[1] |
Siegel RL, Miller KD, Wagle NS, Jemal A.Cancer statistics, 2023.CA Cancer J Clin 2023; 73(1):17-48.
|
[2] |
Feng R, Su Q, Huang X, Basnet T, Xu X, Ye W.Cancer situation in China: what does the China cancer map indicate from the first national death survey to the latest cancer registration?.Cancer Commun 2023; 43(1):75-86.
|
[3] |
Martínez-Reyes I, Chandel NS.Cancer metabolism: looking forward.Nat Rev Cancer 2021; 21(10):669-680.
|
[4] |
Fane M, Weeraratna AT.How the ageing microenvironment influences tumour progression.Nat Rev Cancer 2020; 20(2):89-106.
|
[5] |
Cullin N, Azevedo Antunes C, Straussman R, Stein-Thoeringer CK, Elinav E.Microbiome and cancer.Cancer Cell 2021; 39(10):1317-1341.
|
[6] |
Arvanitis CD, Ferraro GB, Jain RK.The blood–brain barrier and blood–tumour barrier in brain tumours and metastases.Nat Rev Cancer 2020; 20(1):26-41.
|
[7] |
Rozenblatt-Rosen O, Regev A, Oberdoerffer P, Nawy T, Hupalowska A, Rood JE, et al.The human tumor atlas network: charting tumor transitions across space and time at single-cell resolution.Cell 2020; 181(2):236-249.
|
[8] |
Liu X, Xia S, Zhang Z, Wu H, Lieberman J.Channelling inflammation: gasdermins in physiology and disease.Nat Rev Drug Discov 2021; 20(5):384-405.
|
[9] |
Jiang X, Stockwell BR, Conrad M.Ferroptosis: mechanisms, biology and role in disease.Nat Rev Mol Cell Biol 2021; 22(4):266-282.
|
[10] |
Snyder AG, Oberst A.The antisocial network: cross talk between cell death programs in host defense.Annu Rev Immunol 2021; 39(1):77-101.
|
[11] |
Holder PG, Lim SA, Huang CS, Sharma P, Dagdas YS, Bulutoglu B, et al.Engineering interferons and interleukins for cancer immunotherapy.Adv Drug Deliv Rev 2022; 182:114112.
|
[12] |
Morad G, Helmink BA, Sharma P, Wargo JA.Hallmarks of response, resistance, and toxicity to immune checkpoint blockade.Cell 2021; 184(21):5309-5337.
|
[13] |
Larson RC, Maus MV.Recent advances and discoveries in the mechanisms and functions of CAR T cells.Nat Rev Cancer 2021; 21(3):145-161.
|
[14] |
Irvine DJ, Dane EL.Enhancing cancer immunotherapy with nanomedicine.Nat Rev Immunol 2020; 20(5):321-334.
|
[15] |
Ouyang J, Xie A, Zhou J, Liu R, Wang L, Liu H, et al.Minimally invasive nanomedicine: nanotechnology in photo-/ultrasound-/radiation-/magnetism-mediated therapy and imaging.Chem Soc Rev 2022; 51(12):4996-5041.
|
[16] |
Song X, Zhang Q, Chang M, Ding L, Huang H, Feng W, et al.Nanomedicine-enabled sonomechanical, sonopiezoelectric, sonodynamic, and sonothermal therapy.Adv Mater 2023; 35(31):e2212259.
|
[17] |
Zhang G, Ye HR, Sun Y, Guo ZZ.Ultrasound molecular imaging and its applications in cancer diagnosis and therapy.ACS Sens 2022; 7(10):2857-2864.
|
[18] |
Ozcelik A, Rufo J, Guo F, Gu Y, Li P, Lata J, et al.Acoustic tweezers for the life sciences.Nat Methods 2018; 15(12):1021-1028.
|
[19] |
Terstappen GC, Meyer AH, Bell RD, Zhang W.Strategies for delivering therapeutics across the blood–brain barrier.Nat Rev Drug Discov 2021; 20(5):362-383.
|
[20] |
Hu Y, Wei J, Shen Y, Chen S, Chen X.Barrier-breaking effects of ultrasonic cavitation for drug delivery and biomarker release.Ultrason Sonochem 2023; 94:106346.
|
[21] |
Zhao Z, Saiding Q, Cai Z, Cai M, Cui W.Ultrasound technology and biomaterials for precise drug therapy.Mater Today 2023; 63:210-238.
|
[22] |
Yildiz D, Göstl R, Herrmann A.Sonopharmacology: controlling pharmacotherapy and diagnosis by ultrasound-induced polymer mechanochemistry.Chem Sci 2022; 13(46):13708-13719.
|
[23] |
Athanassiadis AG, Ma Z, Moreno-Gomez N, Melde K, Choi E, Goyal R, et al.Ultrasound-responsive systems as components for smart materials.Chem Rev 2022; 122(5):5165-5208.
|
[24] |
Mann RM, Hooley R, Barr RG, Moy L.Novel approaches to screening for breast cancer.Radiology 2020; 297(2):266-285.
|
[25] |
Ioannou GN.HCC surveillance after SVR in patients with F3/F4 fibrosis.J Hepatol 2021; 74(2):458-465.
|
[26] |
Rowe SP, Pomper MG.Molecular imaging in oncology: current impact and future directions.CA Cancer J Clin 2022; 72(4):333-352.
|
[27] |
He H, Zhang X, Du L, Ye M, Lu Y, Xue J, et al.Molecular imaging nanoprobes for theranostic applications.Adv Drug Deliv Rev 2022; 186:114320.
|
[28] |
Li Z, Lai M, Zhao S, Zhou Y, Luo J, Hao Y, et al.Ultrasound molecular imaging for multiple biomarkers by serial collapse of targeting microbubbles with distinct acoustic pressures.Small 2022; 18(22):e2108040.
|
[29] |
Jugniot N, Massoud TF, Dahl JJ, Paulmurugan R.Biomimetic nanobubbles for triple-negative breast cancer targeted ultrasound molecular imaging.J Nanobiotechnol 2022; 20(1):267.
|
[30] |
Zhang L, Yin T, Li B, Zheng R, Qiu C, Lam KS, et al.Size-modulable nanoprobe for high-performance ultrasound imaging and drug delivery against cancer.ACS Nano 2018; 12(4):3449-3460.
|
[31] |
Hao Y, Li Z, Luo J, Li L, Yan F.Ultrasound molecular imaging of epithelial mesenchymal transition for evaluating tumor metastatic potential via targeted biosynthetic gas vesicles.Small 2023; 19(21):e2207940.
|
[32] |
Sabuncu S, Yildirim A.Gas-stabilizing nanoparticles for ultrasound imaging and therapy of cancer.Nano Converg 2021; 8(1):39.
|
[33] |
Fournier L, de La Taille T, Chauvierre C.Microbubbles for human diagnosis and therapy.Biomaterials 2023; 294:122025.
|
[34] |
Zhang C, Li Y, Ma X, He W, Liu C, Liu Z.Functional micro/nanobubbles for ultrasound medicine and visualizable guidance.Sci China Chem 2021; 64(6):899-914.
|
[35] |
Zhu J, Rowland EM, Harput S, Riemer K, Leow CH, Clark B, et al.3D super-resolution US imaging of rabbit lymph node vasculature in vivo by using microbubbles.Radiology 2019; 291(3):642-650.
|
[36] |
Engelhard S, Voorneveld J, Vos HJ, Westenberg JJM, Gijsen FJH, Taimr P, et al.High-frame-rate contrast-enhanced US particle image velocimetry in the abdominal aorta: first human results.Radiology 2018; 289(1):119-125.
|
[37] |
Zhong J, Su M, Jiang Y, Huang L, Chen Y, Huang Z, et al.VEGFR2 targeted microbubble-based ultrasound molecular imaging improving the diagnostic sensitivity of microinvasive cervical cancer.J Nanobiotechnol 2023; 21(1):220.
|
[38] |
Pathak V, Nolte T, Rama E, Rix A, Dadfar SM, Paefgen V, et al.Molecular magnetic resonance imaging of Alpha-v-Beta-3 integrin expression in tumors with ultrasound microbubbles.Biomaterials 2021; 275:120896.
|
[39] |
Rama E, Mohapatra SR, Melcher C, Nolte T, Dadfar SM, Brueck R, et al.Monitoring the remodeling of biohybrid tissue-engineered vascular grafts by multimodal molecular imaging.Adv Sci 2022; 9(10):e2105783.
|
[40] |
Cui X, Han X, Yu L, Zhang B, Chen Y.Intrinsic chemistry and design principle of ultrasound-responsive nano medicine.Nano Today 2019; 28:100773.
|
[41] |
Duan L, Yang L, Jin J, Yang F, Liu D, Hu K, et al.Micro/nano-bubble-assisted ultrasound to enhance the EPR effect and potential theranostic applications.Theranostics 2020; 10(2):462-483.
|
[42] |
Deng Q, Mi J, Dong J, Chen Y, Chen L, He J, et al.Superiorly stable three-layer air microbubbles generated by versatile ethanol–water exchange for contrast-enhanced ultrasound theranostics.ACS Nano 2023; 17(1):263-274.
|
[43] |
Liu Y, Lai X, Zhu Y, Guo F, Su L, Arkin G, et al.Contrast-enhanced ultrasound imaging using long-circulating cationic magnetic microbubbles in vitro and in vivo validations.Int J Pharm 2022; 616:121299.
