[1] |
K. Bush, P.A. Bradford. β-Lactams and β-lactamase inhibitors: an overview. Cold Spring Harb Perspect Med, 6 (8) (2016), p. a025247
|
[2] |
X.Z. Li, M. Mehrotra, S. Ghimire, L. Adewoye. β-Lactam resistance and β-lactamases in bacteria of animal origin. Vet Microbiol, 121 (3-4) (2007), pp. 197-214
|
[3] |
K. Bush, P.A. Bradford. Epidemiology of β-lactamase-producing pathogens. Clin Microbiol Rev, 33 (2) (2020), pp. e00047-e119
|
[4] |
K. Bush. Past and present perspectives on β-lactamases. Antimicrob Agents Chemother, 62 (10) (2018), pp. e01076-e1118
|
[5] |
K. Bush, P.A. Bradford. Interplay between β-lactamases and new β-lactamase inhibitors. Nat Rev Microbiol, 17 (5) (2019), pp. 295-306
|
[6] |
D.E. Ehmann, H. Jahić, P.L. Ross, R.F. Gu, J. Hu, G. Kern, et al. Avibactam is a covalent, reversible, non-β-lactam β-lactamase inhibitor. Proc Natl Acad Sci USA, 109 (29) (2012), pp. 11663-11668
|
[7] |
D.E. Ehmann, H. Jahic, P.L. Ross, R.F. Gu, J. Hu, T.F. Durand-Réville, et al. Kinetics of avibactam inhibition against Class A, C, and D β-lactamases. J Biol Chem, 288 (39) (2013), pp. 27960-27971
|
[8] |
S.D. Lahiri, S. Mangani, T. Durand-Reville, M. Benvenuti, F. De Luca, G. Sanyal, et al. Structural insight into potent broad-spectrum inhibition with reversible recyclization mechanism: avibactam in complex with CTX-M-15 and Pseudomonas aeruginosa AmpC β-lactamases. Antimicrob Agents Chemother, 57 (6) (2013), pp. 2496-2505
|
[9] |
D.M. Livermore, S. Mushtaq, M. Warner, J. Zhang, S. Maharjan, M. Doumith, et al. Activities of NXL 104 combinations with ceftazidime and aztreonam against carbapenemase-producing Enterobacteriaceae. Antimicrob Agents Chemother, 55 (1) (2011), pp. 390-394
|
[10] |
M.J. Carvalho, K. Sands, K. Thomson, E. Portal, J. Mathias, R. Milton, et al.BARNARDS Group. Antibiotic resistance genes in the gut microbiota of mothers and linked neonates with or without sepsis from low- and middle-income countries. Nat Microbiol, 7 (9) (2022), pp. 1337-1347
|
[11] |
M.R. Meini, L.I. Llarrull, A.J. Vila. Overcoming differences: the catalytic mechanism of metallo-β-lactamases. FEBS Lett, 589 (22) (2015), pp. 3419-3432
|
[12] |
S.M. Drawz, R.A. Bonomo. Three decades of β-lactamase inhibitors. Clin Microbiol Rev, 23 (1) (2010), pp. 160-201
|
[13] |
J. Brem, T. Panduwawala, J.U. Hansen, J. Hewitt, E. Liepins, P. Donets, et al. Imitation of β-lactam binding enables broad-spectrum metallo-β-lactamase inhibitors. Nat Chem, 14 (1) (2022), pp. 15-24
|
[14] |
D. Yahav, C.G. Giske, A. Grāmatniece, H. Abodakpi, V.H. Tam, L. Leibovici. New β-lactam-β-lactamase inhibitor combinations. Clin Microbiol Rev, 34 (1) (2020), pp. e00115-e120
|
[15] |
Y. Wang, J. Wang, R. Wang, Y. Cai. Resistance to ceftazidime-avibactam and underlying mechanisms. J Glob Antimicrob Resist, 22 (2020), pp. 18-27
|
[16] |
Y. Zhang, A. Kashikar, C.A. Brown, G. Denys, K. Bush. Unusual Escherichia coli PBP 3 insertion sequence identified from a collection of carbapenem-resistant Enterobacteriaceae tested in vitro with a combination of ceftazidime-, ceftaroline-, or aztreonam-avibactam. Antimicrob Agents Chemother, 61 (8) (2017), pp. e00389-e417
|
[17] |
R.M. Humphries, P. Hemarajata.Resistance to ceftazidime-avibactam in Klebsiella pneumoniae due to porin mutations and the increased expression of KPC-3.Antimicrob Agents Chemother, 61 (6) (2017), pp. e00537-e00617
|
[18] |
