锡改性显著提升铈基催化剂的NH3-SCR活性和水热稳定性

Ying Zhu, Jingjing Liu, Guangzhi He, Shaohua Xie, Wenpo Shan, Zhihua Lian, Fudong Liu, Hong He

工程(英文) ›› 2025, Vol. 48 ›› Issue (5) : 141-150.

PDF(3463 KB)
PDF(3463 KB)
工程(英文) ›› 2025, Vol. 48 ›› Issue (5) : 141-150. DOI: 10.1016/j.eng.2024.02.011
Article

 锡改性显著提升铈基催化剂的NH3-SCR活性和水热稳定性

作者信息 +

Remarkable Enhancement of the Activity and Hydrothermal Stability of a CeO2-Based NH3-SCR Catalyst by Sn Modification

Author information +
History +

Abstract

Catalytic activity and hydrothermal stability are both crucial for the application of the selective catalytic reduction of NOx with NH3 (NH3-SCR catalyst) in diesel vehicles. In this study, a tin (Sn)-modified Ce–Nb mixed-oxide catalyst was synthesized as an NH3-SCR catalyst for NOx emission control. After the introduction of Sn, both the NH3-SCR activity and the hydrothermal stability of the catalyst were remarkably promoted. Even after hydrothermal aging at 1000 °C, the developed Ce1Sn2Nb1Ox catalyst achieved more than 90% NOx conversion at 325–500 °C. Various methods, including N2-physisorption, X-ray diffraction, in-situ high-temperature X-ray diffraction, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray absorption fine-structure spectroscopy, temperature-programmed reduction of hydrogen, temperature-programmed desorption of ammonia, and density functional theory calculations were used to investigate the promotional effects induced by the Sn species. The characterization results showed that the addition of Sn not only promoted the formation of the Ce–Nb active phase but also improved its thermal stability, contributing to the excellent NH3-SCR performance and hydrothermal stability. This study provides an excellent sintering-resistance catalyst for the application of diesel engine NOx emission control.

Keywords

SnO2 / CeO2-based catalyst / NH3-SCR / hydrothermal stability / NOx emission control

引用本文

导出引用
Ying Zhu, Jingjing Liu, Guangzhi He. . Engineering. 2025, 48(5): 141-150 https://doi.org/10.1016/j.eng.2024.02.011

