012), p. 035005
[92]
N.E. Fedorovich, I. Swennen, J. Girones, L. Moroni, C.A. van Blitterswijk, E. Schacht, et al.. Evaluation of photocrosslinked Lutrol hydrogel for tissue printing applications. Biomacromolecules, 10 (7) ( 2009), pp. 1689-1696
[93]
S.F. Khattak, S.R. Bhatia, S.C. Roberts. Pluronic F127 as a cell encapsulation material: utilization of membrane-stabilizing agents. Tissue Eng, 11 (5-6) ( 2005), pp. 974-983
[94]
D. Choudhury, H.W. Tun, T. Wang, M.W. Naing. Organ-derived decellularized extracellular matrix: a game changer for bioink manufacturing?. Trends Biotechnol, 36 (8) ( 2018), pp. 787-805
[95]
M. Lowther, S. Louth, A. Davey, A. Hussain, P. Ginestra, L. Carter, et al.. Clinical, industrial, and research perspectives on powder bed fusion additively manufactured metal implants. Addit Manuf, 28 ( 2019), pp. 565-584
[96]
P. Lei, H. Qian, T. Zhang, T. Lei, Y. Hu, C. Chen, et al.. Porous tantalum structure integrated on Ti6Al4V base by laser powder bed fusion for enhanced bony-ingrowth implants: in vitro and in vivo validation. Bioact Mater, 7 ( 2022), pp. 3-13
[97]
X. Chen, Y. Wu, H. Liu, Y. Wang, G. Zhao, Q. Zhang, et al.. Mechanical performance of PEEK-Ti6Al4V interpenetrating phase composites fabricated by powder bed fusion and vacuum infiltration targeting large and load-bearing implants. Mater Des, 215 ( 2022), p. 110531
[98]
A. Matsko, N. Shaker, A. C.B.C.J. Fernandes, A. Haimeur, R. França. Nanoscale chemical surface analyses of recycled powder for direct metal powder bed fusion Ti-6al-4v root analog dental implant: an X-ray photoelectron spectroscopy study. Bioengineering, 10 (3) ( 2023), p. 379
[99]
L. Vanmunster, C. D’Haeyer, P. Coucke, A. Braem, B. Van Hooreweder.Mechanical behavior of Ti6Al4V produced by laser powder bed fusion with engineered open porosity for dental applications. J Mech Behav Biomed Mater, 126 ( 2022), p. 104974
[100]
Y. Liu, S.L. Sing, R.X.E. Lim, W.Y. Yeong, B.T. Goh.Preliminary investigation on the geometric accuracy of 3D printed dental implant using a monkey maxilla incisor model. Int J Bioprint, 8 (1) ( 2022), p. 476
[101]
S.D. Nath, H. Irrinki, G. Gupta, M. Kearns, O. Gulsoy, S. Atre. Microstructure-property relationships of 420 stainless steel fabricated by laser-powder bed fusion. Powder Technol, 343 ( 2019), pp. 738-746
[102]
L. Xue, K. Atli, C. Zhang, N. Hite, A. Srivastava, A. Leff, et al.. Laser powder bed fusion of defect-free NiTi shape memory alloy parts with superior tensile superelasticity. Acta Mater, 229 ( 2022), p. 117781
[103]
T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, et al.. Additive manufacturing of metallic components-process, structure and properties. Prog Mater Sci, 92 ( 2018), pp. 112-224
[104]
W.H. Yu, S.L. Sing, C.K. Chua, C.N. Kuo, X.L. Tian. Particle-reinforced metal matrix nanocomposites fabricated by selective laser melting: a state of the art review. Prog Mater Sci, 104 ( 2019), pp. 330-379
[105]
K. Ishfaq, M. Abdullah, M.A. Mahmood.A state-of-the-art direct metal laser sintering of Ti6Al4V and AlSi10Mg alloys: surface roughness, tensile strength, fatigue strength and microstructure. Opt Laser Technol, 143 ( 2021), p. 107366
[106]
S. Yuan, F. Shen, C.K. Chua, K. Zhou. Polymeric composites for powder-based additive manufacturing: materials and applications. Prog Polym Sci, 91 ( 2019), pp. 141-168
[107]
P. Tan, F. Shen, W.S. Tey, K. Zhou. A numerical study on the packing quality of fibre/polymer composite powder for powder bed fusion additive manufacturing. Virtual Phys Prototyp, 16 (S1) ( 2021) S1-18
[108]
C.A. Chatham, T.E. Long, C.B. Williams. A review of the process physics and material screening methods for polymer powder bed fusion additive manufacturing. Prog Polym Sci, 93 ( 2019), pp. 68-95
[109]
B. Liu, B.Q. Li, Z. Li. Selective laser remelting of an additive layer manufacturing process on AlSi10Mg. Results Phys, 12 ( 2019), pp. 982-988
[110]
A.G. Demir, B. Previtali. Investigation of remelting and preheating in SLM of 18Ni300 maraging steel as corrective and preventive measures for porosity reduction. Int J Adv Manuf Technol, 93 ( 2017), pp. 2697-2709
[111]
Z. Xiong, P. Zhang, C. Tan, D. Dong, W. Ma, K. Yu.Selective laser melting and remelting of pure tungsten. Adv Eng Mater, 22 (3) ( 2020), p. 1901352
[112]
C. Chen, Z. Xiao, H. Zhu, X. Zeng.Distribution and evolution of thermal stress during multi-laser powder bed fusion of Ti-6Al-4 V alloy. J Mater Process Technol, 284 ( 2020), p. 116726
[113]
C.Y. Tsai, C.W. Cheng, A.C. Lee, M.C. Tsai. Synchronized multi-spot scanning strategies for the laser powder bed fusion process. Addit Manuf, 27 ( 2019), pp. 1-7
[114]
H. Wong, K. Dawson, G. Ravi, L. Howlett, R. Jones, C. Sutcliffe.Multi-laser powder bed fusion benchmarking—initial trials with Inconel 625. Int J Adv Manuf Technol, 105 ( 2019), pp. 2891-2906
[115]
S.T. Jaber, M.Y. Hajeer, T.Z. Khattab, L. Mahaini. Evaluation of the fused deposition modeling and the digital light processing techniques in terms of dimensional accuracy of printing dental models used for the fabrication of clear aligners. Clin Exp Dent Res, 7 (4) ( 2021), pp. 591-600
[116]
P. Jindal, M. Juneja, F.L. Siena, D. Bajaj, P. Breedon. Mechanical and geometric properties of thermoformed and 3D printed clear dental aligners. Am J Orthod Dentofacial Orthop, 156 (5) ( 2019), pp. 694-701
[117]
X. Yu, G. Li, Y. Zheng, J. Gao, Y. Fu, Q. Wang, et al.. ‘Invisible’ orthodontics by polymeric ‘clear’ aligners molded on 3D-printed personalized dental models. Regen Biomater, 9 (1) ( 2022), p. rbac007
[118]
M. Vivero-Lopez, X. Xu, A. Muras, A. Otero, A. Concheiro, S. Gaisford, et al.. Anti-biofilm multi drug-loaded 3D printed hearing aids. Mater Sci Eng C, 119 ( 2021), p. 111606
[119]
L. Lo Russo, L. Guida, K. Zhurakivska, G. Troiano, C. Di Gioia, C. Ercoli, et al.. Three dimensional printed surgical guides: effect of time on dimensional stability. J Prosthodont, 32 (5) ( 2023), pp. 431-438
[120]
N. Dalal, R. Ammoun, A.A. Abdulmajeed, G.R. Deeb, S. Bencharit. Intaglio surface dimension and guide tube deviations of implant surgical guides influenced by printing layer thickness and angulation setting. J Prosthodont, 29 (2) ( 2020), pp. 161-165
[121]
R. Ammoun, N. Dalal, A.A. Abdulmajeed, G.R. Deeb, S. Bencharit. Effects of two postprocessing methods onto surface dimension of in-office fabricated stereolithographic implant surgical guides. J Prosthodont, 30 (1) ( 2021), pp. 71-75
