不同类型渗滤液中微塑料污染的新见解——丰度、特征和潜在来源

张蕾, 赵文涛, 张亮, 蔡震霄, 严瑞琪, 俞霞, Damià Barceló, 隋倩

工程(英文) ›› 2024, Vol. 37 ›› Issue (6) : 70-77.

PDF(1023 KB)
PDF(1023 KB)
工程(英文) ›› 2024, Vol. 37 ›› Issue (6) : 70-77. DOI: 10.1016/j.eng.2024.02.008
研究论文
Article

不同类型渗滤液中微塑料污染的新见解——丰度、特征和潜在来源

作者信息 +

New Insights into Microplastic Contamination in Different Types of Leachates: Abundances, Characteristics, and Potential Sources

Author information +
History +

Highlight

• Occurrence of microplastics (MPs) in different types of leachates were investigated.

• MP abundances in various leachates ranged from 129 ± 54 to 1288 ± 184 particles·L-1.

• Household food waste leachate had the significantly highest MP abundance.

• The characteristic polymer types of MPs in individual leachates were different.

• Landfilling process largely affected the size distribution of MPs in leachates.

摘要

城市生活垃圾(MSW)是废塑料的重要归宿。在垃圾处置过程中,大塑料碎片会被分解成微塑料(MPs)并释放到渗滤液中。然而,现有研究仅关注垃圾填埋场渗滤液,其他类型渗滤液中MPs存在特征尚不清楚。因此,本研究分析了来自中国最大固体废物处置中心的垃圾填埋场渗滤液、干垃圾渗滤液和湿垃圾渗滤液三种类型渗滤液中MPs丰度及特征。结果表明,不同类型渗滤液中MPs平均丰度为(129 ± 54)到(1288 ± 184)particles·L−1,湿垃圾渗滤液中MPs丰度最高(p < 0.05)。不同类型渗滤液中聚合物类型具有差异,其中聚乙烯(PE)和碎片分别是所有渗滤液中主要的聚合物类型和形状。此外,条件破碎模型表明垃圾填埋过程对渗滤液中MPs的尺寸分布有较大影响,垃圾填埋场渗滤液中小尺寸MPs(20~100 μm)所占比例(> 80%)高于其他渗滤液。研究首次讨论不同类型渗滤液中MPs来源的研究,研究结果有助于MSW处置过程中MPs污染控制。

Abstract

Municipal solid waste (MSW) is an important destination for abandoned plastics. During the waste disposal process, large plastic debris is broken down into microplastics (MPs) and released into the leachate. However, current research only focuses on landfill leachates, and the occurrence of MPs in other leachates has not been studied. Therefore, herein, the abundance and characteristics of MPs in three types of leachates, namely, landfill leachate, residual waste leachate, and household food waste leachate, were studied, all leachates were collected from the largest waste disposal center in China. The results showed that the average MP abundances in the different types of leachates ranged from (129 ± 54) to (1288 ± 184) MP particles per liter (particles·L−1) and the household food waste leachate exhibited the highest MP abundance (p < 0.05). Polyethylene (PE) and fragments were the dominant polymer type and shape in MPs, respectively. The characteristic polymer types of MPs in individual leachates were different. Furthermore, the conditional fragmentation model indicated that the landfilling process considerably affected the size distribution of MPs in leachates, leading to a higher percentage (> 80%) of small MPs (20-100 μm) in landfill leachates compared to other leachates. To the best of our knowledge, this is the first study discussing the sources of MPs in different leachates, which is important for MP pollution control during MSW disposal.

关键词

微塑料 / 垃圾填埋场渗滤液 / 干垃圾渗滤液 / 湿垃圾渗滤液 / 来源

Keywords

Microplastics / Landfill leachate / Residual waste leachate / Household food waste leachate / Source

引用本文

导出引用
张蕾, 赵文涛, 张亮. 不同类型渗滤液中微塑料污染的新见解——丰度、特征和潜在来源. Engineering. 2024, 37(6): 70-77 https://doi.org/10.1016/j.eng.2024.02.008

