[1] |
H. Niu, Y. Guan, T. Zhong, L. Ma, M. Zayed, J. Guan. Thermosensitive and antioxidant wound dressings capable of adaptively regulating TGFβ pathways promote diabetic wound healing. NPJ Regen Med, 8 (1) (2023), p. 32.
|
[2] |
X. Tang, J. Ren, X. Wei, T. Wang, H. Li, Y. Sun, et al. Exploiting synergistic effect of CO/NO gases for soft tissue transplantation using a hydrogel patch. Nat Commun, 14 (1) (2023), p. 2417.
|
[3] |
L. Chen, Q. Xing, Q. Zhai, M. Tahtinen, F. Zhou, L. Chen, et al. Pre-vascularization enhances therapeutic effects of human mesenchymal stem cell sheets in full thickness skin wound repair. Theranostics, 7 (1) (2017), pp. 117-131.
|
[4] |
M. He, Z. Wang, H. Yang, Q. Wang, D. Xiang, X. Pang, et al. Multi- functional bio-HJzyme: revolutionizing diabetic skin regeneration with its glucose-unlocked sterilization and programmed anti-inflammatory effects. Adv Sci, 10 (21) (2023), p. 2300986.
|
[5] |
Y. Peng, J. Zhou, Y. Yang, J.C. Lai, Y. Ye, Y. Cui. An integrated 3D hydrophilicity/hydrophobicity design for artificial sweating skin (i-TRANS) mimicking human body perspiration. Adv Mater, 34 (44) (2022), p. e2204168.
|
[6] |
M. Furtado, L. Chen, Z. Chen, A. Chen, W. Cui. Development of fish collagen in tissue regeneration and drug delivery. Eng Regener, 3 (3) (2022), pp. 217-231.
|
[7] |
J. Mao, Q. Saiding, S. Qian, Z. Liu, B. Zhao, Q. Zhao, et al. Front cover: reprogramming stem cells in regenerative medicine (smart medicine 1/2022). Smart Med, 1 (1) (2022), p. e38.
|
[8] |
P. Pleguezuelos-Beltrán, P. Gálvez-Martín, D. Nieto-García, J.A. Marchal, E. López-Ruiz. Advances in spray products for skin regeneration. Bioact Mater, 16 (2022), pp. 187-203.
|
[9] |
J. Wang, D. Huang, H. Yu, Y. Cheng, H. Ren, Y. Zhao. Developing tissue engineering strategies for liver regeneration. Eng Regen, 3 (1) (2022), pp. 80-91.
|
[10] |
Y. Gao, Q. Ma. Bacterial infection microenvironment-responsive porous microspheres by microfluidics for promoting anti-infective therapy. Smart Med, 1 (1) (2022), p. e20220012.
|
[11] |
L. Fu, L. Li, Q. Bian, B. Xue, J. Jin, J. Li, et al. Cartilage-like protein hydrogels engineered via entanglement. Nature, 618 (7966) (2023), pp. 740-747.
|
[12] |
C. Huang, L. Dong, B. Zhao, Y. Lu, S. Huang, Z. Yuan, et al. Anti-inflammatory hydrogel dressings and skin wound healing. Clin Transl Med, 12 (11) (2022), p. e1094.
|
[13] |
J. Zhang, A.N. Keith, S.S. Sheiko, X. Wang, Z. Wang. To mimic mechanical properties of the skin by inducing oriented nanofiber microstructures in bottlebrush cellulose-graft-diblock copolymer elastomers. ACS Appl Mater Interfaces, 13 (2) (2021), pp. 3278-3286.
|
[14] |
S.J. Mostafavi Yazdi, J. Baqersad. Mechanical modeling and characterization of human skin: a review. J Biomech, 130 (2022), Article 110864.
|
[15] |
C. Norioka, Y. Inamoto, C. Hajime, A. Kawamura, T. Miyata. A universal method to easily design tough and stretchable hydrogels. NPG Asia Mater, 13 (1) (2021), p. 34.
|
[16] |
H. Cao, L. Duan, Y. Zhang, J. Cao, K. Zhang. Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity. Signal Transduct Target Ther, 6 (1) (2021), p. 426.
|
[17] |
G. Zhang, J. Steck, J. Kim, C.H. Ahn, Z. Suo. Hydrogels of arrested phase separation simultaneously achieve high strength and low hysteresis. Sci Adv, 9 (26) (2023), p. eadh7742.