|
[44] |
Wang J, Wang Y, Jia J, Liu C, Ni D, Sun L, et al.Dual-modality molecular imaging of tumor via quantum dots-liposome-microbubble complexes.Pharmaceutics 2022; 14(11):14.
|
[45] |
Xiong R, Xu RX, Huang C, de Smedt S, Braeckmans K.Stimuli-responsive nanobubbles for biomedical applications.Chem Soc Rev 2021; 50(9):5746-5776.
|
[46] |
Hansen HHWB, Cha H, Ouyang L, Zhang J, Jin B, Stratton H, et al.Nanobubble technologies: applications in therapy from molecular to cellular level.Biotechnol Adv 2023; 63:108091.
|
[47] |
Pellow C, Abenojar EC, Exner AA, Zheng G, Goertz DE.Concurrent visual and acoustic tracking of passive and active delivery of nanobubbles to tumors.Theranostics 2020; 10(25):11690-11706.
|
[48] |
Ramirez DG, Abenojar E, Hernandez C, Lorberbaum DS, Papazian LA, Passman S, et al.Contrast-enhanced ultrasound with sub-micron sized contrast agents detects insulitis in mouse models of type1 diabetes.Nat Commun 2020; 11(1):2238.
|
[49] |
Counil C, Abenojar E, Perera R, Exner AA.Extrusion: a new method for rapid formulation of high-yield, monodisperse nanobubbles.Small 2022; 18(24):e2200810.
|
[50] |
Gao X, Guo D, Mao X, Shan X, He X, Yu C.Perfluoropentane-filled chitosan poly-acrylic acid nanobubbles with high stability for long-term ultrasound imaging in vivo.Nanoscale 2021; 13(10):5333-5343.
|
[51] |
Kumar US, Natarajan A, Massoud TF, Paulmurugan R.FN3 linked nanobubbles as a targeted contrast agent for US imaging of cancer-associated human PD-L1.J Control Release 2022; 346:317-327.
|
[52] |
Hamano N, Kamoshida S, Kikkawa Y, Yano Y, Kobayashi T, Endo-Takahashi Y, et al.Development of antibody-modified nanobubbles using Fc-region-binding polypeptides for ultrasound imaging.Pharmaceutics 2019; 11(6):11.
|
[53] |
Zhu Y, Sun Y, Liu W, Guan W, Liu H, Duan Y, et al.Magnetic polymeric nanobubbles with optimized core size for MRI/ultrasound bimodal molecular imaging of prostate cancer.Nanomedicine 2020; 15(30):2901-2916.
|
[54] |
Zhang C, Yan K, Fu C, Peng H, Hawker CJ, Whittaker AK.Biological utility of fluorinated compounds: from materials design to molecular imaging, therapeutics and environmental remediation.Chem Rev 2022; 122(1):167-208.
|
[55] |
Jandhyala S, van Namen A, Spatarelu CP, Luke GP.EGFR-targeted perfluorohexane nanodroplets for molecular ultrasound imaging.Nanomaterials 2022; 12(13):12.
|
[56] |
Maghsoudinia F, Tavakoli MB, Samani RK, Hejazi SH, Sobhani T, Mehradnia F, et al.Folic acid-functionalized gadolinium-loaded phase transition nanodroplets for dual-modal ultrasound/magnetic resonance imaging of hepatocellular carcinoma.Talanta 2021; 228:122245.
|
[57] |
Ramirez DG, Ciccaglione M, Upadhyay AK, Pham VT, Borden MA, Benninger RKP.Detecting insulitis in type 1 diabetes with ultrasound phase-change contrast agents.Proc Natl Acad Sci USA 2021; 118(41):118.
|
[58] |
Durham PG, Dayton PA.Applications of sub-micron low-boiling point phase change contrast agents for ultrasound imaging and therapy.Curr Opin Colloid Interface Sci 2021; 56:101498.
|
[59] |
Borden MA, Shakya G, Upadhyay A, Song KH.Acoustic nanodrops for biomedical applications.Curr Opin Colloid Interface Sci 2020; 50:50.
|
[60] |
Dong F, An J, Zhang J, Yin J, Guo W, Wang D, et al.Blinking acoustic nanodroplets enable fast super-resolution ultrasound imaging.ACS Nano 2021; 15(10):16913-16923.
|
[61] |
Qin D, Zhang L, Zhu H, Chen J, Wu D, Bouakaz A, et al.A highly efficient one-for-all nanodroplet for ultrasound imaging-guided and cavitation-enhanced photothermal therapy.Int J Nanomed 2021; 16:3105-3119.
|
[62] |
Cao Y, Dumani DS, Hallam KA, Emelianov SY, Ran H.Real-time monitoring of NIR-triggered drug release from phase-changeable nanodroplets by photoacoustic/ultrasound imaging.Photoacoustics 2023; 30:100474.
|
[63] |
Shang M, Sun X, Guo L, Shi D, Liang P, Meng D, et al.pH- and ultrasound-responsive paclitaxel-loaded carboxymethyl chitosan nanodroplets for combined imaging and synergistic chemoradiotherapy.Int J Nanomed 2020; 15:537-552.
|
[64] |
Sheth T, Seshadri S, Prileszky T, Helgeson ME.Multiple nanoemulsions.Nat Rev Mater 2020; 5(3):214-228.
|
[65] |
Chen YS, Zhao Y, Beinat C, Zlitni A, Hsu EC, Chen DH, et al.Ultra-high-frequency radio-frequency acoustic molecular imaging with saline nanodroplets in living subjects.Nat Nanotechnol 2021; 16(6):717-724.
|
[66] |
Huber ST, Terwiel D, Evers WH, Maresca D, Jakobi AJ.Cryo-EM structure of gas vesicles for buoyancy-controlled motility.Cell 2023; 186(5):975-986.
|
[67] |
Dan Q, Jiang X, Wang R, Dai Z, Sun D.Biogenic imaging contrast agents.Adv Sci 2023; 10(25):e2207090.
|
[68] |
Farhadi A, Sigmund F, Westmeyer GG, Shapiro MG.Genetically encodable materials for non-invasive biological imaging.Nat Mater 2021; 20(5):585-592.
|
[69] |
Wang G, Song L, Hou X, Kala S, Wong KF, Tang L, et al.Surface-modified GVs as nanosized contrast agents for molecular ultrasound imaging of tumor.Biomaterials 2020; 236:119803.
|
[70] |
Hao Y, Luo J, Wang Y, Li Z, Wang X, Yan F.Ultrasound molecular imaging of p32 protein translocation for evaluation of tumor metastasis.Biomaterials 2023; 293:121974.
|
[71] |
Zhang L, Wang Y, Li D, Wang L, Li Z, Yan F.Bimodal imaging of tumors via genetically engineered Escherichia coli.Pharmaceutics 2022; 14(9):14.
|
[72] |
Hurt RC, Buss MT, Duan M, Wong K, You MY, Sawyer DP, et al.Genomically mined acoustic reporter genes for real-time in vivo monitoring of tumors and tumor-homing bacteria.Nat Biotechnol 2023; 41(7):919-931.
|
[73] |
Long H, Qin X, Xu R, Mei C, Xiong Z, Deng X, et al.Non-modified ultrasound-responsive gas vesicles from Microcystis with targeted tumor accumulation.Int J Nanomed 2021; 16:8405-8416.
|
[74] |
Wei M, Lai M, Zhang J, Pei X, Yan F.Biosynthetic gas vesicles from Halobacteria NRC-1: a potential ultrasound contrast agent for tumor imaging.Pharmaceutics 2022; 14(6):14.
|
[75] |
Ling B, Lee J, Maresca D, Lee-Gosselin A, Malounda D, Swift MB, et al.Biomolecular ultrasound imaging of phagolysosomal function.ACS Nano 2020; 14(9):12210-12221.
|
[76] |
Lakshmanan A, Jin Z, Nety SP, Sawyer DP, Lee-Gosselin A, Malounda D, et al.Acoustic biosensors for ultrasound imaging of enzyme activity.Nat Chem Biol 2020; 16(9):988-996.
|
[77] |
Sawyer DP, Bar-Zion A, Farhadi A, Shivaei S, Ling B, Lee-Gosselin A, et al.Ultrasensitive ultrasound imaging of gene expression with signal unmixing.Nat Methods 2021; 18(8):945-952.
|
[78] |
Kim S, Zhang S, Yoon S.Multiplexed ultrasound imaging using spectral analysis on gas vesicles.Adv Healthcare Mater 2022; 11(17):e2200568.
|
[79] |
Farhadi A, Bedrossian M, Lee J, Ho GH, Shapiro MG, Nadeau JL.Genetically encoded phase contrast agents for digital holographic microscopy.Nano Lett 2020; 20(11):8127-8134.
|
[80] |
Lu GJ, Chou LD, Malounda D, Patel AK, Welsbie DS, Chao DL, et al.Genetically encodable contrast agents for optical coherence tomography.ACS Nano 2020; 14(7):7823-7831.
|
[81] |
Lone SN, Nisar S, Masoodi T, Singh M, Rizwan A, Hashem S, et al.Liquid biopsy: a step closer to transform diagnosis, prognosis and future of cancer treatments.Mol Cancer 2022; 21(1):79.
|
[82] |
Heidrich I, A Lčkar, Mossahebi MP, Pantel K.Liquid biopsies: potential and challenges.Int J Cancer 2021; 148(3):528-545.
|
[83] |
Lin D, Shen L, Luo M, Zhang K, Li J, Yang Q, et al.Circulating tumor cells: biology and clinical significance.Signal Transduction Targeted Ther 2021; 6(1):404.