[122]
M. Rajput, P. Mondal, P. Yadav, K. Chatterjee. Light-based 3D bioprinting of bone tissue scaffolds with tunable mechanical properties and architecture from photocurable silk fibroin. Int J Biol Macromol, 202 ( 2022), pp. 644-656
[123]
J. Tao, S. Zhu, X. Liao, Y. Wang, N. Zhou, Z. Li, et al.. DLP-based bioprinting of void-forming hydrogels for enhanced stem-cell-mediated bone regeneration. Mater Today Bio, 17 ( 2022), p. 100487
[124]
J. Gao, H. Wang, M. Li, Z. Liu, J. Cheng, X. Liu, et al.. DLP-printed GelMA-PMAA scaffold for bone regeneration through endocho. Int J Bioprint, 9 (5) ( 2023), p. 754
[125]
C. Xie, R. Liang, J. Ye, Z. Peng, H. Sun, Q. Zhu, et al.. High-efficient engineering of osteo-callus organoids for rapid bone regeneration within one month. Biomaterials, 288 ( 2022), p. 121741
[126]
J. Tao, S. Zhu, N. Zhou, Y. Wang, H. Wan, L. Zhang, et al.. Nanoparticle-stabilized emulsion bioink for digital light processing based 3D bioprinting of porous tissue constructs. Adv Healthc Mater, 11 (12) ( 2022), p. 2102810
[127]
X. Xie, S. Wu, S. Mou, N. Guo, Z. Wang, J. Sun.Microtissue-based bioink as a chondrocyte microshelter for DLP bioprinting. Adv Healthc Mater, 11 (22) ( 2022), p. 2201877
[128]
L.K. Shopperly, J. Spinnen, J.P. Krüger, M. Endres, M. Sittinger, T. Lam, et al.. Blends of gelatin and hyaluronic acid stratified by stereolithographic bioprinting approximate cartilaginous matrix gradients. J Biomed Mater Res B, 110 (10) ( 2022), pp. 2310-2322
[129]
L. Breideband, K.N. Wächtershäuser, L. Hafa, K. Wieland, A.S. Frangakis, E.H. Stelzer, et al.. Upgrading a consumer stereolithographic 3D printer to produce a physiologically relevant model with human liver cancer organoids. Adv Mater Technol, 7 (10) ( 2022), p. 2200029
[130]
L. Ma, Y. Wu, Y. Li, A. Aazmi, H. Zhou, B. Zhang, et al.. Current advances on 3D-bioprinted liver tissue models. Adv Healthc Mater, 9 (24) ( 2020), p. 2001517
[131]
T. Grix, A. Ruppelt, A. Thomas, A.K. Amler, B.P. Noichl, R. Lauster, et al.. Bioprinting perfusion-enabled liver equivalents for advanced organ-on-a-chip applications. Genes, 9 (4) ( 2018), p. 176
[132]
X. Zhou, H. Cui, M. Nowicki, S. Miao, S.J. Lee, F. Masood, et al.. Three-dimensional-bioprinted dopamine-based matrix for promoting neural regeneration. ACS Appl Mater Interfaces, 10 (10) ( 2018), pp. 8993-9001
[133]
S.J. Lee, M. Nowicki, B. Harris, L.G. Zhang. Fabrication of a highly aligned neural scaffold via a table top stereolithography 3D printing and electrospinning. Tissue Eng Part A, 23 (11-12) ( 2017), pp. 491-502
[134]
B. Qiu, N. Bessler, K. Figler, M.B. Buchholz, A.C. Rios, J. Malda, et al.. Bioprinting neural systems to model central nervous system diseases. Adv Funct Mater, 30 (44) ( 2020), p. 1910250
[135]
M. Cadena, L. Ning, A. King, B. Hwang, L. Jin, V. Serpooshan, et al.. 3D bioprinting of neural tissues. Adv Healthc Mater, 10 (15) ( 2021), p. 2001600
[136]
W.L. Ng, J.M. Lee, M. Zhou, Y.W. Chen, K.X.A. Lee, W.Y. Yeong, et al.. Vat polymerization-based bioprinting-process, materials, applications and regulatory challenges. Biofabrication, 12 (2) ( 2020), p. 022001
[137]
W. Li, L.S. Mille, J.A. Robledo, T. Uribe, V. Huerta, Y.S. Zhang. Recent advances in formulating and processing biomaterial inks for vat polymerization-based 3D printing. Adv Healthc Mater, 9 (15) ( 2020), p. e2000156
[138]
P. Bartolo, J. Gaspar. Metal filled resin for stereolithography metal part. CIRP Ann, 57 (1) ( 2008), pp. 235-238
[139]
G. Taormina, C. Sciancalepore, F. Bondioli, M. Messori. Special resins for stereolithography: in situ generation of silver nanoparticles. Polymers, 10 (2) ( 2018), p. 212
[140]
D. Han, C. Yang, N.X. Fang, H. Lee. Rapid multi-material 3D printing with projection micro-stereolithography using dynamic fluidic control. Addit Manuf, 27 ( 2019), pp. 606-615
[141]
L. He, F. Fei, W. Wang, X. Song. Support-free ceramic stereolithography of complex overhanging structures based on an elasto-viscoplastic suspension feedstock. ACS Appl Mater Interfaces, 11 (20) ( 2019), pp. 18849-18857
[142]
J.W. Halloran. Ceramic stereolithography: additive manufacturing for ceramics by photopolymerization. Annu Rev Mater Res, 46 (1) ( 2016), pp. 19-40
[143]
W. Zhu, X. Ma, M. Gou, D. Mei, K. Zhang, S. Chen. 3D printing of functional biomaterials for tissue engineering. Curr Opin Biotechnol, 40 ( 2016), pp. 103-112
[144]
A. Bucciarelli, X. Paolelli, E. De Vitis, N. Selicato, F. Gervaso, G. Gigli, et al.. VAT photopolymerization 3D printing optimization of high aspect ratio structures for additive manufacturing of chips towards biomedical applications. Addit Manuf, 60 ( 2022), p. 103200
[145]
Q. Wang, Ö. Karadas, O. Backman, L. Wang, T. Näreoja, J.M. Rosenholm, et al.. Aqueous two-phase emulsion bioresin for facile one-step 3D microgel-based bioprinting. Adv Healthc Mater, 12 (19) ( 2023), p. 2203243
[146]
R. Masuma, S. Kashima, M. Kurasaki, T. Okuno.Effects of UV wavelength on cell damages caused by UV irradiation in PC12 cells. J Photochem Photobiol B, 125 ( 2013), pp. 202-208
[147]
Z. Zheng, D. Eglin, M. Alini, G.R. Richards, L. Qin, Y. Lai. Visible light-induced 3D bioprinting technologies and corresponding bioink materials for tissue engineering: a review. Engineering, 7 (7) ( 2021), pp. 966-978
[148]
A.D. Rouillard, C.M. Berglund, J.Y. Lee, W.J. Polacheck, Y. Tsui, L.J. Bonassar, et al.. Methods for photocrosslinking alginate hydrogel scaffolds with high cell viability. Tissue Eng Part C Methods, 17 (2) ( 2011), pp. 173-179
[149]
X. Huang, X. Wang, Y. Zhao. Study on a series of water-soluble photoinitiators for fabrication of 3D hydrogels by two-photon polymerization. Dyes Pigments, 141 ( 2017), pp. 413-419
[150]
I. Mironi-Harpaz, D.Y. Wang, S. Venkatraman, D. Seliktar. Photopolymerization of cell-encapsulating hydrogels: crosslinking efficiency versus cytotoxicity. Acta Biomater, 8 (5) ( 2012), pp. 1838-1848
[151]
P. Soman, P.H. Chung, A.P. Zhang, S. Chen. Digital microfabrication of user-defined 3D microstructures in cell-laden hydrogels. Biotechnol Bioeng, 110 (11) ( 2013), pp. 3038-3047
[152]
Wang Z, Tian Z, Jin X, Holzman JF, Menard F, Kim K. Visible light-based stereolithography bioprinting of cell-adhesive gelatin hydrogels. In: Proceedingsof the 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society EMBC; Jul 11-15 2017. p. 2017 ; Jeju, Republic of Korean. New York City: IEEE; 1599-602.