K. Nelson, P. Hemarajata, D. Sun, D. Rubio-Aparicio, R. Tsivkovski, S. Yang, et al. Resistance to ceftazidime-avibactam is due to transposition of KPC in a porin-deficient strain of Klebsiella pneumoniae with increased efflux activity. Antimicrob Agents Chemother, 61 (10) (2017), pp. e00989-e1017
|
[19] |
L. Sun, W. Chen, H. Li, L. Li, X. Zou, J. Zhao, et al. Phenotypic and genotypic analysis of KPC-51 and KPC-52, two novel KPC-2 variants conferring resistance to ceftazidime/avibactam in the KPC-producing Klebsiella pneumoniae ST 11 clone background. J Antimicrob Chemother, 75 (10) (2020), pp. 3072-3074
|
[20] |
P. Gaibani, C. Campoli, R.E. Lewis, S.L. Volpe, E. Scaltriti, M. Giannella, et al. In vivo evolution of resistant subpopulations of KPC-producing Klebsiella pneumoniae during ceftazidime/avibactam treatment. J Antimicrob Chemother, 73 (6) (2018), pp. 1525-1529
|
[21] |
M.J. Giddins, N. Macesic, M.K. Annavajhala, S. Stump, S. Khan, T.H. McConville, et al. Successive emergence of ceftazidime-avibactam resistance through distinct genomic adaptations in blaKPC-2-harboring Klebsiella pneumoniae sequence type 307 isolates. Antimicrob Agents Chemother, 62 (3) (2018), pp. e02101-e2117
|
[22] |
A. Both, H. Büttner, J. Huang, M. Perbandt, C. Belmar Campos, M. Christner, et al. Emergence of ceftazidime/avibactam non-susceptibility in an MDR Klebsiella pneumoniae isolate. J Antimicrob Chemother, 72 (9) (2017), pp. 2483-2488
|
[23] |
Clinical and Laboratory Standards Institute CLSI. Performance standards for antimicrobial susceptibility testing. 30th edition. Wayne: CLSI M100; 2020.
|
[24] |
S. Schwarz, P. Silley, S. Simjee, N. Woodford, E. van Duijkeren, A.P. Johnson, et al. Editorial: assessing the antimicrobial susceptibility of bacteria obtained from animals. J Antimicrob Chemother, 65 (4) (2010), pp. 601-604
|
[25] |
K. Sands, M.J. Carvalho, E. Portal, K. Thomson, C. Dyer, C. Akpulu, et al. Characterization of antimicrobial-resistant Gram-negative bacteria that cause neonatal sepsis in seven low- and middle-income countries. Nat Microbiol, 6 (4) (2021), pp. 512-523
|
[26] |
M. Kolmogorov, J. Yuan, Y. Lin, P.A. Pevzner. Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol, 37 (5) (2019), pp. 540-546
|
[27] |
B.J. Walker, T. Abeel, T. Shea, M. Priest, A. Abouelliel, S. Sakthikumar, et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One, 9 (11) (2014), p. e112963
|
[28] |
R.R. Wick, K.E. Holt. Polypolish: short-read polishing of long-read bacterial genome assemblies. PLoS Comput Biol, 18 (1) (2022), p. e1009802
|
[29] |
A.V. Zimin, G. Marçais, D. Puiu, M. Roberts, S.L. Salzberg, J.A. Yorke. The MaSuRCA genome assembler. Bioinformatics, 29 (21) (2013), pp. 2669-2677
|
[30] |
V. Bortolaia, R.S. Kaas, E. Ruppe, M.C. Roberts, S. Schwarz, V. Cattoir, et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J Antimicrob Chemother, 75 (12) (2020), pp. 3491-3500
|
[31] |
E. Zankari, R. Allesøe, K.G. Joensen, L.M. Cavaco, O. Lund, F.M. Aarestrup. PointFinder: a novel web tool for WGS-based detection of antimicrobial resistance associated with chromosomal point mutations in bacterial pathogens. J Antimicrob Chemother, 72 (10) (2017), pp. 2764-2768
|
[32] |
C. Camacho, G. Coulouris, V. Avagyan, N. Ma, J. Papadopoulos, K. Bealer, et al. BLAST+: architecture and applications. BMC Bioinformatics, 10 (1) (2009), p. 421
|
[33] |
H. Hasman, D. Saputra, T. Sicheritz-Ponten, O. Lund, C.A. Svendsen, N. Frimodt-Møller, et al. Rapid whole-genome sequencing for detection and characterization of microorganisms directly from clinical samples. J Clin Microbiol, 52 (1) (2014), pp. 139-146