|
[84] |
Campos-Carrillo A, Weitzel JN, Sahoo P, Rockne R, Mokhnatkin JV, Murtaza M, et al.Circulating tumor DNA as an early cancer detection tool.Pharmacol Ther 2020; 207:107458.
|
[85] |
Li Y, Zheng Y, Wu L, Li J, Ji J, Yu Q, et al.Current status of ctDNA in precision oncology for hepatocellular carcinoma.J Exp Clin Cancer Res 2021; 40(1):140.
|
[86] |
Thakur A, Ke X, Chen YW, Motallebnejad P, Zhang K, Lian Q, et al.The mini player with diverse functions: extracellular vesicles in cell biology, disease, and therapeutics.Protein Cell 2022; 13(9):631-654.
|
[87] |
Urabe F, Kosaka N, Ito K, Kimura T, Egawa S, Ochiya T.Extracellular vesicles as biomarkers and therapeutic targets for cancer.Am J Physiol Cell Physiol 2020; 318(1):C29-C39.
|
[88] |
Valihrach L, Androvic P, Kubista M.Circulating miRNA analysis for cancer diagnostics and therapy.Mol Aspects Med 2020; 72:100825.
|
[89] |
Dai J, Su Y, Zhong S, Cong L, Liu B, Yang J, et al.Exosomes: key players in cancer and potential therapeutic strategy.Signal Transduction Targeted Ther 2020; 5(1):145.
|
[90] |
Li S, Yi M, Dong B, Tan X, Luo S, Wu K.The role of exosomes in liquid biopsy for cancer diagnosis and prognosis prediction.Int J Cancer 2021; 148(11):2640-2651.
|
[91] |
Wallington-Beddoe CT, Mynott RL.Prognostic and predictive biomarker developments in multiple myeloma.J Hematol Oncol 2021; 14(1):151.
|
[92] |
Zygulska AL, Pierzchalski P.Novel diagnostic biomarkers in colorectal cancer.Int J Mol Sci 2022; 23(2):23.
|
[93] |
Li W, Liu JB, Hou LK, Yu F, Zhang J, Wu W, et al.Liquid biopsy in lung cancer: significance in diagnostics, prediction, and treatment monitoring.Mol Cancer 2022; 21(1):25.
|
[94] |
Casanova-Salas I, Athie A, Boutros PC, del Re M, Miyamoto DT, Pienta KJ, et al.Quantitative and qualitative analysis of blood-based liquid biopsies to inform clinical decision-making in prostate cancer.Eur Urol 2021; 79(6):762-771.
|
[95] |
Rufo J, Zhang P, Zhong R, Lee LP, Huang TJ.A sound approach to advancing healthcare systems: the future of biomedical acoustics.Nat Commun 2022; 13(1):3459.
|
[96] |
Li P, Mao Z, Peng Z, Zhou L, Chen Y, Huang PH, et al.Acoustic separation of circulating tumor cells.Proc Natl Acad Sci USA 2015; 112(16):4970-4975.
|
[97] |
Antfolk M, Magnusson C, Augustsson P, Lilja H, Laurell T.Acoustofluidic, label-free separation and simultaneous concentration of rare tumor cells from white blood cells.Anal Chem 2015; 87(18):9322-9328.
|
[98] |
Zhang Y, Zhang Z, Zheng D, Huang T, Fu Q, Liu Y.Label-free separation of circulating tumor cells and clusters by alternating frequency acoustic field in a microfluidic chip.Int J Mol Sci 2023; 24(4):24.
|
[99] |
Geng W, Liu Y, Yu N, Qiao X, Ji M, Niu Y, et al.An ultra-compact acoustofluidic device based on the narrow-path travelling surface acoustic wave (np-TSAW) for label-free isolation of living circulating tumor cells.Anal Chim Acta 2023; 1255:341138.
|
[100] |
Yang Y, Pang W, Zhang H, Cui W, Jin K, Sun C, et al.Manipulation of single cells via a Stereo Acoustic Streaming Tunnel (SteAST).Microsyst Nanoeng 2022; 8(1):88.
|
[101] |
Bai X, Song B, Chen Z, Zhang W, Chen D, Dai Y, et al.Postoperative evaluation of tumours based on label-free acoustic separation of circulating tumour cells by microstreaming.Lab Chip 2021; 21(14):2721-2729.
|
[102] |
Wu M, Ouyang Y, Wang Z, Zhang R, Huang PH, Chen C, et al.Isolation of exosomes from whole blood by integrating acoustics and microfluidics.Proc Natl Acad Sci USA 2017; 114(40):10584-10589.
|
[103] |
Gu Y, Chen C, Mao Z, Bachman H, Becker R, Rufo J, et al.Acoustofluidic centrifuge for nanoparticle enrichment and separation.Sci Adv 2021; 7(1):7.
|
[104] |
Wang Z, Li F, Rufo J, Chen C, Yang S, Li L, et al.Acoustofluidic salivary exosome isolation: a liquid biopsy compatible approach for human papillomavirus-associated oropharyngeal cancer detection.J Mol Diagn 2020; 22(1):50-59.
|
[105] |
Wu M, Chen C, Wang Z, Bachman H, Ouyang Y, Huang PH, et al.Separating extracellular vesicles and lipoproteins via acoustofluidics.Lab Chip 2019; 19(7):1174-1182.
|
[106] |
Paproski RJ, Jovel J, Wong GK, Lewis JD, Zemp RJ.Enhanced detection of cancer biomarkers in blood-borne extracellular vesicles using nanodroplets and focused ultrasound.Cancer Res 2017; 77(1):3-13.
|
[107] |
Meng Y, Pople CB, Suppiah S, Llinas M, Huang Y, Sahgal A, et al.MR-guided focused ultrasound liquid biopsy enriches circulating biomarkers in patients with brain tumors.Neuro Oncol 2021; 23(10):1789-1797.
|
[108] |
Pacia CP, Yuan J, Yue Y, Xu L, Nazeri A, Desai R, et al.Sonobiopsy for minimally invasive, spatiotemporally-controlled, and sensitive detection of glioblastoma-derived circulating tumor DNA.Theranostics 2022; 12(1):362-378.
|
[109] |
Baudoin M, Thomas JL.Acoustic tweezers for particle and fluid micromanipulation.Annu Rev Fluid Mechanics 2020; 52(1):52.
|
[110] |
Zhang P, Bachman H, Ozcelik A, Huang TJ.Acoustic microfluidics.Ann Rev Anal Chem 2020; 13(1):17-43.
|
[111] |
Yang S, Rufo J, Zhong R, Rich J, Wang Z, Lee LP, et al.Acoustic tweezers for high-throughput single-cell analysis.Nat Protoc 2023; 18(8):2441-2458.
|
[112] |
Wei W, Wang Y, Wang Z, Duan X.Microscale acoustic streaming for biomedical and bioanalytical applications.Trends Anal Chem 2023; 160:116958.
|
[113] |
Yin C, Jiang X, Mann S, Tian L, Drinkwater BW.Acoustic trapping: an emerging tool for microfabrication technology.Small 2023; 19(26):e2207917.
|
[114] |
Zhao SK, Hu XJ, Zhu JM, Luo ZY, Liang L, Yang DY, et al.On-chip rapid drug screening of leukemia cells by acoustic streaming.Lab Chip 2021; 21(20):4005-4015.
|
[115] |
Yang S, Tian Z, Wang Z, Rufo J, Li P, Mai J, et al.Harmonic acoustics for dynamic and selective particle manipulation.Nat Mater 2022; 21(5):540-546.
|
[116] |
Wang Z, Rich J, Hao N, Gu Y, Chen C, Yang S, et al.Acoustofluidics for simultaneous nanoparticle-based drug loading and exosome encapsulation.Microsyst Nanoeng 2022; 8(1):45.
|
[117] |
Tian Z, Wang Z, Zhang P, Naquin TD, Mai J, Wu Y, et al.Generating multifunctional acoustic tweezers in Petri dishes for contactless, precise manipulation of bioparticles.Sci Adv 2020; 6(37):6.
|
[118] |
Nance E, Pun SH, Saigal R, Sellers DL.Drug delivery to the central nervous system.Nat Rev Mater 2022; 7(4):314-331.
|
[119] |
Gorick CM, Breza VR, Nowak KM, Cheng VWT, Fisher DG, Debski AC, et al.Applications of focused ultrasound-mediated blood–brain barrier opening.Adv Drug Deliv Rev 2022; 191:114583.
|
[120] |
Deprez J, Lajoinie G, Engelen Y, de Smedt SC, Lentacker I.Opening doors with ultrasound and microbubbles: beating biological barriers to promote drug delivery.Adv Drug Deliv Rev 2021; 172:9-36.
|
[121] |
Wang J, Li Z, Pan M, Fiaz M, Hao Y, Yan Y, et al.Ultrasound-mediated blood–brain barrier opening: an effective drug delivery system for theranostics of brain diseases.Adv Drug Deliv Rev 2022; 190:114539.
|
[122] |
Schoen Jr S, Kilinc MS, Lee H, Guo Y, Degertekin FL, Woodworth GF, et al.Towards controlled drug delivery in brain tumors with microbubble-enhanced focused ultrasound.Adv Drug Deliv Rev 2022; 180:114043.