|
[18] |
L. Li, K. Zhang, T. Wang, P. Wang, B. Xue, Y. Cao, et al. Biofabrication of a biomimetic supramolecular-polymer double network hydrogel for cartilage regeneration. Mater Des, 189 (2020), Article 108492.
|
[19] |
Y. Meng, L. Chen, Y. Chen, J. Shi, Z. Zhang, Y. Wang, et al. Reactive metal boride nanoparticles trap lipopolysaccharide and peptidoglycan for bacteria-infected wound healing. Nat Commun, 13 (1) (2022), p. 7353.
|
[20] |
T.H. Qazi, D.J. Mooney, G.N. Duda, S. Geissler. Biomaterials that promote cell-cell interactions enhance the paracrine function of MSCs. Biomaterials, 140 (2017), pp. 103-114.
|
[21] |
X. Liu, J. Cao, H. Li, J. Li, Q. Jin, K. Ren, et al. Mussel-inspired polydopamine: a biocompatible and ultrastable coating for nanoparticles in vivo. ACS Nano, 7 (10) (2013), pp. 9384-9395.
|
[22] |
S. Wan, X. Fu, Y. Ji, M. Li, X. Shi, Y. Wang. FAK- and YAP/TAZ dependent mechanotransduction pathways are required for enhanced immunomodulatory properties of adipose-derived mesenchymal stem cells induced by aligned fibrous scaffolds. Biomaterials, 171 (2018), pp. 107-117.
|
[23] |
T. Li, H. Ma, H. Ma, Z. Ma, L. Qiang, Z. Yang, et al. Mussel-inspired nanostructures potentiate the immunomodulatory properties and angiogenesis of mesenchymal stem cells. ACS Appl Mater Interfaces, 11 (19) (2019), pp. 17134-17146.
|
[24] |
C. Gao, C. Lu, Z. Jian, T. Zhang, Z. Chen, Q. Zhu, et al. 3D bioprinting for fabricating artificial skin tissue. Colloids Surf B Biointerfaces, 208 (2021), Article 112041.
|
[25] |
S. Jiang, S.C. Li, C. Huang, B.P. Chan, Y. Du. Physical properties of implanted porous bioscaffolds regulate skin repair: focusing on mechanical and structural features. Adv Healthc Mater, 7 (6) (2018), p. e1700894.
|
[26] |
L. Diaz-Gomez, I. Gonzalez-Prada, R. Millan, A. Da Silva-Candal, A. Bugallo-Casal, F. Campos, et al. 3D printed carboxymethyl cellulose scaffolds for autologous growth factors delivery in wound healing. Carbohydr Polym, 278 (2022), Article 118924.
|
[27] |
L. Roshangar, J.S. Rad, R. Kheirjou, A.F. Khosroshahi. Using 3D-bioprinting scaffold loaded with adipose-derived stem cells to burns wound healing. J Tissue Eng Regen Med, 15 (6) (2021), pp. 546-555.
|
[28] |
C. Niu, L. Wang, D. Ji, M. Ren, D. Ke, Q. Fu, et al. Fabrication of SA/Gel/C scaffold with 3D bioprinting to generate micro-nano porosity structure for skin wound healing: a detailed animal in vivo study. Cell Regen, 11 (1) (2022), p. 10.
|
[29] |
B.S. Kim, G. Gao, J.Y. Kim, D.W. Cho. 3D cell printing of perfusable vascularized human skin equivalent composed of epidermis, dermis, and hypodermis for better structural recapitulation of native skin. Adv Healthc Mater, 8 (7) (2019), p. e1801019.
|
[30] |
Y. Huyan, Q. Lian, T. Zhao, D. Li, J. He. Pilot study of the biological properties and vascularization of 3D printed bilayer skin grafts. Int J Bioprint, 6 (1) (2020), p. 246.
|
[31] |
B.S. Kim, Y.W. Kwon, J.S. Kong, G.T. Park, G. Gao, W. Han, et al. 3D cell printing of in vitro stabilized skin model and in vivo pre-vascularized skin patch using tissue-specific extracellular matrix bioink: a step towards advanced skin tissue engineering. Biomaterials, 168 (2018), pp. 38-53.
|
[32] |
D. Kang, Z. Liu, C. Qian, J. Huang, Y. Zhou, X. Mao, et al. 3D bioprinting of a gelatin-alginate hydrogel for tissue-engineered hair follicle regeneration. Acta Biomater, 165 (2023), pp. 19-30.