[153]
J. Gehlen, W. Qiu, G.N. Schädli, R. Müller, X.H. Qin. Tomographic volumetric bioprinting of heterocellular bone-like tissues in seconds. Acta Biomater, 156 ( 2023), pp. 49-60
[154]
H. Lin, D. Zhang, P.G. Alexander, G. Yang, J. Tan, A.W.M. Cheng, et al.. Application of visible light-based projection stereolithography for live cell-scaffold fabrication with designed architecture. Biomaterials, 34 (2) ( 2013), pp. 331-339
[155]
O. Rungrojwittayakul, J.Y. Kan, K. Shiozaki, R.S. Swamidass, B.J. Goodacre, C.J. Goodacre, et al.. Accuracy of 3D printed models created by two technologies of printers with different designs of model base. J Prosthodont, 29 (2) ( 2020), pp. 124-128
[156]
I. Barbur, H. Opris, B. Crisan, S. Cuc, H.A. Colosi, M. Baciut, et al.. Statistical comparison of the mechanical properties of 3D-printed resin through triple-jetting technology and conventional PMMA in orthodontic occlusal splint manufacturing. Biomedicines, 11 (8) ( 2023), p. 2155
[157]
A. Pugalendhi, R. Ranganathan, M. Chandrasekaran. Novel fabrication method for clear and hard tooth aligner through additive manufacturing technology: a pilot study. Mater Today Proc, 28 ( 2020), pp. 551-555
[158]
G.D. Goh, S.L. Sing, Y.F. Lim, J.L.J. Thong, Z.K. Peh, S.R. Mogali, et al.. Machine learning for 3D printed multi-materials tissue-mimicking anatomical models. Mater Des, 211 ( 2021), p. 110125
[159]
L. Tan, Z. Wang, H. Jiang, B. Han, J. Tang, C. Kang, et al.. Full color 3D printing of anatomical models. Clin Anat, 35 (5) ( 2022), pp. 598-608
[160]
S.R. Mogali, R. Chandrasekaran, S. Radzi, Z.K. Peh, G.J.S. Tan, P. Rajalingam, et al.. Investigating the effectiveness of three-dimensionally printed anatomical models compared with plastinated human specimens in learning cardiac and neck anatomy: a randomized crossover study. Anat Sci Educ, 15 (6) ( 2022), pp. 1007-1017
[161]
W. Kim, Y. Lee, D. Kang, T. Kwak, H.R. Lee, S. Jung. 3D inkjet-bioprinted lung-on-a-chip. ACS Biomater Sci Eng, 9 (5) ( 2023), pp. 2806-2815
[162]
W.L. Ng, T.C. Ayi, Y.C. Liu, S.L. Sing, W.Y. Yeong, B.H. Tan.Fabrication and characterization of 3D bioprinted triple-layered human alveolar lung models. Int J Bioprint, 7 (2) ( 2021), p. 332
[163]
D. Kang, J.A. Park, W. Kim, S. Kim, H.R. Lee, W.J. Kim, et al.. All-inkjet-printed 3D alveolar barrier model with physiologically relevant microarchitecture. Adv Sci, 8 (10) ( 2021), p. 2004990
[164]
F. Akter, Y. Araf, S.K. Promon, J. Zhai, C. Zheng.3D bioprinting for regenerating COVID-19-mediated irreversibly damaged lung tissue. Int J Bioprint, 8 (4) ( 2022), p. 616
[165]
P. Shi, Y.S.E. Tan, W.Y. Yeong, H.Y. Li, A. Laude. A bilayer photoreceptor-retinal tissue model with gradient cell density design: a study of microvalve-based bioprinting. J Tissue Eng Regen Med, 12 (5) ( 2018), pp. 1297-1306
[166]
A. Sorkio, L. Koch, L. Koivusalo, A. Deiwick, S. Miettinen, B. Chichkov, et al.. Human stem cell based corneal tissue mimicking structures using laser-assisted 3D bioprinting and functional bioinks. Biomaterials, 171 ( 2018), pp. 57-71
[167]
E. Masaeli, V. Forster, S. Picaud, F. Karamali, M.H. Nasr-Esfahani, C. Marquette. Tissue engineering of retina through high resolution 3-dimensional inkjet bioprinting. Biofabrication, 12 (2) ( 2020), p. 025006
[168]
H. Liu, F. Wu, R. Chen, Y. Chen, K. Yao, Z. Liu, et al.. Electrohydrodynamic jet-printed ultrathin polycaprolactone scaffolds mimicking bruch’s membrane for retinal pigment epithelial tissue engineering. Int J Bioprint, 8 (3) ( 2022), p. 550
[169]
W.L. Ng, Z.Q. Tan, W.Y. Yeong, M.W. Naing. Proof-of-concept: 3D bioprinting of pigmented human skin constructs. Biofabrication, 10 (2) ( 2018), p. 025005
[170]
W.L. Ng, S. Wang, W.Y. Yeong, M.W. Naing. Skin bioprinting: impending reality or fantasy?. Trends Biotechnol, 34 (9) ( 2016), pp. 689-699
[171]
V. Lee, G. Singh, J.P. Trasatti, C. Bjornsson, X. Xu, T.N. Tran, et al.. Design and fabrication of human skin by three-dimensional bioprinting. Tissue Eng Part C Methods, 20 (6) ( 2014), pp. 473-484
[172]
W.L. Ng, W.Y. Yeong.The future of skin toxicology testing—three-dimensional bioprinting meets microfluidics. Int J Bioprint, 5 (2.1) ( 2019), p. 237
[173]
B.J. de Gans, P.C. Duineveld, U.S. Schubert. Inkjet printing of polymers: state of the art and future developments. Adv Mater, 16 (3) ( 2004), pp. 203-213
[174]
E. Tekin, P.J. Smith, U.S. Schubert. Inkjet printing as a deposition and patterning tool for polymers and inorganic particles. Soft Matter, 4 (4) ( 2008), pp. 703-713
[175]
A. Kosmala, R. Wright, Q. Zhang, P. Kirby. Synthesis of silver nano particles and fabrication of aqueous Ag inks for inkjet printing. Mater Chem Phys, 129 (3) ( 2011), pp. 1075-1080
[176]
N. Raut, K. Al-Shamery. Inkjet printing metals on flexible materials for plastic and paper electronics. J Mater Chem C, 6 (7) ( 2018), pp. 1618-1641
[177]
J. Ni, H. Ling, S. Zhang, Z. Wang, Z. Peng, C. Benyshek, et al.. Three-dimensional printing of metals for biomedical applications. Mater Today Bio, 3 ( 2019), p. 100024
[178]
B. Derby. Inkjet printing ceramics: from drops to solid. J Eur Ceram Soc, 31 (14) ( 2011), pp. 2543-2550
[179]
B. Derby, N. Reis. Inkjet printing of highly loaded particulate suspensions. MRS Bull, 28 (11) ( 2003), pp. 815-818
[180]
B. Cappi, E. Özkol, J. Ebert, R. Telle. Direct inkjet printing of Si3N4: characterization of ink, green bodies and microstructure. J Eur Ceram Soc, 28 (13) ( 2008), pp. 2625-2628
[181]
M. Singh, H.M. Haverinen, P. Dhagat, G.E. Jabbour. Inkjet printing-process and its applications. Adv Mater, 22 (6) ( 2010), pp. 673-685
[182]
J.U. Park, M. Hardy, S.J. Kang, K. Barton, K. Adair, D.K. Mukhopadhyay, et al.. High-resolution electrohydrodynamic jet printing. Nat Mater, 6 (10) ( 2007), pp. 782-789
[183]
J.E. Fromm. Numerical calculation of the fluid dynamics of drop-on-demand jets. IBM J Res Develop, 28 (3) ( 1984), pp. 322-333
[184]
J. Sun, J.H. Ng, Y.H. Fuh, Y.S. Wong, H.T. Loh, Q. Xu. Comparison of micro-dispensing performance between micro-valve and piezoelectric printhead. Microsyst Technol, 15 (9) ( 2009), pp. 1437-1448
[185]
R.E. Saunders, B. Derby. Inkjet printing biomaterials for tissue engineering: bioprinting. Int Mater Rev, 59 (8) ( 2014), pp. 430-448
[186]
X. Li, B. Liu, B. Pei, J. Chen, D. Zhou, J. Peng, et al.. Inkjet bioprinting of biomaterials. Chem Rev, 120 (19) ( 2020), pp. 10793-10833
[187]
L. Koch, M. Gruene, C. Unger, B. Chichkov. Laser assisted cell printing. Curr Pharm Biotechnol, 14 (1) ( 2013), pp. 91-97
[188]
S. Jentsch, R. Nasehi, C. Kuckelkorn, B. Gundert, S. Aveic, H. Fischer.Multiscale 3D bioprinting by nozzle-free acoustic droplet ejection. Small Methods, 5 (6) ( 2021), p. 2000971
[189]
W.L. Ng, J.M. Lee, W.Y. Yeong, N.M. Win. Microvalve-based bioprinting—process, bio-inks and applications. Biomater Sci, 5 (4) ( 2017), pp. 632-647
[190]
Ng WL, Yeong WY, Naing MW.Microvalve bioprinting of cellular droplets with high resolution and consistency. In:Proceedings of the 2nd International Conference on Progress in Additive Manufacturing; 2016 May 17- 19 ; Singapore. Singapore: Nanyang Technological University; 2016. p. 397-402.