|
[123] |
Wu P, Zhu M, Li Y, Ya Z, Yang Y, Yuan Y, et al.Cascade-amplifying synergistic therapy for intracranial glioma via end ogenous reactive oxygen species-triggered “all-in-one” nanoplatform.Adv Funct Mater 2021; 31(46):2105786.
|
[124] |
Liang S, Hu D, Li G, Gao D, Li F, Zheng H, et al.NIR-II fluorescence visualization of ultrasound-induced blood–brain barrier opening for enhanced photothermal therapy against glioblastoma using indocyanine green microbubbles.Sci Bull 2022; 67(22):2316-2326.
|
[125] |
Wang J, Xie L, Shi Y, Ao L, Cai F, Yan F.Early detection and reversal of cell apoptosis induced by focused ultrasound-mediated blood–brain barrier opening.ACS Nano 2021; 15(9):14509-14521.
|
[126] |
Xie L, Wang J, Song L, Jiang T, Yan F.Cell-cycle dependent nuclear gene delivery enhances the effects of E-cadherin against tumor invasion and metastasis.Signal Transduction Targeted Ther 2023; 8(1):182.
|
[127] |
Yang Q, Zhou Y, Chen J, Huang N, Wang Z, Cheng Y.Gene therapy for drug-resistant glioblastoma via lipid-polymer hybrid nanoparticles combined with focused ultrasound.Int J Nanomed 2021; 16:185-199.
|
[128] |
Meng Y, Reilly RM, Pezo RC, Trudeau M, Sahgal A, Singnurkar A, et al.MR-guided focused ultrasound enhances delivery of trastuzumab to Her2-positive brain metastases.Sci Transl Med 2021; 13(615):eabj4011.
|
[129] |
Sonabend AM, Gould A, Amidei C, Ward R, Schmidt KA, Zhang DY, et al.Repeated blood–brain barrier opening with an implantable ultrasound device for delivery of albumin-bound paclitaxel in patients with recurrent glioblastoma: a phase 1 trial.Lancet Oncol 2023; 24(5):509-522.
|
[130] |
Meng Y, Hynynen K, Lipsman N.Applications of focused ultrasound in the brain: from thermoablation to drug delivery.Nat Rev Neurol 2021; 17(1):7-22.
|
[131] |
Cheng CL, Chan MH, Feng SJ, Hsiao M, Liu RS.Long-term near-infrared signal tracking of the therapeutic changes of glioblastoma cells in brain tissue with ultrasound-guided persistent luminescent nanocomposites.ACS Appl Mater Interfaces 2021; 13(5):6099-6108.
|
[132] |
Chan MH, Chen W, Li CH, Fang CY, Chang YC, Wei DH, et al.An advanced in situ magnetic resonance imaging and ultrasonic theranostics nanocomposite platform: crossing the blood–brain barrier and improving the suppression of glioblastoma using iron–platinum nanoparticles in nanobubbles.ACS Appl Mater Interfaces 2021; 13(23):26759-26769.
|
[133] |
Song R, Zhang C, Teng F, Tu J, Guo X, Fan Z, et al.Cavitation-facilitated transmembrane permeability enhancement induced by acoustically vaporized nanodroplets.Ultrason Sonochem 2021; 79:105790.
|
[134] |
Curry EJ, Le TT, Das R, Ke K, Santorella EM, Paul D, et al.Biodegradable nanofiber-based piezoelectric transducer.Proc Natl Acad Sci USA 2020; 117(1):214-220.
|
[135] |
Nia HT, Munn LL, Jain RK.Physical traits of cancer.Science 2020; 370(6516):370.
|
[136] |
Snipstad S, Vikedal K, Maardalen M, Kurbatskaya A, Sulheim E, Davies CL.Ultrasound and microbubbles to beat barriers in tumors: improving delivery of nanomedicine.Adv Drug Deliv Rev 2021; 177:113847.
|
[137] |
Wang X, Zhang H, Chen X, Wu C, Ding K, Sun G, et al.Overcoming tumor microenvironment obstacles: current approaches for boosting nanodrug delivery.Acta Biomater 2023; 166:42-68.
|
[138] |
Curley CT, Mead BP, Negron K, Kim N, Garrison WJ, Miller GW, et al.Augmentation of brain tumor interstitial flow via focused ultrasound promotes brain-penetrating nanoparticle dispersion and transfection.Sci Adv 2020; 6(18):eaay1344.
|
[139] |
Guo Y, Lee H, Fang Z, Velalopoulou A, Kim J, Thomas MB, et al.Single-cell analysis reveals effective siRNA delivery in brain tumors with microbubble-enhanced ultrasound and cationic nanoparticles.Sci Adv 2021; 7(18):7.
|
[140] |
Chen KT, Chai WY, Lin YJ, Lin CJ, Chen PY, Tsai HC, et al.Neuronavigation-guided focused ultrasound for transcranial blood–brain barrier opening and immunostimulation in brain tumors.Sci Adv 2021; 7(6):7.
|
[141] |
Huang J, Zhang L, Zheng J, Lin Y, Leng X, Wang C, et al.Microbubbles-assisted ultrasonication to promote tumor accumulation of therapeutics and modulation of tumor microenvironment for enhanced cancer treatments.Biomaterials 2023; 299:122181.
|
[142] |
Rich J, Tian Z, Huang TJ.Sonoporation: past, present, and future.Adv Mater Technol 2022; 7(1):7.
|
[143] |
Omata D, Unga J, Suzuki R, Maruyama K.Lipid-based microbubbles and ultrasound for therapeutic application.Adv Drug Deliv Rev 2020; 154(155):236-244.
|
[144] |
Yang Y, Li Q, Guo X, Tu J, Zhang D.Mechanisms underlying sonoporation: interaction between microbubbles and cells.Ultrason Sonochem 2020; 67:105096.
|
[145] |
Chowdhury SM, Abou-Elkacem L, Lee T, Dahl J, Lutz AM.Ultrasound and microbubble mediated therapeutic delivery: underlying mechanisms and future outlook.J Control Release 2020; 326:75-90.
|
[146] |
Beekers I, Vegter M, Lattwein KR, Mastik F, Beurskens R, van der Steen AFW, et al.Opening of endothelial cell–cell contacts due to sonoporation.J Control Release 2020; 322:426-438.
|
[147] |
Ho YJ, Chang HC, Lin CW, Fan CH, Lin YC, Wei KC, et al.Oscillatory behavior of microbubbles impacts efficacy of cellular drug delivery.J Control Release 2021; 333:316-327.
|
[148] |
Bourn MD, Batchelor DVB, Ingram N, McLaughlan JR, Coletta PL, Evans SD, et al.High-throughput microfluidics for evaluating microbubble enhanced delivery of cancer therapeutics in spheroid cultures.J Control Release 2020; 326:13-24.
|
[149] |
Kim D, Lee JH, Moon H, Seo M, Han H, Yoo H, et al.Development and evaluation of an ultrasound-triggered microbubble combined transarterial chemoembolization (TACE) formulation on rabbit VX2 liver cancer model.Theranostics 2021; 11(1):79-92.
|
[150] |
Bj Tånes, Kotopoulis S, Murvold ET, Kam Tčeva, Gjertsen BT, Gilja OH, et al.Ultrasound- and microbubble-assisted gemcitabine delivery to pancreatic cancer cells.Pharmaceutics 2020; 12(2):12.
|
[151] |
Snipstad S, Hanstad S, Bjørkøy A, Mørch Ý, de Lange DC.Sonoporation using nanoparticle-loaded microbubbles increases cellular uptake of nanoparticles compared to co-incubation of nanoparticles and microbubbles.Pharmaceutics 2021; 13(5):13.
|
[152] |
Fan Y, Lin L, Yin F, Zhu Y, Shen M, Wang H, et al.Phosphorus dendrimer-based copper(II) complexes enable ultrasound-enhanced tumor theranostics.Nano Today 2020; 33:100899.
|
[153] |
Jia L, Li X, Liu H, Xia J, Shi X, Shen M.Ultrasound-enhanced precision tumor theranostics using cell membrane-coated and pH-responsive nanoclusters assembled from ultrasmall iron oxide nanoparticles.Nano Today 2021; 36:101022.
|
[154] |
Li X, Khorsandi S, Wang Y, Santelli J, Huntoon K, Nguyen N, et al.Cancer immunotherapy based on image-guided STING activation by nucleotide nanocomplex-decorated ultrasound microbubbles.Nat Nanotechnol 2022; 17(8):891-899.
|
[155] |
Ilovitsh T, Feng Y, Foiret J, Kheirolomoom A, Zhang H, Ingham ES, et al.Low-frequency ultrasound-mediated cytokine transfection enhances T cell recruitment at local and distant tumor sites.Proc Natl Acad Sci USA 2020; 117(23):12674-12685.
|
[156] |
Dong W, Huang A, Huang J, Wu P, Guo S, Liu H, et al.Plasmid-loadable magnetic/ultrasound-responsive nanodroplets with a SPIO-NP dispersed perfluoropentane core and lipid shell for tumor-targeted intracellular plasmid delivery.Biomater Sci 2020; 8(19):5329-5345.
|
[157] |
Belling JN, Heidenreich LK, Tian Z, Mendoza AM, Chiou TT, Gong Y, et al.Acoustofluidic sonoporation for gene delivery to human hematopoietic stem and progenitor cells.Proc Natl Acad Sci USA 2020; 117(20):10976-10982.
|
[158] |
Chen Q, Huang J, Ye Y, Hu A, Xu B, Hu D, et al.Delivery of hydroxycamptothecin via sonoporation: an effective therapy for liver fibrosis.J Control Release 2023; 358:319-332.