参考文献

[1]
C.M. Rochman, T. Hoellein. The global odyssey of plastic pollution. Science, 368 (6496) (2020), pp. 1184-1185
[2]
B. Koelmans, S. Pahl, T. Backhaus, F. Bessa, G. van Calster, N. Contzen. A scientific perspective on microplastics in nature and society. SAPEA, Berlin (2019)
[3]
R.C. Thompson, Y. Olsen, R.P. Mitchell, A. Davis, S.J. Rowland, A.W.G. John, et al. Lost at sea: where is all the plastic? Science, 304 (5672) (2004), p. 838
[4]
A.L. Andrady. Microplastics in the marine environment. Mar Pollut Bull, 62 (8) (2011), pp. 1596-1605
[5]
S.M. Mintenig, M. Kooi, M.W. Erich, S. Primpke, P.E. Redondo-Hasselerharm, S.C. Dekker, et al. A systems approach to understand microplastic occurrence and variability in Dutch riverine surface waters. Water Res, 176 (2020), p. 115723
[6]
J. Sun, X. Dai, Q. Wang, M.C.M. van Loosdrecht, B.J. Ni. Microplastics in wastewater treatment plants: detection, occurrence and removal. Water Res, 152 (2019), pp. 21-37
[7]
Y. Zhou, G. He, X. Jiang, L. Yao, L. Ouyang, X. Liu, et al. Microplastic contamination is ubiquitous in riparian soils and strongly related to elevation, precipitation and population density. J Hazard Mater, 411 (2021), p. 125178
[8]
Ragusa A. Svelato C. Santacroce P. Catalano V. Notarstefano O. Carnevali, et al. Plasticenta: first evidence of microplastics in human placenta. Environ Int, 146 (2021), p. 106274
[9]
D. Barceló, Y. Picó, A.H. Alfarhan. Microplastics: detection in human samples, cell line studies, and health impacts. Environ Toxicol Pharmacol, 101 (2023), p. 104204
[10]
J.R. Jambeck, R. Geyer, C. Wilcox, T.R. Siegler, M. Perryman, A. Andrady, et al. Plastic waste inputs from land into the ocean. Science, 347 (6223) (2015), pp. 768-771
[11]
R. Geyer, J.R. Jambeck, K.L. Law. Production, use, and fate of all plastics ever made. Sci Adv, 3 (7) (2017), p. e1700782
[12]
P. He, L. Chen, L. Shao, H. Zhang, F. . Municipal solid waste (MSW) landfill: a source of microplastics?—Evidence of microplastics in landfill leachate. Water Res, 159 (2019), pp. 38-45
[13]
M.S. Kabir, H. Wang, S. Luster-Teasley, L. Zhang, R. Zhao. Microplastics in landfill leachate: sources, detection, occurrence, and removal. Environ Sci Ecotechnol, 16 (2023), p. 100256
[14]
P. Samanta, S. Dey, D. Kundu, D. Dutta, R. Jambulkar, R. Mishra, et al. An insight on sampling, identification, quantification and characteristics of microplastics in solid wastes. Trends Environ Anal Chem, 36 (2022), p. e00181
[15]
K. Manikanda Bharath, N. Usha, R. Vaikunth, R. Praveen Kumar, R. Ruthra, S. Srinivasalu. Spatial distribution of microplastic concentration around landfill sites and its potential risk on groundwater. Chemosphere, 277 (2021), p. 130263
[16]
C.MR. Nurhasanah, E. Riani. Micro- and mesoplastics release from the Indonesian municipal solid waste landfill leachate to the aquatic environment: case study in Galuga landfill area, Indonesia. Mar Pollut Bull, 163 (2021), p. 111986
[17]
L. Sulistyowati, R.E. Nurhasanah, M.R. Cordova. The occurrence and abundance of microplastics in surface water of the midstream and downstream of the Cisadane River, Indonesia. Chemosphere, 291 (Pt 3) (2022), p. 133071
[18]
L. H.M.L.M. Santos, S. Rodríguez-Mozaz, D. Barceló. Microplastics as vectors of pharmaceuticals in aquatic organisms—an overview of their environmental implications. Case Stud Chem Environ Eng, 3 (2021), p. 100079
[19]
Y. Su, Z. Zhang, J. Zhu, J. Shi, H. Wei, B. Xie, et al. Microplastics act as vectors for antibiotic resistance genes in landfill leachate: the enhanced roles of the long-term aging process. Environ Pollut, 270 (2021), p. 116278