[191]
R. Nasehi, S. Aveic, H. Fischer.Wall shear stress during impingement at the building platform can exceed nozzle wall shear stress in microvalve-based bioprinting. Int J Bioprint, 9 (4) ( 2023), p. 743
[192]
Z. Qiu, H. Zhu, Y. Wang, A. Kasimu, D. Li, J. He. Functionalized alginate-based bioinks for microscale electrohydrodynamic bioprinting of living tissue constructs with improved cellular spreading and alignment. Bio-Des Manuf, 6 (2) ( 2023), pp. 136-149
[193]
W.L. Ng, X. Huang, V. Shkolnikov, G.L. Goh, R. Suntornnond, W.Y. Yeong.Controlling droplet impact velocity and droplet volume: key factors to achieving high cell viability in sub-nanoliter droplet-based bioprinting. Int J Bioprint, 8 (1) ( 2021), p. 424
[194]
W.L. Ng, X. Huang, V. Shkolnikov, R. Suntornnond, W.Y. Yeong. Polyvinylpyrrolidone-based bioink: influence of bioink properties on printing performance and cell proliferation during inkjet-based bioprinting. Bio-Des Manuf, 6 (6) ( 2023), pp. 676-690
[195]
A. Blaeser, D.F. Duarte Campos, U. Puster, W. Richtering, M.M. Stevens, H. Fischer. Controlling shear stress in 3D bioprinting is a key factor to balance printing resolution and stem cell integrity. Adv Healthc Mater, 5 (3) ( 2016), pp. 326-333
[196]
H. Xu, J. Liu, Z. Zhang, C. Xu. Cell sedimentation during 3D bioprinting: a mini review. Bio-Des Manuf, 5 (3) ( 2022), pp. 617-626
[197]
W.L. Ng, W.Y. Yeong, M.W. Naing. Polyvinylpyrrolidone-based bio-ink improves cell viability and homogeneity during drop-on-demand printing. Materials, 10 (2) ( 2017), p. 190
[198]
X. Huang, W.L. Ng, W.Y. Yeong. Predicting the number of printed cells during inkjet-based bioprinting process based on droplet velocity profile using machine learning approaches. J Intell Manuf ( 2023)
[199]
H. Gudapati, M. Dey, I. Ozbolat. A comprehensive review on droplet-based bioprinting: past, present and future. Biomaterials, 102 ( 2016), pp. 20-42
[200]
H. Gudapati, J. Yan, Y. Huang, D.B. Chrisey. Alginate gelation-induced cell death during laser-assisted cell printing. Biofabrication, 6 (3) ( 2014), p. 035022
[201]
B. Guillotin, A. Souquet, S. Catros, M. Duocastella, B. Pippenger, S. Bellance, et al.. Laser assisted bioprinting of engineered tissue with high cell density and microscale organization. Biomaterials, 31 (28) ( 2010), pp. 7250-7256
[202]
W. Lee, J.C. Debasitis, V.K. Lee, J.H. Lee, K. Fischer, K. Edminster, et al.. Multi-layered culture of human skin fibroblasts and keratinocytes through three-dimensional freeform fabrication. Biomaterials, 30 (8) ( 2009), pp. 1587-1595
[203]
W. Lee, V. Lee, S. Polio, P. Keegan, J.H. Lee, K. Fischer, et al.. On-demand three-dimensional freeform fabrication of multi-layered hydrogel scaffold with fluidic channels. Biotechnol Bioeng, 105 (6) ( 2010), pp. 1178-1186
[204]
W.L. Ng, M.H. Goh, W.Y. Yeong, M.W. Naing. Applying macromolecular crowding to 3D bioprinting: fabrication of 3D hierarchical porous collagen-based hydrogel constructs. Biomater Sci, 6 (3) ( 2018), pp. 562-574
[205]
J.M. Lee, S.K.Q. Suen, W.L. Ng, W.C. Ma, W.Y. Yeong.Bioprinting of collagen: considerations, potentials, and applications. Macromol Biosci, 21 (1) ( 2021), p. 2000280
[206]
S. Umezu.Precision printing of gelatin utilizing electrostatic inkjet. Jpn J Appl Phys, 53 (5S3) ( 2014), p. 05HC01
[207]
R. Suntornnond, W.L. Ng, X. Huang, C.H.E. Yeow, W.Y. Yeong. Improving printability of hydrogel-based bio-inks for thermal inkjet bioprinting applications via saponification and heat treatment processes. J Mater Chem B, 10 (31) ( 2022), pp. 5989-6000
[208]
L. Koch, A. Deiwick, A. Franke, K. Schwanke, A. Haverich, R. Zweigerdt, et al.. Laser bioprinting of human induced pluripotent stem cells—the effect of printing and biomaterials on cell survival, pluripotency, and differentiation. Biofabrication, 10 (3) ( 2018), p. 035005
[209]
I. Henriksson, P. Gatenholm, D. Hägg. Increased lipid accumulation and adipogenic gene expression of adipocytes in 3D bioprinted nanocellulose scaffolds. Biofabrication, 9 (1) ( 2017), p. 015022
[210]
Y.C. Lee, J. Zheng, J. Kuo, G.F. Acosta-Vélez, C.S. Linsley, B.M. Wu. Binder jetting of custom silicone powder for direct three-dimensional printing of maxillofacial prostheses. 3D Print Addit Manuf, 9 (6) ( 2022), pp. 520-534
[211]
M. Meglioli, A. Naveau, G.M. Macaluso, S. Catros.3D printed bone models in oral and cranio-maxillofacial surgery: a systematic review. 3D Print Med, 6 (1) ( 2020), p. 30
[212]
G. Lee, M. Carrillo, J. McKittrick, D.G. Martin, E.A. Olevsky.Fabrication of ceramic bone scaffolds by solvent jetting 3D printing and sintering: towards load-bearing applications. Addit Manuf, 33 ( 2020), p. 101107
[213]
Y. Jo, N. Sarkar, S. Bose. In vitro biological evaluation of epigallocatechin gallate (EGCG) release from three-dimensional printed (3DP) calcium phosphate bone scaffolds. J Mater Chem B, 11 (24) ( 2023), pp. 5503-5513
[214]
A.A. Vu, D.A. Burke, A. Bandyopadhyay, S. Bose.Effects of surface area and topography on 3D printed tricalcium phosphate scaffolds for bone grafting applications. Addit Manuf, 39 ( 2021), p. 101870
[215]
M. Smith, J. McGuinness, M. O’Reilly, L. Nolke, J. Murray, J. Jones. The role of 3D printing in preoperative planning for heart transplantation in complex congenital heart disease. Ir J Med Sci, 186 (3) ( 2017), pp. 753-756
[216]
E. Huotilainen, M. Salmi, J. Lindahl. Three-dimensional printed surgical templates for fresh cadaveric osteochondral allograft surgery with dimension verification by multivariate computed tomography analysis. Knee, 26 (4) ( 2019), pp. 923-932
[217]
M. Ziaee, N.B. Crane. Binder jetting: a review of process, materials, and methods. Addit Manuf, 28 ( 2019), pp. 781-801
[218]