|
[159] |
Zhang Q, Kuang G, Li W, Wang J, Ren H, Zhao Y.Stimuli-responsive gene delivery nanocarriers for cancer therapy.Nanomicro Lett 2023; 15(1):44.
|
[160] |
Mazidi Z, Javanmardi S, Naghib SM, Mohammadpour Z.Smart stimuli-responsive implantable drug delivery systems for programmed and on-demand cancer treatment: an overview on the emerging materials.Chem Eng J 2022; 433:13456.
|
[161] |
Ahmadi S, Rabiee N, Bagherzadeh M, Elmi F, Fatahi Y, Farjadian F, et al.Stimulus-responsive sequential release systems for drug and gene delivery.Nano Today 2020; 34:34.
|
[162] |
Moradi KF, Jakhmola A, Hornsby TK, Tavakkoli JJ, Kolios MC.Ultrasound-mediated nano drug delivery for treating cancer: fundamental physics to future directions.J Control Release 2023; 355:552-578.
|
[163] |
Beguin E, Gray MD, Logan KA, Nesbitt H, Sheng Y, Kamila S, et al.Magnetic microbubble mediated chemo-sonodynamic therapy using a combined magnetic–acoustic device.J Control Release 2020; 317:23-33.
|
[164] |
Ingram N, McVeigh LE, Abou-Saleh RH, Maynard J, Peyman SA, McLaughlan JR, et al.Ultrasound-triggered therapeutic microbubbles enhance the efficacy of cytotoxic drugs by increasing circulation and tumor drug accumulation and limiting bioavailability and toxicity in normal tissues.Theranostics 2020; 10(24):10973-10992.
|
[165] |
Wang G, Zhang C, Jiang Y, Song Y, Chen J, Sun Y, et al.Ultrasonic cavitation-assisted and acid-activated transcytosis of liposomes for universal active tumor penetration.Adv Funct Mater 2021; 31(34):2102786.
|
[166] |
Szablowski JO, Bar-Zion A, Shapiro MG.Achieving spatial and molecular specificity with ultrasound-targeted biomolecular nanotherapeutics.Acc Chem Res 2019; 52(9):2427-2434.
|
[167] |
Th CJébault, Ramniceanu G, Boumati S, Michel A, Seguin J, Larrat B, et al.Theranostic MRI liposomes for magnetic targeting and ultrasound triggered release of the antivascular CA4P.J Control Release 2020; 322:137-148.
|
[168] |
Zhang H, Tang WL, Kheirolomoom A, Fite BZ, Wu B, Lau K, et al.Development of thermosensitive resiquimod-loaded liposomes for enhanced cancer immunotherapy.J Control Release 2021; 330:1080-1094.
|
[169] |
Santos MA, Wu SK, Regenold M, Allen C, Goertz DE, Hynynen K.Novel fractionated ultrashort thermal exposures with MRI-guided focused ultrasound for treating tumors with thermosensitive drugs.Sci Adv 2020; 6(36):6.
|
[170] |
Li Y, Teng X, Wang Y, Yang C, Yan X, Li J.Neutrophil delivered hollow titania covered persistent luminescent nanosensitizer for ultrosound augmented chemo/immuno glioblastoma therapy.Adv Sci 2021; 8(17):e2004381.
|
[171] |
Dwivedi P, Kiran S, Han S, Dwivedi M, Khatik R, Fan R, et al.Magnetic targeting and ultrasound activation of liposome-microbubble conjugate for enhanced delivery of anticancer therapies.ACS Appl Mater Interfaces 2020; 12(21):23737-23751.
|
[172] |
Batchelor DVB, Abou-Saleh RH, Coletta PL, McLaughlan JR, Peyman SA, Evans SD.Nested nanobubbles for ultrasound-triggered drug release.ACS Appl Mater Interfaces 2020; 12(26):29085-29093.
|
[173] |
Morse SV, Mishra A, Chan TG, de Rosales RTM, Choi JJ.Liposome delivery to the brain with rapid short-pulses of focused ultrasound and microbubbles.J Control Release 2022; 341:605-615.
|
[174] |
Wang Y, Luo S, Wu Y, Tang P, Liu J, Liu Z, et al.Highly penetrable and on-demand oxygen release with tumor activity composite nanosystem for photothermal/photodynamic synergetic therapy.ACS Nano 2020; 14(12):17046-17062.
|
[175] |
Shi X, Zhang Y, Tian Y, Xu S, Ren E, Bai S, et al.Multi-responsive bottlebrush-like unimolecules self-assembled nano-riceball for synergistic sono-chemotherapy.Small Methods 2021; 5(3):e2000416.
|
[176] |
Liang B, Wang Z, Xia H.High intensity focused ultrasound responsive release behavior of metallo-supramolecular block PPG–PEG copolymer micelles.Ultrason Sonochem 2020; 68:105217.
|
[177] |
D NA’Angelo, C MCCâmara, Noronha MA, Grotto D, Chorilli M, Louren FRço, et al.Development of PEG–PCL-based polymersomes through design of experiments for co-encapsulation of vemurafenib and doxorubicin as chemotherapeutic drugs.J Mole Liquids 2022; 349:118166.
|
[178] |
Wei P, Sun M, Yang B, Xiao J, Du J.Ultrasound-responsive polymersomes capable of endosomal escape for efficient cancer therapy.J Control Release 2020; 322:81-94.
|
[179] |
Torres J, Dhas N, Longhi M, García MC.Overcoming biological barriers with block copolymers-based self-assembled nanocarriers. Recent advances in delivery of anticancer therapeutics.Front Pharmacol 2020; 11:593197.
|
[180] |
Emi T, Michaud K, Orton E, Santilli G, Linh C, O M’Connell, et al.Ultrasonic generation of pulsatile and sequential therapeutic delivery profiles from calcium-crosslinked alginate hydrogels.Molecules 2019; 24(6):24.
|
[181] |
Kubota T, Kurashina Y, Zhao J, Ando K, Onoe H.Ultrasound-triggered on-demand drug delivery using hydrogel microbeads with release enhancer.Mater Design 2021; 203:109580.
|
[182] |
Besse HC, Chen Y, Scheeren HW, Metselaar JM, Lammers T, Moonen CTW, et al.A doxorubicin-glucuronide prodrug released from nanogels activated by high-intensity focused ultrasound liberated β-glucuronidase.Pharmaceutics 2020; 12(6):12.
|
[183] |
Xu F, Zhu J, Lin L, Zhang C, Sun W, Fan Y, et al.Multifunctional PVCL nanogels with redox-responsiveness enable enhanced MR imaging and ultrasound-promoted tumor chemotherapy.Theranostics 2020; 10(10):4349-4358.
|
[184] |
Liu T, Wan Q, Zou C, Chen M, Wan G, Liu X, et al.Stepwise drug release from a nanoplatform under MR-assisted focused ultrasound stimulation.Chem Eng J 2021; 417:128004.
|
[185] |
Mai X, Chang Y, You Y, He L, Chen T.Designing intelligent nano-bomb with on-demand site-specific drug burst release to synergize with high-intensity focused ultrasound cancer ablation.J Control Release 2021; 331:270-281.
|
[186] |
Song X, Luan M, Zhang W, Zhang R, Xue L, Luan Y.Moderate-intensity ultrasound-triggered on-demand analgesia nanoplatforms for postoperative pain management.Int J Nanomed 2022; 17:3177-3189.
|
[187] |
Qiao B, Song X, Zhang N, Xu M, Zhuang B, Guo H, et al.Artificial nano-red blood cells nanoplatform with lysosomal escape capability for ultrasound imaging-guided on-demand pain management.Acta Biomater 2023; 158:798-810.
|
[188] |
Amin MU, Ali S, Tariq I, Ali MY, Pinnapreddy SR, Preis E, et al.Ultrasound-responsive smart drug delivery system of lipid coated mesoporous silica nanoparticles.Pharmaceutics 2021; 13(9):13.
|
[189] |
Xu Z, Liu H, Tian H, Yan F.Real-time imaging tracking of engineered macrophages as ultrasound-triggered cell bombs for cancer treatment.Adv Funct Mater 2020; 30(14):1910304.
|
[190] |
Xing L, Li X, Xing Z, Li F, Shen M, Wang H, et al.Silica/gold nanoplatform combined with a thermosensitive gel for imaging-guided interventional therapy in PDX of pancreatic cancer.Chem Eng J 2020; 382:122949.
|
[191] |
Sabuncu S, Mira J, Quentel A, Gomes M, Civitci F, Fischer J, et al.Protein-coated biodegradable gas-stabilizing nanoparticles for cancer therapy and diagnosis using focused ultrasound.Adv Mater Interfaces 2022; 10(2):2201543.
|
[192] |
Ho YJ, Wu CH, Jin QF, Lin CY, Chiang PH, Wu N, et al.Superhydrophobic drug-loaded mesoporous silica nanoparticles capped with β-cyclodextrin for ultrasound image-guided combined antivascular and chemo-sonodynamic therapy.Biomaterials 2020; 232:119723.
|
[193] |
Zhang T, Zheng Q, Xie C, Fan G, Wang Y, Wu Y, et al.Integration of silica nanorattles with manganese-doped In2S3/InOOH to enable ultrasound-mediated tumor theranostics.ACS Appl Mater Interfaces 2023; 15(4):4883-4894.