[20]
M.J. Stapleton, A.J. Ansari, F.I. Hai. Antibiotic sorption onto microplastics in water: a critical review of the factors, mechanisms and implications. Water Res, 233 (2023), p. 119790
[21]
Z. Xu, Q. Sui, A. Li, M. Sun, L. Zhang, S. Lyu, et al. How to detect small microplastics (20-100 μm) in freshwater, municipal wastewaters and landfill leachates? A trial from sampling to identification. Sci Total Environ, 733 (2020), p. 139218
[22]
Y. Su, Z. Zhang, D. Wu, L. Zhan, H. Shi, B. Xie. Occurrence of microplastics in landfill systems and their fate with landfill age. Water Res, 164 (2019), p. 114968
[23]
Z. Zhang, Y. Su, J. Zhu, J. Shi, H. Huang, B. Xie. Distribution and removal characteristics of microplastics in different processes of the leachate treatment system. Waste Manag, 120 (2021), pp. 240-247
[24]
J. Sun, Z.R. Zhu, W.H. Li, X. Yan, L.K. Wang, L. Zhang, et al. Revisiting microplastics in landfill leachate: unnoticed tiny microplastics and their fate in treatment works. Water Res, 190 (2021), p. 116784
[25]
Y. Trihadiningrum, S.A. Wilujeng, R. Tafaqury, D.R. Radita, A.D. Radityaningrum. Evidence of microplastics in leachate of Randegan landfill, Mojokerto City, Indonesia, and its potential to pollute surface water. Sci Total Environ, 874 (2023), p. 162207
[26]
N. Thaiyal Nayahi, B.L. Ou, Y.Y. Liu, D. Janjaroen. Municipal solid waste sanitary and open landfills: contrasting sources of microplastics and its fate in their respective treatment systems. J Clean Prod, 380 (2022), p. 135095
[27]
X. Lin, S. Zhang, S. Yang, R. Zhang, X. Shi, L. Song. A landfill serves as a critical source of microplastic pollution and harbors diverse plastic biodegradation microbial species and enzymes: study in large-scale landfills. China. J Hazard Mater, 457 (2023), p. 131676
[28]
N. Kara, H. Sari Erkan, E.G. Onkal. Characterization and removal of microplastics in landfill leachate treatment plants in Istanbul. Turkey. Anal Lett, 56 (9) (2023), pp. 1535-1548
[29]
Mohammadi M. Malakootian S. Dobaradaran M. Hashemi N. Jaafarzadeh. Occurrence, seasonal distribution, and ecological risk assessment of microplastics and phthalate esters in leachates of a landfill site located near the marine environment: Bushehr Port, Iran as a case. Sci Total Environ, 842 (2022), p. 156838
[30]
Y. Wan, X. Chen, Q. Liu, H. Hu, C. Wu, Q. Xue. Informal landfill contributes to the pollution of microplastics in the surrounding environment. Environ Pollut, 293 (2022), p. 118586
[31]
A.C. Narevski, M.I. Novaković, M.Z. Petrović, I.J. Mihajlović, N.B. Maoduš, G.V. Vujić. Occurrence of bisphenol A and microplastics in landfill leachate: lessons from south east Europe. Environ Sci Pollut Res Int, 28 (31) (2021), pp. 42196-42203
[32]
H. Golwala, X. Zhang, S.M. Iskander, A.L. Smith. Solid waste: an overlooked source of microplastics to the environment. Sci Total Environ, 769 (2021), p. 144581
[33]
M. Shen, W. Xiong, B. Song, C. Zhou, E. Almatrafi, G. Zeng, et al. Microplastics in landfill and leachate: occurrence, environmental behavior and removal strategies. Chemosphere, 305 (2022), p. 135325
[34]
S. Singh, S.K. Malyan, C. Maithani, S. Kashyap, V.K. Tyagi, R. Singh, et al. Microplastics in landfill leachate: occurrence, health concerns, and removal strategies. J Environ Manage, 342 (2023), p. 118220
[35]