A. Mostafaei, A.M. Elliott, J.E. Barnes, F. Li, W. Tan, C.L. Cramer, et al.. Binder jet 3D printing—process parameters, materials, properties, modeling, and challenges. Prog Mater Sci, 119 ( 2021), p. 100707
[219]
L.C. Santos, R. Condotta, M.C. Ferreira. Flow properties of coarse and fine sugar powders. J Food Process Eng, 41 (2) ( 2018), p. e12648
[220]
L. Li, H. Zhuo, J. Zhu, A. Kwan. Packing density of mortar containing polypropylene, carbon or basalt fibres under dry and wet conditions. Powder Technol, 342 ( 2019), pp. 433-440
[221]
S. Seto, T. Yagi, M. Okuda, S. Umehara, M. Kataoka.Lifetime improvement for full-width-array piezo ink jet print head using matrix nozzle arrangement. J Imaging Sci Technol, 53 (5) ( 2009), p. 50305
[222]
Meisel NA, Williams CB, Druschitz A.Lightweight metal cellular structures via indirect 3D printing and casting. In: Proceedingsof the International Solid Freeform Fabrication Symposium; Aug 6-8 2012 ; Austin, TX, USA. Austin:University of Texas; 2012. p. 162-76.
[223]
Liu J,Rynerson M, inventors. Method for article fabrication using carbohydrate binder. United States patent US 6585930B2. 2003 Jul 1.
[224]
N.D. Parab, J.E. Barnes, C. Zhao, R.W. Cunningham, K. Fezzaa, A.D. Rollett, et al.. Real time observation of binder jetting printing process using high-speed X-ray imaging. Sci Rep, 9 (1) ( 2019), p. 2499
[225]
T. Nguyen, W. Shen, K. Hapgood. Drop penetration time in heterogeneous powder beds. Chem Eng Sci, 64 (24) ( 2009), pp. 5210-5221
[226]
Y. Bai, G. Wagner, C.B. Williams.Effect of particle size distribution on powder packing and sintering in binder jetting additive manufacturing of metals. J Manuf Sci Eng, 139 (8) ( 2017), p. 081019
[227]
Miyanaji H, Yang L. Equilibrium saturation in binder jetting additive manufacturing processes:theoretical model vs experimental observations. In: Proceedingsof the 26th Annual International Solid Freeform Fabrication Symposium—an Additive Manufacturing Conference; Aug 10-12 2015 ; Austin, TX, USA. Austin:University of Texas at Austin; 2016. p. 1945-59.
[228]
Banerjee S, Joens C. Debinding and sintering of metal injection molding (MIM) components. In: Handbook of metal injection molding. Amsterdam: Elsevier; 2019. p. 129-71.
[229]
I. Somasundram, A. Cendrowicz, D. Wilson, M. Johns. Phenomenological study and modelling of wick debinding. Chem Eng Sci, 63 (14) ( 2008), pp. 3802-3809
[230]
A. Mostafaei, E.T. Hughes, C. Hilla, E.L. Stevens, M. Chmielus.Data on the densification during sintering of binder jet printed samples made from water- and gas-atomized alloy 625 powders. Data Brief, 10 ( 2017), pp. 116-121
[231]
F. Güngör, N. Ay. The effect of particle size of body components on the processing parameters of semi transparent porcelain. Ceram Int, 44 (9) ( 2018), pp. 10611-10620
[232]
Z. Liu, T. Sercombe, G. Schaffer. The effect of particle shape on the sintering of aluminum. Metall Mater Trans, 38 (6) ( 2007), pp. 1351-1357
[233]
Du W, Ren X, Chen Y, Ma C, Radovic M, Pei Z. Model guided mixing of ceramic powders with graded particle sizes in binder jetting additive manufacturing. In: Proceedings of the ASME 2018 13th International Manufacturing Science and Engineering Conference; 2018 Jun 18-22; College Station, TX, USA. Houston: American Society of Mechanical Engineers Digital Collection; 2018.
[234]
A. Kumar, Y. Bai, A. Eklund, C.B. Williams. Effects of hot isostatic pressing on copper parts fabricated via binder jetting. Procedia Manuf, 10 ( 2017), pp. 935-944
[235]
B. Lozo, M. Stanić, S. Jamnicki, S.M. Poljacek, T. Muck.Three-dimensional ink jet prints—impact of infiltrants. J Imaging Sci Technol, 52 (5) ( 2008), p. 51004
[236]
M. Doyle, K. Agarwal, W. Sealy, K. Schull. Effect of layer thickness and orientation on mechanical behavior of binder jet stainless steel 420+ bronze parts. Procedia Manuf, 1 ( 2015), pp. 251-262
[237]
J.D. Avila, K. Stenberg, S. Bose, A. Bandyopadhyay. Hydroxyapatite reinforced Ti6Al4V composites for load-bearing implants. Acta Biomater, 123 ( 2021), pp. 379-392
[238]
D.J. Ryu, C.H. Sonn, D.H. Hong, K.B. Kwon, S.J. Park, H.Y. Ban, et al.. Titanium porous coating using 3D direct energy deposition (DED) printing for cementless TKA implants: does it induce chronic inflammation?. Materials, 13 (2) ( 2020), p. 472
[239]
D.J. Ryu, A. Jung, H.Y. Ban, T.Y. Kwak, E.J. Shin, B. Gweon, et al.. Enhanced osseointegration through direct energy deposition porous coating for cementless orthopedic implant fixation. Sci Rep, 11 (1) ( 2021), p. 22317
[240]
A. Afrouzian, A. Bandyopadhyay.3D printed silicon nitride, alumina, and hydroxyapatite ceramic reinforced Ti6Al4V composites—tailored microstructures to enhance bio-tribo-corrosion and antibacterial properties. J Mech Behav Biomed Mater, 144 ( 2023), p. 105973
[241]
D. Herzog, V. Seyda, E. Wycisk, C. Emmelmann. Additive manufacturing of metals. Acta Mater, 117 ( 2016), pp. 371-392
[242]
Y.H. Jang, D.G. Ahn, J. Kim, W.S. Kim. Re-melting characteristics of a stellite21 deposited part by direct energy deposition process using a pulsed plasma electron beam with a large irradiation area. Int J Precis Eng Manuf-Green Technol, 5 (4) ( 2018), pp. 467-477
[243]
H. Zhang, J. Xu, G. Wang. Fundamental study on plasma deposition manufacturing. Surf Coat Technol, 171 (1-3) ( 2003), pp. 112-118
[244]
S.M. Thompson, L. Bian, N. Shamsaei, A. Yadollahi. An overview of direct laser deposition for additive manufacturing; part I: transport phenomena, modeling and diagnostics. Addit Manuf, 8 ( 2015), pp. 36-62
[245]
Hammell JJ, Ludvigson CJ, Langerman MA, Sears JW.Thermal imaging of laser powder deposition for process diagnostics. In:Proceedings of the ASME 2011 International Mechanical Engineering Congress and Exposition; 2011 Nov 11- 17 ; Denver, CO, USA. Houston: American Society of Mechanical Engineers Digital Collection; 2011. p. 41-8.