|
[194] |
Walker JA, Wang X, Peter K, Kempe K, Corrie SR.Dynamic solid-state ultrasound contrast agent for monitoring pH fluctuations in vivo.ACS Sensors 2020; 5(4):1190-1197.
|
[195] |
Lee J, Kim JH, You DG, Kim S, Um W, Jeon J, et al.Cavitation-inducible mesoporous silica–titania nanoparticles for cancer sonotheranostics.Adv Healthcare Mater 2020; 9(19):e2000877.
|
[196] |
Kip B, Tunc CU, Aydin O.Triple-combination therapy assisted with ultrasound-active gold nanoparticles and ultrasound therapy against 3D cisplatin-resistant ovarian cancer model.Ultrason Sonochem 2022; 82:105903.
|
[197] |
An JY, Um W, You DG, Song Y, Lee J, van Quy N, et al.Gold-installed hyaluronic acid hydrogel for ultrasound-triggered thermal elevation and on-demand cargo release.Int J Biol Macromol 2021; 193(Pt A):553-561.
|
[198] |
Bhargawa B, Sharma V, Ganesh MR, Cavalieri F, Ashokkumar M, Neppolian B, et al.Lysozyme microspheres incorporated with anisotropic gold nanorods for ultrasound activated drug delivery.Ultrason Sonochem 2022; 86:106016.
|
[199] |
Su X, Jonnalagadda US, Bharatula LD, Kwan JJ.Unsupported gold nanocones as sonocatalytic agents with enhanced catalytic properties.Ultrason Sonochem 2021; 79:105753.
|
[200] |
Wei H, Wi Aśniowska, Fan J, Harvey P, Li Y, Wu V, et al.Single-nanometer iron oxide nanoparticles as tissue-permeable MRI contrast agents.Proc Natl Acad Sci USA 2021; 118(42):118.
|
[201] |
Yang R, Ouyang Z, Guo H, Qu J, Xia J, Shen M, et al.Microfluidic synthesis of intelligent nanoclusters of ultrasmall iron oxide nanoparticles with improved tumor microenvironment regulation for dynamic MR imaging-guided tumor photothermo–chemo–chemodynamic therapy.Nano Today 2022; 46:101615.
|
[202] |
Gong J, Hu J, Yan X, Xiang L, Chen S, Yang H, et al.Injectable hydrogels including magnetic nanosheets for multidisciplinary treatment of hepatocellular carcinoma via magnetic hyperthermia.Small 2024; 20(3):e2300733.
|
[203] |
Dheyab MA, Aziz AA, Jameel MS.Synthesis and optimization of the sonochemical method for functionalizing gold shell on Fe3O4 core nanoparticles using response surface methodology.Surf Interfaces 2020; 21:100647.
|
[204] |
Sun Z, Huang G, Ma Z.Synthesis of theranostic anti-EGFR ligand conjugate iron oxide nanoparticles for magnetic resonance imaging for treatment of liver cancer.J Drug Deliv Sci Technol 2020; 55:101367.
|
[205] |
Li J, Feng Z, Gu N, Yang F.Superparamagnetic iron oxide nanoparticles assembled magnetic nanobubbles and their application for neural stem cells labeling.J Mater Sci Technol 2021; 63:124-132.
|
[206] |
Xiao Z, You Y, Liu Y, He L, Zhang D, Cheng Q, et al.NIR-triggered blasting nanovesicles for targeted multimodal image-guided synergistic cancer photothermal and chemotherapy.ACS Appl Mater Interfaces 2021; 13(30):35376-35388.
|
[207] |
Stater EP, Morcos G, Isaac E, Ogirala A, Hsu HT, Longo VA, et al.Translatable drug-loaded iron oxide nanophore sensitizes murine melanoma tumors to monoclonal antibody immunotherapy.ACS Nano 2023; 17(7):6178-6192.
|
[208] |
Yang H, Jiang F, Zhang L, Wang L, Luo Y, Li N, et al.Multifunctional L-arginine-based magnetic nanoparticles for multiple-synergistic tumor therapy.Biomater Sci 2021; 9(6):2230-2243.
|
[209] |
Chen M, Deng G, He Y, Li X, Liu W, Wang W, et al.Ultrasound-enhanced generation of reactive oxygen species for MRI-guided tumor therapy by the Fe@Fe3O4-based peroxidase-mimicking nanozyme.ACS Appl Bio Mater 2020; 3(1):639-647.
|
[210] |
Huang WT, Chan MH, Chen X, Hsiao M, Liu RS.Theranostic nanobubble encapsulating a plasmon-enhanced upconversion hybrid nanosystem for cancer therapy.Theranostics 2020; 10(2):782-796.
|
[211] |
Tan Y, Yang S, Ma Y, Li J, Xie Q, Liu C, et al.Nanobubbles containing sPD-1 and Ce6 mediate combination immunotherapy and suppress hepatocellular carcinoma in mice.Int J Nanomed 2021; 16:3241-3254.
|
[212] |
Gao Y, Ma Q, Cao J, Shi Y, Wang J, Ma H, et al.Bifunctional alginate/chitosan stabilized perfluorohexane nanodroplets as smart vehicles for ultrasound and pH responsive delivery of anticancer agents.Int J Bio Macromol 2021; 191:1068-1078.
|
[213] |
Song L, Wang G, Hou X, Kala S, Qiu Z, Wong KF, et al.Biogenic nanobubbles for effective oxygen delivery and enhanced photodynamic therapy of cancer.Acta Biomater 2020; 108:313-325.
|
[214] |
Tenchov R, Bird R, Curtze AE, Zhou Q.Lipid nanoparticles─from liposomes to mRNA vaccine delivery, a landscape of research diversity and advancement.ACS Nano 2021; 15(11):16982-17015.
|
[215] |
Liu Y, Wang X, Li J, Tang J, Li B, Zhang Y, et al.Sphingosine 1-phosphate liposomes for targeted nitric oxide delivery to mediate anticancer effects against brain glioma tumors.Adv Mater 2021; 33(30):e2101701.
|
[216] |
Ghosh B, Biswas S.Polymeric micelles in cancer therapy: state of the art.J Control Release 2021; 332:127-147.
|
[217] |
Yang B, Du J.On the origin and regulation of ultrasound responsiveness of block copolymer nanoparticles.Sci China Chem 2019; 63:272-281.
|
[218] |
Araste F, Aliabadi A, Abnous K, Taghdisi SM, Ramezani M, Alibolandi M.Self-assembled polymeric vesicles: focus on polymersomes in cancer treatment.J Control Release 2021; 330:502-528.
|
[219] |
Kans Sız, El YMçin.Advanced liposome and polymersome-based drug delivery systems: considerations for physicochemical properties, targeting strategies and stimuli-sensitive approaches.Adv Colloid Interface Sci 2023; 317:102930.
|
[220] |
Iqbal S, Blenner M, Alexander-Bryant A, Larsen J.Polymersomes for therapeutic delivery of protein and nucleic acid macromolecules: from design to therapeutic applications.Biomacromolecules 2020; 21(4):1327-1350.
|
[221] |
Nele V, Wojciechowski JP, Armstrong JPK, Stevens MM.Tailoring gelation mechanisms for advanced hydrogel applications.Adv Funct Mater 2020; 30(42):2002759.
|
[222] |
Awad NS, Paul V, AlSawaftah NM, ter Haar G, Allen TM, Pitt WG, et al.Ultrasound-responsive nanocarriers in cancer treatment: a review.ACS Pharmacol Transl Sci 2021; 4(2):589-612.
|
[223] |
Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R.Engineering precision nanoparticles for drug delivery.Nat Rev Drug Discov 2021; 20(2):101-124.
|
[224] |
Hu X, Ha E, Ai F, Huang X, Yan L, He S, et al.Stimulus-responsive inorganic semiconductor nanomaterials for tumor-specific theranostics.Coordination Chem Rev 2022; 473:214821.
|
[225] |
Zou Y, Huang B, Cao L, Deng Y, Su J.Tailored mesoporous inorganic biomaterials: assembly, functionalization, and drug delivery engineering.Adv Mater 2021; 33(2):e2005215.
|
[226] |
Zhou S, Zhong Q, Wang Y, Hu P, Zhong W, Huang CB, et al.Chemically engineered mesoporous silica nanoparticles-based intelligent delivery systems for theranostic applications in multiple cancerous/non-cancerous diseases.Coordination Chem Rev 2022; 452:214309.
|
[227] |
Tian Y, Liu Y, Wang L, Guo X, Liu Y, Mou J, et al.Gadolinium-doped hollow silica nanospheres loaded with curcumin for magnetic resonance imaging-guided synergistic cancer sonodynamic-chemotherapy.Mater Sci Eng C Mater Biol Appl 2021; 126:112157.
|
[228] |
Xu P, Yao J, Li Z, Wang M, Zhou L, Zhong G, et al.Therapeutic effect of doxorubicin-chlorin E6-loaded mesoporous silica nanoparticles combined with ultrasound on triple-negative breast cancer.Int J Nanomed 2020; 15:2659-2668.
|
[229] |
Fuentes-García JA, Alavarse AC, de Castro CE, Giacomelli FC, Ibarra MR, Bonvent JJ, et al.Sonochemical route for mesoporous silica-coated magnetic nanoparticles towards pH-triggered drug delivery system.J Mater Res Technol 2021; 15:52-67.
|
[230] |
Mueller EN, Alina TB, Curry SD, Ganguly S, Cha JN, Goodwin AP.Silica-coated gold nanorods with hydrophobic modification show both enhanced two-photon fluorescence and ultrasound drug release.J Mater Chem B 2022; 10(47):9789-9793.