|
[33] |
Y.C. Yung, J. Chae, M.J. Buehler, C.P. Hunter, D.J. Mooney. Cyclic tensile strain triggers a sequence of autocrine and paracrine signaling to regulate angiogenic sprouting in human vascular cells. Proc Natl Acad Sci USA, 106 (36) (2009), pp. 15279-15284.
|
[34] |
B. Nedelec, H.A. Shankowsky, E.E. Tredget. Rating the resolving hypertrophic scar: comparison of the Vancouver Scar Scale and scar volume. J Burn Care Rehabil, 21 (3) (2000), pp. 205-212.
|
[35] |
P. Patil, K.A. Russo, J.T. McCune, A.C. Pollins, M.A. Cottam, B.R. Dollinger, et al. Reactive oxygen species-degradable polythioketal urethane foam dressings to promote porcine skin wound repair. Sci Transl Med, 14 (641) (2022), p. eabm6586.
|
[36] |
C. Luo, A. Guo, Y. Zhao, X. Sun. A high strength, low friction, and biocompatible hydrogel from PVA, chitosan and sodium alginate for articular cartilage. Carbohydr Polym, 286 (2022), Article 119268.
|
[37] |
G. Sennakesavan, M. Mostakhdemin, L.K. Dkhar, A. Seyfoddin, S.J. Fatihhi. Acrylic acid/acrylamide based hydrogels and its properties—a review. Polym Degrad Stabil, 180 (2020), Article 109308.
|
[38] |
S. Tang, L. Wang, Y. Zhang, F. Zhang. A biomimetic platelet-rich plasma-based interpenetrating network printable hydrogel for bone regeneration. Front Bioeng Biotechnol, 10 (2022), Article 887454.
|
[39] |
L. Zhang, J. Zhao, J. Zhu, C. He, H. Wang. Anisotropic tough poly(vinyl alcohol) hydrogels. Soft Matter, 8 (40) (2012), pp. 10439-10447.
|
[40] |
S. Mitragotri, J. Lahann. Physical approaches to biomaterial design. Nat Mater, 8 (1) (2009), pp. 15-23.
|
[41] |
W. Li, Y. Liu, P. Zhang, Y. Tang, M. Zhou, W. Jiang, et al. Tissue-engineered bone immobilized with human adipose stem cells-derived exosomes promotes bone regeneration. ACS Appl Mater Interfaces, 10 (6) (2018), pp. 5240-5254.
|
[42] |
Y. Long, Y. Niu, K. Liang, Y. Du. Mechanical communication in fibrosis progression. Trends Cell Biol, 32 (1) (2022), pp. 70-90.
|
[43] |
M. D’Urso, N.A. Kurniawan. Mechanical and physical regulation of fibroblast-myofibroblast transition: from cellular mechanoresponse to tissue pathology. Front Bioeng Biotechnol, 8 (2020), Article 609653.
|
[44] |
D.J. Tschumperlin, D. Lagares. Mechano-therapeutics: targeting mechanical signaling in fibrosis and tumor stroma. Pharmacol Ther, 212 (2020), Article 107575.
|
[45] |
X. Wang, Y. Zhang, J. Luo, T. Xu, C. Si, A.J.C. Oscanoa, et al. Printability of hybridized composite from maleic acid-treated bacterial cellulose with gelatin for bone tissue regeneration. Adv Compos Hybrid Mater, 6 (4) (2023), p. 134.
|
[46] |
D. Henn, K. Chen, T. Fehlmann, A.A. Trotsyuk, D. Sivaraj, Z.N. Maan, et al. Xenogeneic skin transplantation promotes angiogenesis and tissue regeneration through activated Trem2+ macrophages. Sci Adv, 7 (49) (2021), p. eabi4528.
|
[47] |
L. Li, X. Liu, W. Tao, Y. Li, Y. Du, S. Zhang. Micropatterned composite membrane guides oriented cell growth and vascularization for accelerating wound healing. Regen Biomater, 10 (2022), p. rbac108.
|
[48] |
A.V. Shinde, C. Humeres, N.G. Frangogiannis. The role of α-smooth muscle actin in fibroblast-mediated matrix contraction and remodeling. Biochim Biophys Acta Mol Basis Dis, 1863 (1) (2017), pp. 298-309.
|
[49] |
A. Putra, I. Alif, N. Hamra, O. Santosa, A.R. Kustiyah, A.M. Muhar, et al. MSC-released TGF-β regulate α-SMA expression of myofibroblast during wound healing. J Stem Cells Regen Med, 16 (2) (2020), pp. 73-79.