[246]
A. Raghavan, H. Wei, T. Palmer, T. DebRoy.Heat transfer and fluid flow in additive manufacturing. J Laser Appl, 25 (5) ( 2013), p. 052006
[247]
Wang W, Pinkerton A, Wee L, Li L. Component repair using laser direct metal deposition. In: HindujaS, FanKC, editors. Proceedings of the 35th International MATADOR Conference; Jul; Taipei, China. 2007 Berlin:Springer; 2007. p. 345-50.
[248]
P. Korinko, T. Adams, S. Malene, D. Gill, J. Smugeresky. Laser engineered net shaping® for repair and hydrogen compatibility. Weld J, 90 (9) ( 2011), pp. 171-181
[249]
W.U.H. Syed, A.J. Pinkerton, L. Li. Combining wire and coaxial powder feeding in laser direct metal deposition for rapid prototyping. Appl Surf Sci, 252 (13) ( 2006), pp. 4803-4808
[250]
F. Wang, J. Mei, X. Wu. Compositionally graded Ti6Al4V+TiC made by direct laser fabrication using powder and wire. Mater Des, 28 (7) ( 2007), pp. 2040-2046
[251]
J.C. Haley, J.M. Schoenung, E.J. Lavernia.Modelling particle impact on the melt pool and wettability effects in laser directed energy deposition additive manufacturing. Mater Sci Eng A, 761 ( 2019), p. 138052
[252]
A. Heralić, A.K. Christiansson, B. Lennartson. Height control of laser metal-wire deposition based on iterative learning control and 3D scanning. Opt Lasers Eng, 50 (9) ( 2012), pp. 1230-1241
[253]
J.C. Haley, B. Zheng, U.S. Bertoli, A.D. Dupuy, J.M. Schoenung, E.J. Lavernia. Working distance passive stability in laser directed energy deposition additive manufacturing. Mater Des, 161 ( 2019), pp. 86-94
[254]
S.J. Wolff, S. Lin, E.J. Faierson, W.K. Liu, G.J. Wagner, J. Cao. A framework to link localized cooling and properties of directed energy deposition (DED)-processed Ti-6Al-4V. Acta Mater, 132 ( 2017), pp. 106-117
[255]
X. Lu, M. Chiumenti, M. Cervera, J. Li, X. Lin, L. Ma, et al.. Substrate design to minimize residual stresses in directed energy deposition AM processes. Mater Des, 202 ( 2021), p. 109525
[256]
T. Mukherjee, V. Manvatkar, A. De, T. DebRoy. Mitigation of thermal distortion during additive manufacturing. Scr Mater, 127 ( 2017), pp. 79-83
[257]
H. Wei, T. Mukherjee, W. Zhang, J. Zuback, G. Knapp, A. De, et al.. Mechanistic models for additive manufacturing of metallic components. Prog Mater Sci, 116 ( 2021), p. 100703
[258]
P. Szymor, M. Kozakiewicz, R. Olszewski. Accuracy of open-source software segmentation and paper-based printed three-dimensional models. J Craniomaxillofac Surg, 44 (2) ( 2016), pp. 202-209
[259]
Gibson I, Rosen D, Stucker B, Khorasani M. Sheet lamination. In: GibsonI, RosenD, StuckerB, KhorasaniM, editors. Additivemanufacturing technologies. 3rd ed. Berlin:Spring. p. 253-83.
[260]
I. Gibson, D. Rosen, B. Stucker, M. Khorasani. Additive manufacturing technologies. Springer, Berlin ( 2014)
[261]
S.V. Murphy, A. Atala. 3D bioprinting of tissues and organs. Nat Biotechnol, 32 (8) ( 2014), pp. 773-785
[262]
J.J. Lewandowski, M. Seifi. Metal additive manufacturing: a review of mechanical properties. Annu Rev Mater Res, 46 (1) ( 2016), pp. 151-186
[263]
J. Chacón, M.A. Caminero, E. García-Plaza, P.J. Núnez. Additive manufacturing of PLA structures using fused deposition modelling: effect of process parameters on mechanical properties and their optimal selection. Mater Des, 124 ( 2017), pp. 143-157
[264]
P. Pandey, N.V. Reddy, S. Dhande. Part deposition orientation studies in layered manufacturing. J Mater Process Technol, 185 (1-3) ( 2007), pp. 125-131
[265]
Wang WM, Zanni C, Kobbelt L.Improved surface quality in 3D printing by optimizing the printing direction. Wiley Online Libr 2016 ;35(2):59-70.
[266]
N. Alharbi, A.J. van de Veen, D. Wismeijer, R.B. Osman. Build angle and its influence on the flexure strength of stereolithography printed hybrid resin material. An in vitro study and a fractographic analysis. Mater Technol, 34 (1) ( 2019), pp. 12-17
[267]
S.E. Brika, Y.F. Zhao, M. Brochu, J. Mezzetta.Multi-objective build orientation optimization for powder bed fusion by laser. J Manuf Sci Eng, 139 (11) ( 2017), p. 111011
[268]
P. Das, R. Chandran, R. Samant, S. Anand. Optimum part build orientation in additive manufacturing for minimizing part errors and support structures. Procedia Manuf, 1 ( 2015), pp. 343-354
[269]
D. Frank, G. Fadel. Expert system-based selection of the preferred direction of build for rapid prototyping processes. J Intell Manuf, 6 (5) ( 1995), pp. 339-345
[270]
P.T. Lan, S.Y. Chou, L.L. Chen, D. Gemmill. Determining fabrication orientations for rapid prototyping with stereolithography apparatus. Comput Aided Des, 29 (1) ( 1997), pp. 53-62
[271]
Y. Zhang, W. De Backer, R. Harik, A. Bernard. Build orientation determination for multi-material deposition additive manufacturing with continuous fibers. Procedia CIRP, 50 ( 2016), pp. 414-419
[272]
M.A. Matos, A.M.A. Rocha, A.I. Pereira. Improving additive manufacturing performance by build orientation optimization. Int J Adv Manuf Technol, 107 (5-6) ( 2020), pp. 1-13
[273]
P. Alexander, S. Allen, D. Dutta. Part orientation and build cost determination in layered manufacturing. Comput Aided Des, 30 (5) ( 1998), pp. 343-356
[274]
S. Masood, W. Rattanawong, P. Iovenitti. A generic algorithm for a best part orientation system for complex parts in rapid prototyping. J Mater Process Technol, 139 (1-3) ( 2003), pp. 110-116
[275]
M. Simonelli, Y.Y. Tse, C. Tuck. Effect of the build orientation on the mechanical properties and fracture modes of SLM Ti-6Al-4V. Mater Sci Eng A, 616 ( 2014), pp. 1-11
[276]
S.C. Das, R. Ranganathan, N. Murugan. Effect of build orientation on the strength and cost of PolyJet 3D printed parts. Rapid Prototyping J, 24 (5) ( 2018), pp. 832-839
[277]
M. Reymus, R. Fabritius, A. Keßler, R. Hickel, D. Edelhoff, B. Stawarczyk. Fracture load of 3D-printed fixed dental prostheses compared with milled and conventionally fabricated ones: the impact of resin material, build direction, post-curing, and artificial aging—an in vitro study. Clin Oral Investig, 24 (2) ( 2020), pp. 701-710
[278]
M. Seifi, M. Dahar, R. Aman, O. Harrysson, J. Beuth, J.J. Lewandowski. Evaluation of orientation dependence of fracture toughness and fatigue crack propagation behavior of as-deposited ARCAM EBM Ti-6Al-4V. JOM, 67 (3) ( 2015), pp. 597-607
[279]
M. Seifi, A. Salem, J. Beuth, O. Harrysson, J.J. Lewandowski. Overview of materials qualification needs for metal additive manufacturing. JOM, 68 (3) ( 2016), pp. 747-764
[280]
J. Jiang, J. Lou, G. Hu. Effect of support on printed properties in fused deposition modelling processes. Virtual Phys Prototyp, 14 (4) ( 2019), pp. 308-315
[281]
Y.F. Fu, B. Rolfe, L.N. Chiu, Y. Wang, X. Huang, K. Ghabraie. Design and experimental validation of self-supporting topologies for additive manufacturing. Virtual Phys Prototyp, 14 (4) ( 2019), pp. 382-394
[282]
P. Das, K. Mhapsekar, S. Chowdhury, R. Samant, S. Anand. Selection of build orientation for optimal support structures and minimum part errors in additive manufacturing. Comput Aid Des Appl, 14 (sup 1) ( 2017), pp. 1-13
[283]
D. Pham, S. Dimov, R. Gault. Part orientation in stereolithography. Int J Adv Manuf Technol, 15 (9) ( 1999), pp. 674-682
[284]
Luo Z, Yang F, Dong G, Tang Y, Zhao YF. Orientation optimization in layer-based additive manufacturing process. In: Proceedings of the ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference; 2016 Aug 21-24; Charlotte, NC, USA. Houston: American Society of Mechanical Engineers Digital Collection; 2016. p. V01AT02A039.