|
[231] |
Jin Q, Chen D, Song Y, Liu T, Li W, Chen Y, et al.Ultrasound-responsive biomimetic superhydrophobic drug-loaded mesoporous silica nanoparticles for treating prostate tumor.Pharmaceutics 2023; 15(4):15.
|
[232] |
Chiang PH, Fan CH, Jin Q, Yeh CK.Enhancing doxorubicin delivery in solid tumor by superhydrophobic amorphous calcium carbonate-doxorubicin silica nanoparticles with focused ultrasound.Mol Pharm 2022; 19(11):3894-3905.
|
[233] |
Du M, Chen Y, Tu J, Liufu C, Yu J, Yuan Z, et al.Ultrasound responsive magnetic mesoporous silica nanoparticle-loaded microbubbles for efficient gene delivery.ACS Biomater Sci Eng 2020; 6(5):2904-2912.
|
[234] |
Kankala RK, Han YH, Na J, Lee CH, Sun Z, Wang SB, et al.Nanoarchitectured structure and surface biofunctionality of mesoporous silica nanoparticles.Adv Mater 2020; 32(23):e1907035.
|
[235] |
Kankala RK, Han YH, Xia HY, Wang SB, Chen AZ.Nanoarchitectured prototypes of mesoporous silica nanoparticles for innovative biomedical applications.J Nanobiotechnol 2022; 20(1):126.
|
[236] |
Lin FC, Xie Y, Deng T, Zink JI.Magnetism, ultrasound, and light-stimulated mesoporous silica nanocarriers for theranostics and beyond.J Am Chem Soc 2021; 143(16):6025-6036.
|
[237] |
Hornsby TK, Kashkooli FM, Jakhmola A, Kolios MC, Tavakkoli JJ.Multiphysics modeling of low-intensity pulsed ultrasound induced chemotherapeutic drug release from the surface of gold nanoparticles.Cancers 2023; 15(2):15.
|
[238] |
Fadera S, Chen PY, Liu HL, Lee IC.Induction therapy of retinoic acid with a temozolomide-loaded gold nanoparticle-associated ultrasound effect on glioblastoma cancer stem-like colonies.ACS Appl Mater Interfaces 2021; 13(28):32845-32855.
|
[239] |
Shakeri-Zadeh A, Zareyi H, Sheervalilou R, Laurent S, Ghaznavi H, Samadian H.Gold nanoparticle-mediated bubbles in cancer nanotechnology.J Control Release 2021; 330:49-60.
|
[240] |
Soetaert F, Korangath P, Serantes D, Fiering S, Ivkov R.Cancer therapy with iron oxide nanoparticles: agents of thermal and immune therapies.Adv Drug Deliv Rev 2020; 163(164):65-83.
|
[241] |
Xiao Y, Du J.Superparamagnetic nanoparticles for biomedical applications.J Mater Chem B 2020; 8(3):354-367.
|
[242] |
Farzin A, Etesami SA, Quint J, Memic A, Tamayol A.Magnetic nanoparticles in cancer therapy and diagnosis.Adv Healthcare Mater 2020; 9(9):e1901058.
|
[243] |
Zhao S, Yu X, Qian Y, Chen W, Shen J.Multifunctional magnetic iron oxide nanoparticles: an advanced platform for cancer theranostics.Theranostics 2020; 10(14):6278-6309.
|
[244] |
Yew YP, Shameli K, Miyake M, Khairudin NBBA, Mohamad SEB, Naiki T, et al.Green biosynthesis of superparamagnetic magnetite Fe3O4 nanoparticles and biomedical applications in targeted anticancer drug delivery system: a review.Arabian J Chem 2020; 13(1):2287-2308.
|
[245] |
O RT’Neill, Boulatov R.The many flavours of mechanochemistry and its plausible conceptual underpinnings.Nat Rev Chem 2021; 5(3):148-167.
|
[246] |
Chen Y, Mellot G, van Luijk D, Creton C, Sijbesma RP.Mechanochemical tools for polymer materials.Chem Soc Rev 2021; 50(6):4100-4140.
|
[247] |
An J, Hong H, Won M, Rha H, Ding Q, Kang N, et al.Mechanical stimuli-driven cancer therapeutics.Chem Soc Rev 2023; 52(1):30-46.
|
[248] |
Versaw BA, Zeng T, Hu X, Robb MJ.Harnessing the power of force: development of mechanophores for molecular release.J Am Chem Soc 2021; 143(51):21461-21473.
|
[249] |
Tu L, Liao Z, Luo Z, Wu YL, Herrmann A, Huo S.Ultrasound-controlled drug release and drug activation for cancer therapy.Exploration 2021; 1(3):20210023.
|
[250] |
Lloyd EM, Vakil JR, Yao Y, Sottos NR, Craig SL.Covalent mechanochemistry and contemporary polymer network chemistry: a marriage in the making.J Am Chem Soc 2023; 145(2):751-768.
|
[251] |
Huo S, Zhao P, Shi Z, Zou M, Yang X, Warszawik E, et al.Mechanochemical bond scission for the activation of drugs.Nat Chem 2021; 13(2):131-139.
|
[252] |
Shi Z, Song Q, Göstl R, Herrmann A.Mechanochemical activation of disulfide-based multifunctional polymers for theranostic drug release.Chem Sci 2020; 12(5):1668-1674.
|
[253] |
Shi Z, Wu J, Song Q, Göstl R, Herrmann A.Toward drug release using polymer mechanochemical disulfide scission.J Am Chem Soc 2020; 142(34):14725-14732.
|
[254] |
Hu X, Zeng T, Husic CC, Robb MJ.Mechanically triggered small molecule release from a masked furfuryl carbonate.J Am Chem Soc 2019; 141(38):15018-15023.
|
[255] |
Sun Y, Neary WJ, Burke ZP, Qian H, Zhu L, Moore JS.Mechanically triggered carbon monoxide release with turn-on aggregation-induced emission.J Am Chem Soc 2022; 144(3):1125-1129.
|
[256] |
Zou M, Zhao P, Huo S, Göstl R, Herrmann A.Activation of antibiotic-grafted polymer brushes by ultrasound.ACS Macro Lett 2022; 11(1):15-19.
|
[257] |
Küng R, Pausch T, Rasch D, Göstl R, Schmidt BM.Mechanochemical release of non-covalently bound guests from a polymer-decorated supramolecular cage.Angew Chem Int Ed Engl 2021; 60(24):13626-13630.
|
[258] |
Huo S, Liao Z, Zhao P, Zhou Y, Göstl R, Herrmann A.Mechano-nanoswitches for ultrasound-controlled drug activation.Adv Sci 2022; 9(12):e2104696.
|
[259] |
Zhao P, Huo S, Fan J, Chen J, Kiessling F, Boersma AJ, et al.Activation of the catalytic activity of thrombin for fibrin formation by ultrasound.Angew Chem Int Ed Engl 2021; 60(26):14707-14714.
|
[260] |
Huo S, Zhou Y, Liao Z, Zhao P, Zou M, Göstl R, et al.Reversible regulation of metallo-base-pair interactions for DNA dehybridization by ultrasound.Chem Commun 2021; 57(60):7438-7440.
|
[261] |
Zhou Y, Huo S, Loznik M, Göstl R, Boersma AJ, Herrmann A.Controlling optical and catalytic activity of genetically engineered proteins by ultrasound.Angew Chemi Int Ed Engl 2021; 60(3):1493-1497.
|
[262] |
Lin X, Song J, Chen X, Yang H.Ultrasound-activated sensitizers and applications.Angew Chem Int Ed Engl 2020; 59(34):14212-14233.
|
[263] |
Cao X, Li M, Liu Q, Zhao J, Lu X, Wang J.Inorganic sonosensitizers for sonodynamic therapy in cancer treatment.Small 2023; 19(42):e2303195.
|
[264] |
Li D, Yang Y, Li D, Pan J, Chu C, Liu G.Organic sonosensitizers for sonodynamic therapy: from small molecules and nanoparticles toward clinical development.Small 2021; 17(42):e2101976.
|
[265] |
Ouyang J, Tang Z, Farokhzad N, Kong N, Kim NY, Feng C, et al.Ultrasound mediated therapy: recent progress and challenges in nanoscience.Nano Today 2020; 35:100949.
|
[266] |
Son S, Kim JH, Wang X, Zhang C, Yoon SA, Shin J, et al.Multifunctional sonosensitizers in sonodynamic cancer therapy.Chem Soc Rev 2020; 49(11):3244-3261.
|
[267] |
Dong Z, Feng L, Hao Y, Li Q, Chen M, Yang Z, et al.Synthesis of CaCO3-based nanomedicine for enhanced sonodynamic therapy via amplification of tumor oxidative stress.Chem 2020; 6:1391-1407.
|
[268] |
Yin Y, Jiang X, Sun L, Li H, Su C, Zhang Y, et al.Continuous inertial cavitation evokes massive ROS for reinforcing sonodynamic therapy and immunogenic cell death against breast carcinoma.Nano Today 2021; 36:101009.
|
[269] |
Liang S, Deng X, Xu G, Xiao X, Wang M, Guo X, et al.A novel Pt–TiO2 heterostructure with oxygen-deficient layer as bilaterally enhanced sonosensitizer for synergistic chemo-sonodynamic cancer therapy.Adv Funct Mater 2020; 30(13):1908598.