J. Brandt, F. Fischer, E. Kanaki, K. Enders, M. Labrenz, D. Fischer. Assessment of subsampling strategies in microspectroscopy of environmental microplastic samples. Front Environ Sci, 8 (2021), p. 579676
[36]
T.M. Karlsson, A. Kärrman, A. Rotander, M. Hassellöv. Comparison between manta trawl and in situ pump filtration methods, and guidance for visual identification of microplastics in surface waters. Environ Sci Pollut Res Int, 27 (5) (2020), pp. 5559-5571
[37]
C. Schwaferts, P. Schwaferts, E. von der Esch, M. Elsner, N.P. Ivleva. Which particles to select, and if yes, how many? Anal Bioanal Chem, 413 (14) (2021), pp. 3625-3641
[38]
G. Chamanee, M. Sewwandi, H. Wijesekara, M. Vithanage. Global perspective on microplastics in landfill leachate; occurrence, abundance, characteristics, and environmental impact. Waste Manag, 171 (2023), pp. 10-25
[39]
Y. Lei, D. Sun, Y. Dang, X. Feng, D. Huo, C. Liu, et al. Metagenomic analysis reveals that activated carbon aids anaerobic digestion of raw incineration leachate by promoting direct interspecies electron transfer. Water Res, 161 (2019), pp. 570-580
[40]
J. Kim, C.M. Kang. Increased anaerobic production of methane by co-digestion of sludge with microalgal biomass and food waste leachate. Bioresour Technol, 189 (2015), pp. 409-412
[41]
J. Zhang, X. Yu, J. Wang, Q. Sui, W. Zhao. Impacts of garbage classification and disposal on the occurrence of pharmaceutical and personal care products in municipal solid waste leachates: a case study in Shanghai. Sci Total Environ, 874 (2023), p. 162467
[42]
D. Yang, H. Shi, L. Li, J. Li, K. Jabeen, P. Kolandhasamy. Microplastic pollution in table salts from China. Environ Sci Technol, 49 (22) (2015), pp. 13622-13627
[43]
L. Wang, P. Li, Q. Zhang, W.M. Wu, J. Luo, D. Hou. Modeling the conditional fragmentation-induced microplastic distribution. Environ Sci Technol, 55 (9) (2021), pp. 6012-6021
[44]
F. Wang, B. Wang, L. Duan, Y. Zhang, Y. Zhou, Q. Sui, et al. Occurrence and distribution of microplastics in domestic, industrial, agricultural and aquacultural wastewater sources: a case study in Changzhou. China. Water Res, 182 (2020), p. 115956
[45]
Z. Long, Z. Pan, W. Wang, J. Ren, X. Yu, L. Lin, et al. Microplastic abundance, characteristics, and removal in wastewater treatment plants in a coastal city of China. Water Res, 155 (2019), pp. 255-265
[46]
S. Magni, A. Binelli, L. Pittura, C.G. Avio, C. Della Torre, C.C. Parenti, et al. The fate of microplastics in an Italian wastewater treatment plant. Sci Total Environ, 652 (2019), pp. 602-610
[47]
M. Kazour, S. Terki, K. Rabhi, S. Jemaa, G. Khalaf, R. Amara. Sources of microplastics pollution in the marine environment: importance of wastewater treatment plant and coastal landfill. Mar Pollut Bull, 146 (2019), pp. 608-618
[48]
L. Pittura, A. Foglia, Ç. Akyol, G. Cipolletta, M. Benedetti, F. Regoli, et al. Microplastics in real wastewater treatment schemes: comparative assessment and relevant inhibition effects on anaerobic processes. Chemosphere, 262 (2021), p. 128415
[49]
S. Wei, H. Luo, J. Zou, J. Chen, X. Pan, D.P.L. Rousseau, et al. Characteristics and removal of microplastics in rural domestic wastewater treatment facilities of China. Sci Total Environ, 739 (2020), p. 139935
[50]
G. Oliveri Conti, M. Ferrante, M. Banni, C. Favara, I. Nicolosi, A. Cristaldi, et al. Micro- and nano-plastics in edible fruit and vegetables. The first diet risks assessment for the general population. Environ Res (2020), p. 109677
[51]
C. Dessì, E.D. Okoffo, J.W. O’Brien, M. Gallen, S. Samanipour, S. Kaserzon, et al. Plastics contamination of store-bought rice. J Hazard Mater, 416 (2021), p. 125778