[285]
A.M. Mirzendehdel, K. Suresh. Support structure constrained topology optimization for additive manufacturing. Comput Aided Des, 81 ( 2016), pp. 1-13
[286]
M. Langelaar. Combined optimization of part topology, support structure layout and build orientation for additive manufacturing. Struct Multidiscipl Optim, 57 (5) ( 2018), pp. 1985-2004
[287]
G. Strano, L. Hao, R. Everson, K. Evans. A new approach to the design and optimisation of support structures in additive manufacturing. Int J Adv Manuf Technol, 66 (9-12) ( 2013), pp. 1247-1254
[288]
A. Hussein, L. Hao, C. Yan, R. Everson, P. Young. Advanced lattice support structures for metal additive manufacturing. J Mater Process Technol, 213 (7) ( 2013), pp. 1019-1026
[289]
L. Cheng, A. To. Part-scale build orientation optimization for minimizing residual stress and support volume for metal additive manufacturing: theory and experimental validation. Comput Aided Des, 113 ( 2019), pp. 1-23
[290]
S. Mirzababaei, B.K. Paul, S. Pasebani. Metal powder recyclability in binder jet additive manufacturing. JOM, 72 (9) ( 2020), pp. 3070-3079
[291]
A. Strondl, O. Lyckfeldt, H. Brodin, U. Ackelid. Characterization and control of powder properties for additive manufacturing. JOM, 67 (3) ( 2015), pp. 549-554
[292]
C.Y. Su, J.C. Wang, D.S. Chen, C.C. Chuang, C.K. Lin. Additive manufacturing of dental prosthesis using pristine and recycled zirconia solvent-based slurry stereolithography. Ceram Int, 46 (18) ( 2020), pp. 28701-28719
[293]
Ratner BD, Latour RA. Role of water in biomaterials. In: WagnerWR, Sakiyama-ElbertSE, ZhangG, YaszemskiMJ, editors. Biomaterials science:an Introduction to materials in medicine. 4rd ed. Amsterdam: Elsevier; 2020. p. 77-82.
[294]
J.M. Berg, J.L. Tymoczko, L. Stryer. Biochemistry. Freeman and Company, New York City ( 2002)
[295]
C.S. Goh, N. Lan, S.M. Douglas, B. Wu, N. Echols, A. Smith, et al.. Mining the structural genomics pipeline: identification of protein properties that affect high-throughput experimental analysis. J Mol Biol, 336 (1) ( 2004), pp. 115-130
[296]
N. Asherie. Protein crystallization and phase diagrams. Methods, 34 (3) ( 2004), pp. 266-272
[297]
L.A. Moran, R.A. Horton, K.G. Scrimgeour, M.D. Perry.Principles of biochemistry. (6th ed.), Pearson, Cambridge ( 2014)
[298]
R. Narayan.Biomedical materials. ( 2nd ed.), Springer, Berlin ( 2021)
[299]
J.L. Harding, M.M. Reynolds. Combating medical device fouling. Trends Biotechnol, 32 (3) ( 2014), pp. 140-146
[300]
I. Firkowska-Boden, X. Zhang, K.D. Jandt.Controlling protein adsorption through nanostructured polymeric surfaces. Adv Healthc Mater, 7 (1) ( 2018), p. 1700995
[301]
K.E. Michael, V.N. Vernekar, B.G. Keselowsky, J.C. Meredith, R.A. Latour, A.J. García. Adsorption-induced conformational changes in fibronectin due to interactions with well-defined surface chemistries. Langmuir, 19 (19) ( 2003), pp. 8033-8040
[302]
H.M. Kowalczyńska, M. Nowak-Wyrzykowska, J. Dobkowski, R. Kołos, J. Kamiński, A. Makowska-Cynka, et al.. Adsorption characteristics of human plasma fibronectin in relationship to cell adhesion. J Biomed Mater Res, 61 (2) ( 2002), pp. 260-269
[303]
M. Shen, T.A. Horbett. The effects of surface chemistry and adsorbed proteins on monocyte/macrophage adhesion to chemically modified polystyrene surfaces. J Biomed Mater Res, 57 (3) ( 2001), pp. 336-345
[304]
T. Li, L. Hao, J. Li, C. Du, Y. Wang. Insight into vitronectin structural evolution on material surface chemistries: the mediation for cell adhesion. Bioact Mater, 5 (4) ( 2020), pp. 1044-1052
[305]
Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. General principles of cell communication. In: Molecular biology of the cell. 4th ed. Oxford: Garland Science; 2002.
[306]
B. Geiger, A. Bershadsky, R. Pankov, K.M. Yamada. Transmembrane crosstalk between the extracellular matrix and the cytoskeleton. Nat Rev Mol Cell Biol, 2 (11) ( 2001), pp. 793-805
[307]
Q. Wei, R. Haag. Universal polymer coatings and their representative biomedical applications. Mater Horiz, 2 (6) ( 2015), pp. 567-577
[308]
C. Sperling, R.B. Schweiss, U. Streller, C. Werner. In vitro hemocompatibility of self-assembled monolayers displaying various functional groups. Biomaterials, 26 (33) ( 2005), pp. 6547-6557
[309]
D.R. Absolom, W. Zingg, A.W. Neumann. Protein adsorption to polymer particles: role of surface properties. J Biomed Mater Res, 21 (2) ( 1987), pp. 161-171
[310]
M.S. Lord, M. Foss, F. Besenbacher. Influence of nanoscale surface topography on protein adsorption and cellular response. Nano Today, 5 (1) ( 2010), pp. 66-78
[311]
A.G. Harvey, E.W. Hill, A. Bayat. Designing implant surface topography for improved biocompatibility. Expert Rev Med Devices, 10 (2) ( 2013), pp. 257-267
[312]
P.E. Scopelliti, A. Borgonovo, M. Indrieri, L. Giorgetti, G. Bongiorno, R. Carbone, et al.. The effect of surface nanometre-scale morphology on protein adsorption. PLoS One, 5 (7) ( 2010), p. e11862
[313]
Z. Gu, Z. Yang, Y. Chong, C. Ge, J.K. Weber, D.R. Bell, et al.. Surface curvature relation to protein adsorption for carbon-based nanomaterials. Sci Rep, 5 (1) ( 2015), p. 10886
[314]
P. Roach, D. Farrar, C.C. Perry. Surface tailoring for controlled protein adsorption: effect of topography at the nanometer scale and chemistry. J Am Chem Soc, 128 (12) ( 2006), pp. 3939-3945
[315]
D.F. Williams. Definitions in biomaterials: progress in biomedical engineering. Biomaterials, 10 ( 1987), pp. 216-238
[316]
M. Bernard, E. Jubeli, M.D. Pungente, N. Yagoubi. Biocompatibility of polymer-based biomaterials and medical devices—regulations, in vitro screening and risk-management. Biomater Sci, 6 (8) ( 2018), pp. 2025-2053
[317]
P. Thevenot, W. Hu, L. Tang. Surface chemistry influences implant biocompatibility. Curr Top Med Chem, 8 (4) ( 2008), pp. 270-280
[318]
ISO 10993-5: biological evaluation of medical devices—part 5: tests for in vitro cytotoxicity. ISO standard. Geneva: International Standard Organization; 2009.