|
[34] |
M.V. Larsen, S. Cosentino, O. Lukjancenko, D. Saputra, S. Rasmussen, H. Hasman, et al. Benchmarking of methods for genomic taxonomy. J Clin Microbiol, 52 (5) (2014), pp. 1529-1539
|
[35] |
P.T.L.C. Clausen, F.M. Aarestrup, O. Lund. Rapid and precise alignment of raw reads against redundant databases with KMA. BMC Bioinformatics, 19 (1) (2018), p. 307
|
[36] |
G.G. Zhanel, R. Wiebe, L. Dilay, K. Thomson, E. Rubinstein, D.J. Hoban, et al. Comparative review of the carbapenems. Drugs, 67 (7) (2007), pp. 1027-1052
|
[37] |
J.M. Pagès, C.E. James, M. Winterhalter. The porin and the permeating antibiotic: a selective diffusion barrier in Gram-negative bacteria. Nat Rev Microbiol, 6 (12) (2008), pp. 893-903
|
[38] |
M. Mermod, D. Magnani, M. Solioz, J.V. Stoyanov. The copper-inducible ComR (YcfQ) repressor regulates expression of ComC (YcfR), which affects copper permeability of the outer membrane of Escherichia coli. Biometals, 25 (1) (2012), pp. 33-43
|
[39] |
M.G.P. Page, C. Dantier, E. Desarbre, B. Gaucher, K. Gebhardt, A. Schmitt-Hoffmann. In vitro and in vivo properties of BAL30376, a β-lactam and dual β-lactamase inhibitor combination with enhanced activity against Gram-negative bacilli that express multiple β-lactamases. Antimicrob Agents Chemother, 55 (4) (2011), pp. 1510-1519
|
[40] |
T. Idowu, D. Ammeter, G. Arthur, G.G. Zhanel, F. Schweizer. Potentiation of β-lactam antibiotics and β-lactam/β-lactamase inhibitor combinations against MDR and XDR Pseudomonas aeruginosa using non-ribosomal tobramycin-cyclam conjugates. J Antimicrob Chemother, 74 (9) (2019), pp. 2640-2648
|
[41] |
A. MacGowan, M. Attwood, K. Bowker, A. Noel. Comment on: cefepime/sulbactam as an enhanced antimicrobial combination therapy for the treatment of MDR Gram-negative infections. J Antimicrob Chemother, 75 (9) (2020), pp. 2711-2712
|
[42] |
H. Mansour, A.E.L. Ouweini, E.B. Chahine, L.R. Karaoui. Imipenem/cilastatin/relebactam: a new carbapenem β-lactamase inhibitor combination. Am J Health Syst Pharm, 78 (8) (2021), pp. 674-683
|
[43] |
R.E. Hancock. Resistance mechanisms in Pseudomonas aeruginosa and other nonfermentative Gram-negative bacteria. Clin Infect Dis, 27 (s1) (1998), pp. S93-S99
|
[44] |
Lupo A, Haenni M, Madec JY. Antimicrobial resistance in Acinetobacter spp. and Pseudomonas spp. Microbiol Spectr 2018; 6(3):ARBA.
|
[45] |
E.B. Breidenstein, C. de la Fuente-Núñez, R.E. Hancock. Pseudomonas aeruginosa: all roads lead to resistance. Trends Microbiol, 19 (8) (2011), pp. 419-426
|
[46] |
J.C. Vázquez-Ucha, J. Arca-Suárez, G. Bou, A. Beceiro. New carbapenemase inhibitors: clearing the way for the β-lactams. Int J Mol Sci, 21 (23) (2020), p. 9308
|
[47] |
K.Y. Djoko, M.E.S. Achard, M.D. Phan, A.W. Lo, M. Miraula, S. Prombhul, et al. Copper ions and coordination complexes as novel carbapenem adjuvants. Antimicrob Agents Chemother, 62 (2) (2018), pp. e02280-e2317
|
[48] |
S. Chetri, M. Singha, D. Bhowmik, K. Nath, D.D. Chanda, A. Chakravarty, et al. Transcriptional response of OmpC and OmpF in Escherichia coli against differential gradient of carbapenem stress. BMC Res Notes, 12 (1) (2019), p. 138
|
[49] |
H. Lou, M. Chen, S.S. Black, S.R. Bushell, M. Ceccarelli, T. Mach, et al. Altered antibiotic transport in OmpC mutants isolated from a series of clinical strains of multi-drug resistant E. coli. PLoS One, 6 (10) (2011), p. e25825
|