|
[270] |
Hoang QT, Ravichandran V, Cao TGN, Kang JH, Ko YT, Lee TI, et al.Piezoelectric Au-decorated ZnO nanorods: ultrasound-triggered generation of ROS for piezocatalytic cancer therapy.Chem Eng J 2022; 435:135039.
|
[271] |
Qi Y, Ren S, Ye J, Bi S, Shi L, Fang Y, et al.Copper-single-atom coordinated nanotherapeutics for enhanced sonothermal-parallel catalytic synergistic cancer therapy.Adv Healthcare Mater 2023; 12(23):e2300291.
|
[272] |
Wang X, Zhong X, Gong F, Yu C, Cheng L.Newly developed strategies for improving sonodynamic therapy.Mater Horizons 2020; 7(8):7.
|
[273] |
Gong Z, Dai Z.Design and challenges of sonodynamic therapy system for cancer theranostics: from equipment to sensitizers.Adv Sci 2021; 8(10):2002178.
|
[274] |
Zhu J, Ouyang A, Shen Z, Pan Z, Banerjee S, Zhang Q, et al.Sonodynamic cancer therapy by novel iridium–gold nanoassemblies.Chin Chem Lett 2022; 33(4):1907-1912.
|
[275] |
Zhang Y, Zhang X, Yang H, Yu L, Xu Y, Sharma A, et al.Advanced biotechnology-assisted precise sonodynamic therapy.Chem Soc Rev 2021; 50(20):11227-11248.
|
[276] |
Jiang F, Yang C, Ding B, Liang S, Zhao Y, Cheng Z, et al.Tumor microenvironment-responsive MnSiO3-Pt@BSA-Ce6 nanoplatform for synergistic catalysis-enhanced sonodynamic and chemodynamic cancer therapy.Chin Chem Lett 2022; 33(6):2959-2964.
|
[277] |
Pan X, Wang W, Huang Z, Liu S, Guo J, Zhang F, et al.MOF-derived double-layer hollow nanoparticles with oxygen generation ability for multimodal imaging-guided sonodynamic therapy.Angew Chem Int Ed Engl 2020; 59(32):13557-13561.
|
[278] |
Bai S, Yang N, Wang X, Gong F, Dong Z, Gong Y, et al.Ultrasmall iron-doped titanium oxide nanodots for enhanced sonodynamic and chemodynamic cancer therapy.ACS Nano 2020; 14(11):15119-15130.
|
[279] |
Guo QL, Dai XL, Yin MY, Cheng HW, Qian HS, Wang H, et al.Nanosensitizers for sonodynamic therapy for glioblastoma multiforme: current progress and future perspectives.Mil Med Res 2022; 9(1):26.
|
[280] |
Wu T, Liu Y, Cao Y, Liu Z.Engineering macrophage exosome disguised biodegradable nanoplatform for enhanced sonodynamic therapy of glioblastoma.Adv Mater 2022; 34(15):e2110364.
|
[281] |
Liang K, Li Z, Luo Y, Zhang Q, Yin F, Xu L, et al.Intelligent nanocomposites with intrinsic blood–brain-barrier crossing ability designed for highly specific MR imaging and sonodynamic therapy of glioblastoma.Small 2020; 16(8):e1906985.
|
[282] |
Liu T, Choi MH, Zhu J, Zhu T, Yang J, Li N, et al.Sonogenetics: recent advances and future directions.Brain Stimul 2022; 15(5):1308-1317.
|
[283] |
Rabut C, Yoo S, Hurt RC, Jin Z, Li H, Guo H, et al.Ultrasound technologies for imaging and modulating neural activity.Neuron 2020; 108(1):93-110.
|
[284] |
Ibsen S, Tong A, Schutt C, Esener S, Chalasani SH.Sonogenetics is a non-invasive approach to activating neurons in Caenorhabditis elegans.Nat Commun 2015; 6(1):8264.
|
[285] |
Packer AM, Roska B, Häusser M.Targeting neurons and photons for optogenetics.Nat Neurosci 2013; 16(7):805-815.
|
[286] |
Song J, Patel RV, Sharif M, Ashokan A, Michaelides M.Chemogenetics as a neuromodulatory approach to treating neuropsychiatric diseases and disorders.Mol Ther 2022; 30(3):990-1005.
|
[287] |
Maresca D, Lakshmanan A, Abedi M, Bar-Zion A, Farhadi A, Lu GJ, et al.Biomolecular ultrasound and sonogenetics.Annu Rev Chem Biomol Eng 2018; 9(1):229-252.
|
[288] |
Yoo S, Mittelstein DR, Hurt RC, Lacroix J, Shapiro MG.Focused ultrasound excites cortical neurons via mechanosensitive calcium accumulation and ion channel amplification.Nat Commun 2022; 13(1):493.
|
[289] |
Duque M, Lee-Kubli CA, Tufail Y, Magaram U, Patel J, Chakraborty A, et al.Sonogenetic control of mammalian cells using exogenous transient receptor potential A1 channels.Nat Commun 2022; 13(1):600.
|
[290] |
Wang S, Meng W, Ren Z, Li B, Zhu T, Chen H, et al.Ultrasonic neuromodulation and sonogenetics: a new era for neural modulation.Front Physiol 2020; 11:787.
|
[291] |
Yang Y, Pacia CP, Ye D, Zhu L, Baek H, Yue Y, et al.Sonothermogenetics for noninvasive and cell-type specific deep brain neuromodulation.Brain Stimul 2021; 14(4):790-800.
|
[292] |
Pan Y, Yoon S, Sun J, Huang Z, Lee C, Allen M, et al.Mechanogenetics for the remote and noninvasive control of cancer immunotherapy.Proc Natl Acad Sci USA 2018; 115(5):992-997.
|
[293] |
Wen X, Tang S, Hong F, Wang X, Chen S, Hong L, et al.Non-apoptotic cell death induced by opening the large conductance mechanosensitive channel MscL in hepatocellular carcinoma HepG2 cells.Biomaterials 2020; 250:120061.
|
[294] |
Fan CH, Wei KC, Chiu NH, Liao EC, Wang HC, Wu RY, et al.Sonogenetic-based neuromodulation for the amelioration of Parkinson’s disease.Nano Lett 2021; 21(14):5967-5976.
|
[295] |
Hou X, Qiu Z, Xian Q, Kala S, Jing J, Wong KF, et al.Precise ultrasound neuromodulation in a deep brain region using nano gas vesicles as actuators.Adv Sci 2021; 8(21):e2101934.
|
[296] |
He T, Wang H, Wang T, Pang G, Zhang Y, Zhang C, et al.Sonogenetic nanosystem activated mechanosensitive ion channel to induce cell apoptosis for cancer immunotherapy.Chem Eng J 2021; 407:27173.
|
[297] |
Wang T, Wang H, Pang G, He T, Yu P, Cheng G, et al.A logic AND-gated sonogene nanosystem for precisely regulating the apoptosis of tumor cells.ACS Appl Mater Interfaces 2020; 12(51):56692-56700.
|
[298] |
Chen Y, Du M, Yuan Z, Chen Z, Yan F.Spatiotemporal control of engineered bacteria to express interferon-γ by focused ultrasound for tumor immunotherapy.Nat Commun 2022; 13(1):4468.
|
[299] |
Abedi MH, Yao MS, Mittelstein DR, Bar-Zion A, Swift MB, Lee-Gosselin A, et al.Ultrasound-controllable engineered bacteria for cancer immunotherapy.Nat Commun 2022; 13(1):1585.
|
[300] |
Bar-Zion A, Nourmahnad A, Mittelstein DR, Shivaei S, Yoo S, Buss MT, et al.Acoustically triggered mechanotherapy using genetically encoded gas vesicles.Nature Nanotechnol 2021; 16(12):1403-1412.
|
[301] |
Bismuth M, Katz S, Mano T, Aronovich R, Hershkovitz D, Exner AA, et al.Low frequency nanobubble-enhanced ultrasound mechanotherapy for noninvasive cancer surgery.Nanoscale 2022; 14(37):13614-13627.
|
[302] |
Cafarelli A, Marino A, Vannozzi L, Puigmartí-Luis J, Pan Sé, Ciofani G, et al.Piezoelectric nanomaterials activated by ultrasound: the pathway from discovery to future clinical adoption.ACS Nano 2021; 15(7):11066-11086.
|
[303] |
Turner BL, Senevirathne S, Kilgour K, McArt D, Biggs M, Menegatti S, et al.Ultrasound-powered implants: a critical review of piezoelectric material selection and applications.Adv Healthcare Mater 2021; 10(17):e2100986.
|
[304] |
Zhu P, Chen Y, Shi J.Piezocatalytic tumor therapy by ultrasound-triggered and BaTiO3-mediated piezoelectricity.Adv Mater 2020; 32(29):e2001976.
|
[305] |
Kok HP, Cressman ENK, Ceelen W, Brace CL, Ivkov R, Grüll H, et al.Heating technology for malignant tumors: a review.Int J Hyperthermia 2020; 37(1):711-741.
|
[306] |
Izadifar Z, Izadifar Z, Chapman D, Babyn P.An introduction to high intensity focused ultrasound: systematic review on principles, devices, and clinical applications.J Clin Med 2020; 9(2):9.
|
[307] |
Yang L, Tian B, Xie Y, Dong S, Yang M, Gai S, et al.Oxygen-vacancy-rich piezoelectric BiO2–x nanosheets for augmented piezocatalytic, sonothermal, and enzymatic therapies.Adv Mater 2023; 35(29):e2300648.
|