[319]
A. Pizzoferrato, G. Ciapetti, S. Stea, E. Cenni, C.R. Arciola, D. Granchi, et al.. Cell culture methods for testing biocompatibility. Clin Mater, 15 (3) ( 1994), pp. 173-190
[320]
C.J. Kirkpatrick, F. Bittinger, M. Wagner, H. Köhler, T.G. van Kooten, C.L. Klein, et al.. Current trends in biocompatibility testing. Proc Inst Mech Eng Part H, 212 (2) ( 1998), pp. 75-84
[321]
J. Van Meerloo, G.J. Kaspers, J. Cloos. Cell sensitivity assays: the MTT assay. I.A. Cree (Ed.), Cancer cell culture methods and protocols, Springer, Berlin ( 2011), pp. 237-245
[322]
I. Herath, J. Davies, G. Will, P.A. Tran, A. Velic, M. Sarvghad, et al.. Anodization of medical grade stainless steel for improved corrosion resistance and nanostructure formation targeting biomedical applications. Electrochim Acta, 416 ( 2022), p. 140274
[323]
F. Yildiz, A. Yetim, A. Alsaran, I. Efeoglu. Wear and corrosion behaviour of various surface treated medical grade titanium alloy in bio-simulated environment. Wear, 267 (5-8) ( 2009), pp. 695-701
[324]
H.Y. Chang, W.H. Tuan,P.L. Lai. Biphasic ceramic bone graft with biphasic degradation rates. Mater Sci Eng C, 118 ( 2021), p. 111421
[325]
I. Armentano, M. Dottori, E. Fortunati, S. Mattioli, J. Kenny. Biodegradable polymer matrix nanocomposites for tissue engineering: a review. Polym Degrad Stabil, 95 (11) ( 2010), pp. 2126-2146
[326]
S. Lyu, D. Untereker. Degradability of polymers for implantable biomedical devices. Int J Mol Sci, 10 (9) ( 2009), pp. 4033-4065
[327]
P. Pakshir, F. Younesi, K.A. Wootton, K. Battiston, G. Whitton, B. Ilagan, et al.. Controlled release of low-molecular weight, polymer-free corticosteroid coatings suppresses fibrotic encapsulation of implanted medical devices. Biomaterials, 286 ( 2022), p. 121586
[328]
N.G. Welch, D.A. Winkler, H. Thissen. Antifibrotic strategies for medical devices. Adv Drug Deliv Rev, 167 ( 2020), pp. 109-120
[329]
Barchowsky A. Systemic and immune toxicity of implanted materials. In: Biomaterials science:an introduction to materials in medicine. 4th ed. Amsterdam: Elsevier; 2020. p. 791-9.
[330]
M. Fogarasi, K.L. Snodderly, M.A. Di Prima. A survey of additive manufacturing trends for FDA-cleared medical devices. Nat Rev Bioeng, 1 ( 2023), pp. 687-689
[331]
D.A. Zopf, S.J. Hollister, M.E. Nelson, R.G. Ohye, G.E. Green. Bioresorbable airway splint created with a three-dimensional printer. N Engl J Med, 368 (21) ( 2013), pp. 2043-2045
[332]
R.J. Morrison, S.J. Hollister, M.F. Niedner, M.G. Mahani, A.H. Park, D.K. Mehta, et al.. Mitigation of tracheobronchomalacia with 3D-printed personalized medical devices in pediatric patients. Sci Transl Med, 7 (285) ( 2015), p. 285ra64
[333]
A. Dzian, J. Živčák, R. Penciak, R. Hudák.Implantation of a 3D-printed titanium sternum in a patient with a sternal tumor. World J Surg Oncol, 16 (1) ( 2018), p. 7
[334]
R.L.J. Cruz, M.T. Ross, S.K. Powell, M.A. Woodruff.Advancements in soft-tissue prosthetics part A: the art of imitating life. Front Bioeng Biotechnol, 8 ( 2020), p. 121
[335]
Nutt D, Chronicle C.Cornellian-founded company implants 3D-bioprinted ear [Internet]. College AveIthaca: Cornell Chronicle; 2022 Jun 2 [cited 2024 Feb 7].
[336]
A. Valls-Esteve, P. Lustig-Gainza, N. Adell-Gomez, A. Tejo-Otero, M. Englí-Rueda, E. Julian-Alvarez, et al.. A state-of-the-art guide about the effects of sterilization processes on 3D-printed materials for surgical planning and medical applications: a comparative study. Int J Bioprint, 9 (5) ( 2023), p. 756
[337]
R. Told, Z. Ujfalusi, A. Pentek, M. Kerenyi, K. Banfai, A. Vizi, et al.. A state-of-the-art guide to the sterilization of thermoplastic polymers and resin materials used in the additive manufacturing of medical devices. Mater Des, 223 ( 2022), p. 111119
[338]
W. Rogers. Steam and dry heat sterilization of biomaterials and medical devices. S. Lerouge, A. Simmons (Eds.), Sterilisation of biomaterials and medical devices, Elsevier, Amsterdam ( 2012), pp. 20-55
[339]
C.R. Harrell, V. Djonov, C. Fellabaum, V. Volarevic. Risks of using sterilization by gamma radiation: the other side of the coin. Int J Med Sci, 15 (3) ( 2018), pp. 274-279
[340]
B. McEvoy, N.J. Rowan. Terminal sterilization of medical devices using vaporized hydrogen peroxide: a review of current methods and emerging opportunities. J Appl Microbiol, 127 (5) ( 2019), pp. 1403-1420
[341]
H. Shintani. Ethylene oxide gas sterilization of medical devices. Biocontrol Sci, 22 (1) ( 2017), pp. 1-16
[342]
S.M. Mousavi, M. Shamohammadi, M. Moradi, E. Hormozi, V. Rakhshan. Effects of cold chemical (glutaraldehyde) versus autoclaving sterilization on the rate of coating loss of aesthetic archwires: a double-blind randomized clinical trial. Int Orthod, 18 (2) ( 2020), pp. 380-388
[343]
J.R.C. Dizon, A.H. Espera Jr, Q. Chen, R.C. Advincula. Mechanical characterization of 3D-printed polymers. Addit Manuf, 20 ( 2018), pp. 44-67
[344]
I. Gibson, D. Rosen, B. Stucker, M. Khorasani, D. Rosen, B. Stucker, et al.. Chapter16: Post-processing. I.Gibson, D.Rosen, B.Stucker, M.Khorasani (Eds.), Additive manufacturing technologies, Springer, Berlin ( 2021), pp. 457-489
[345]
F. Tamburrino, S. Barone, A. Paoli, A. Razionale. Post-processing treatments to enhance additively manufactured polymeric parts: a review. Virtual Phys Prototyp, 16 (2) ( 2021), pp. 221-254
PDF(3972 KB)

Accesses

Citation

Detail

段落导航
相关文章

/