[52]
G. Liu, J. Wang, M. Wang, R. Ying, X. Li, Z. Hu, et al. Disposable plastic materials release microplastics and harmful substances in hot water. Sci Total Environ, 818 (2022), p. 151685
[53]
F. Du, H. Cai, Q. Zhang, Q. Chen, H. Shi. Microplastics in take-out food containers. J Hazard Mater, 399 (2020), p. 122969
[54]
S. Nam, R. Slopek, D. Wolf, M. Warnock, B.D. Condon, P. Sawhney, et al. Comparison of biodegradation of low-weight hydroentangled raw cotton nonwoven fabric and that of commonly used disposable nonwoven fabrics in aerobic Captina silt loam soil. Text Res J, 86 (2) (2016), pp. 155-166
[55]
C.H. Park, Y.K. Kang, S.S. Im. Biodegradability of cellulose fabrics. J Appl Polym Sci, 94 (1) (2004), pp. 248-253
[56]
M.C. Zambrano, J.J. Pawlak, J. Daystar, M. Ankeny, C.C. Goller, R.A. Venditti. Aerobic biodegradation in freshwater and marine environments of textile microfibers generated in clothes laundering: effects of cellulose and polyester-based microfibers on the microbiome. Mar Pollut Bull, 151 (2020), p. 110826
[57]
M.C. Zambrano, J.J. Pawlak, J. Daystar, M. Ankeny, J.J. Cheng, R.A. Venditti. Microfibers generated from the laundering of cotton, rayon and polyester based fabrics and their aquatic biodegradation. Mar Pollut Bull, 142 (2019), pp. 394-407
[58]
Q. Liu, Z. Chen, Y. Chen, F. Yang, W. Yao, Y. Xie. Microplastics and nanoplastics: emerging contaminants in food. J Agric Food Chem, 69 (36) (2021), pp. 10450-10468
[59]
X.C. Sun, Y. Xu, Y.Q. Liu, C.X. Nai, L. Dong, J.C. Liu, et al. Evolution of geomembrane degradation and defects in a landfill: impacts on long-term leachate leakage and groundwater quality. J Clean Prod, 224 (2019), pp. 335-345
[60]
E. Martinez-Tavera, A.M. Duarte-Moro, S.B. Sujitha, P.F. Rodriguez-Espinosa, G. Rosano-Ortega, N. Expósito. Microplastics and metal burdens in freshwater Tilapia (Oreochromis niloticus) of a metropolitan reservoir in Central Mexico: potential threats for human health. Chemosphere, 266 (2021), p. 128968
[61]
C. Salazar-Pérez, F. Amezcua, A. Rosales-Valencia, L. Green, J.E. Pollorena-Melendrez, M.A. Sarmiento-Martínez, et al. First insight into plastics ingestion by fish in the Gulf of California. Mexico. Mar Pollut Bull, 171 (2021), p. 112705
[62]
S. Birnstiel, A. Soares-Gomes, B.A.P. da Gama. Depuration reduces microplastic content in wild and farmed mussels. Mar Pollut Bull, 140 (2019), pp. 241-247
[63]
Naji M. Nuri A.D. Vethaak. Microplastics contamination in molluscs from the northern part of the Persian Gulf. Environ Pollut, 235 (2018), pp. 113-120
[64]
C. Peng, X. Tang, X. Gong, Y. Dai, H. Sun, L. Wang. Development and application of a mass spectrometry method for quantifying nylon microplastics in environment. Anal Chem, 92 (20) (2020), pp. 13930-13935
[65]
D. Zhang, M.A. Fraser, W. Huang, C. Ge, Y. Wang, C. Zhang, et al. Microplastic pollution in water, sediment, and specific tissues of crayfish (Procambarus clarkii) within two different breeding modes in Jianli, Hubei Province, China. Environ Pollut, 272 (2021), p. 115939
[66]
L. Yang, K. Li, S. Cui, Y. Kang, L. An, K. Lei. Removal of microplastics in municipal sewage from China’s largest water reclamation plant. Water Res, 155 (2019), pp. 175-181
[67]
X. Xu, Y. Jian, Y. Xue, Q. Hou, L. Wang. Microplastics in the wastewater treatment plants (WWTPs): occurrence and removal. Chemosphere, 235 (2019), pp. 1089-1096
PDF(1023 KB)

Accesses

Citation

Detail

段落导航
相关文章

/