|
[50] |
S. Chen, J. Yang, Y. Wei, X. Wei. Epigenetic regulation of macrophages: from homeostasis maintenance to host defense. Cell Mol Immunol, 17 (1) (2020), pp. 36-49.
|
[51] |
T.G. Walsh, P. Metharom, M.C. Berndt. The functional role of platelets in the regulation of angiogenesis. Platelets, 26 (3) (2015), pp. 199-211.
|
[52] |
J. Kisucka, C.E. Butterfield, D.G. Duda, S.C. Eichenberger, S. Saffaripour, J. Ware, et al. Platelets and platelet adhesion support angiogenesis while preventing excessive hemorrhage. Proc Natl Acad Sci USA, 103 (4) (2006), pp. 855-860.
|
[53] |
P. Carmeliet, R.K. Jain. Molecular mechanisms and clinical applications of angiogenesis. Nature, 473 (7347) (2011), pp. 298-307.
|
[54] |
A.S. Leroyer, P.E. Rautou, J.S. Silvestre, Y. Castier, G. Lesèche, C. Devue, et al. CD 40 ligand+ microparticles from human atherosclerotic plaques stimulate endothelial proliferation and angiogenesis a potential mechanism for intraplaque neovascularization. J Am Coll Cardiol, 52 (16) (2008), pp. 1302-1311.
|
[55] |
S.P. Herbert, D.Y. Stainier. Molecular control of endothelial cell behaviour during blood vessel morphogenesis. Nat Rev Mol Cell Biol, 12 (9) (2011), pp. 551-564.
|
[56] |
M. Hellström, L.K. Phng, J.J. Hofmann, E. Wallgard, L. Coultas, P. Lindblom, et al. Dll 4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature, 445 (7129) (2007), pp. 776-780.
|
[57] |
M. Rada, A. Kapelanski-Lamoureux, S. Petrillo, S. Tabariès, P. Siegel, A.R. Reynolds, et al. Runt related transcription factor-1 plays a central role in vessel co-option of colorectal cancer liver metastases. Commun Biol, 4 (1) (2021), p. 950.
|
[58] |
J. Zhang, S. Fukuhara, K. Sako, T. Takenouchi, H. Kitani, T. Kume, et al. Angiopoietin-1/ Tie2 signal augments basal Notch signal controlling vascular quiescence by inducing delta-like 4 expression through AKT-mediated activation of beta-catenin. J Biol Chem, 286 (10) (2011), pp. 8055-8066.
|
[59] |
Z. Wei, R. Schnellmann, H.C. Pruitt, S. Gerecht. Hydrogel network dynamics regulate vascular morphogenesis. Cell Stem Cell, 27 (5) (2020), pp. 798-812.e6.
|
[60] |
S. Arlier, W. Murk, O. Guzeloglu-Kayisli, N. Semerci, K. Larsen, M.S. Tabak, et al. The extracellular signal-regulated kinase 1/ 2 triggers angiogenesis in human ectopic endometrial implants by inducing angioblast differentiation and proliferation. AM J Reprod Immunol, 78 (6) (2017), p. e12760.
|
[61] |
Y.H. Ma, S. Ling, H.E. Ives. Mechanical strain increases PDGF-B and PDGF beta receptor expression in vascular smooth muscle cells. Biochem Biophys Res Commun, 265 (2) (1999), pp. 606-610.
|
[62] |
M. Ikeda, H. Kito, B.E. Sumpio. Phosphatidylinositol-3 kinase dependent MAP kinase activation via p21ras in endothelial cells exposed to cyclic strain. Biochem Biophys Res Commun, 257 (3) (1999), pp. 668-671.
|
[63] |
H. Iwasaki, T. Yoshimoto, T. Sugiyama, Y. Hirata. Activation of cell adhesion kinase beta by mechanical stretch in vascular smooth muscle cells. Endocrinology, 144 (6) (2003), pp. 2304-2310.
|
[64] |
B.A. Bryan, E. Dennstedt, D.C. Mitchell, T.E. Walshe, K. Noma, R. Loureiro, et al. RhoA/ROCK signaling is essential for multiple aspects of VEGF-mediated angiogenesis. FASEB J, 24 (9) (2010), pp. 3186-3195.
|
[65] |
N. Takeshita, M. Hasegawa, K. Sasaki, D. Seki, M. Seiryu, S. Miyashita, et al. In vivo expression and regulation of genes associated with vascularization during early response of sutures to tensile force. J Bone Miner Metab, 35 (1) (2017), pp. 40-51.
|