参考文献

[1]
Shan W, Yu Y, Zhang Y, He G, Peng Y, Li J, et al.Theory and practice of metal oxide catalyst design for the selective catalytic reduction of NOx with NH3.Catal Today 2021; 376:292-301.
[2]
Han L, Cai S, Gao M, Hasegawa J, Wang P, Zhang J, et al.Selective catalytic reduction of NOx with NH3 by using novel catalysts: state of the art and future prospects.Chem Rev 2019; 119(19):10916-10976.
[3]
Paolucci C, Khurana I, Parekh AA, Li S, Shih AJ, Li H, et al.Dynamic multinuclear sites formed by mobilized copper ions in NOx selective catalytic reduction.Science 2017; 357(6354):898-903.
[4]
He G, Lian Z, Yu Y, Yang Y, Liu K, Shi X, et al.Polymeric vanadyl species determine the low-temperature activity of V-based catalysts for the SCR of NOx with NH3.Sci Adv 2018;4(11):eaau4637.
[5]
Kalghatgi G.Development of fuel/engine systems—the way forward to sustainable transport.Engineering 2019; 5(3):510-518.
[6]
Liu S, Liu J, Lin Q, Xu S, Wang J, Xu H, et al.Solvent effects on the low-temperature NH3–SCR activity and hydrothermal stability of WO3/SiO2@CeZrOx catalyst.ACS Sustain Chem Eng 2020; 8(35):13418-13429.
[7]
Liu S, Lin Q, Liu J, Xu S, Wang Y, Xu H, et al.Enhancement of the hydrothermal stability of WO3/Ce0.68Zr0.32O2 catalyst by silica modification for NH3–SCR.ACS Appl Energy Mater 2020; 3(1):1161-1170.
[8]
Beale AM, Gao F, Lezcano-Gonzalez I, Peden CHF, Szanyi J.Recent advances in automotive catalysis for NOx emission control by small-pore microporous materials.Chem Soc Rev 2015; 44(20):7371-7405.
[9]
Wang J, Zhao H, Haller G, Li Y.Recent advances in the selective catalytic reduction of NOx with NH3 on Cu-chabazite catalysts.Appl Catal B 2017; 202:346-354.
[10]
Shan W, Song H.Catalysts for the selective catalytic reduction of NOx with NH3 at low temperature.Catal Sci Technol 2015; 5(9):4280-4288.
[11]
Kim YJ, Lee JK, Min KM, Hong SB, Nam IS, Cho BK.Hydrothermal stability of CuSSZ13 for reducing NOx by NH3.J Catal 2014; 311:447-457.
[12]
Schmieg SJ, Oh SH, Kim CH, Brown DB, Lee JH, Peden CHF, et al.Thermal durability of Cu-CHA NH3–SCR catalysts for diesel NOx reduction.Catal Today 2012; 184(1):252-261.
[13]
Shan Y, Shan W, Shi X, Du J, Yu Y, He H.A comparative study of the activity and hydrothermal stability of Al-rich Cu-SSZ-39 and Cu-SSZ-13.Appl Catal B 2020; 264:118511.
[14]
Zhang T, Qu R, Su W, Li J.A novel Ce–Ta mixed oxide catalyst for the selective catalytic reduction of NOx with NH3.Appl Catal B, 176–177 2015; 338-346.
[15]
Vuong TH, Radnik J, Rabeah J, Bentrup U, Schneider M, Atia H, et al.Efficient VOx/Ce1–xTixO2 catalysts for low-temperature NH3–SCR: reaction mechanism and active sites assessed by in situ/operando spectroscopy.ACS Catal 2017; 7(3):1693-1705.
[16]
Ma Z, Wu X, Si Z, Weng D, Ma J, Xu T.Impacts of niobia loading on active sites and surface acidity in NbOx/CeO2–ZrO2 NH3–SCR catalysts.Appl Catal B 2015; 179:380-394.
[17]
Qu R, Gao X, Cen K, Li J.Relationship between structure and performance of a novel cerium–niobium binary oxide catalyst for selective catalytic reduction of NO with NH3.Appl Catal B, 142–143 2013; 290-297.
[18]
Ma Z, Weng D, Wu X, Si Z, Wang B.A novel Nb–Ce/WOx–TiO2 catalyst with high NH3–SCR activity and stability.Catal Commun 2012; 27:97-100.
[19]
Ma S, Gao W, Yang Z, Lin R, Wang X, Zhu X, et al.Superior Ce–Nb–Ti oxide catalysts for selective catalytic reduction of NO with NH3.J Energy Inst 2021; 94:73-84.
[20]
Ding S, Liu F, Shi X, He H.Promotional effect of Nb additive on the activity and hydrothermal stability for the selective catalytic reduction of NOx with NH3 over CeZrOx catalyst.Appl Catal B 2016; 180:766-774.
[21]
Xu X, Liu F, Han X, Wu Y, Liu W, Zhang R, et al.Elucidating the promotional effects of niobia on SnO2 for CO oxidation: developing an XRD extrapolation method to measure the lattice capacity of solid solutions.Catal Sci Technol 2016; 6(14):5280-5291.
[22]
Wang Y, Jiang X, Xia Y.A solution-phase, precursor route to polycrystalline SnO2 nanowires that can be used for gas sensing under ambient conditions.J Am Chem Soc 2003; 125(52):16176-16177.
[23]
Fang C, Shi L, Li H, Huang L, Zhang J, Zhang D.Creating hierarchically macro-/mesoporous Sn/CeO2 for the selective catalytic reduction of NO with NH3.RSC Adv 2016; 6(82):78727-78736.
[24]
Leite ER, Maciel AP, Weber IT, Lisboa-Filho PN, Longo E, Paiva-Santos CO, et al.Development of metal oxide nanoparticles with high stability against particle growth using a metastable solid solution.Adv Mater 2002; 14(12):905-908.
[25]
Leite ER, Weber IT, Longo E, Varela JA.A new method to control particle size and particle size distribution of SnO2 nanoparticles for gas sensor applications.Adv Mater 2000; 12(13):965-968.
[26]
Weber IT, Maciel AP, Lisboa-Filho PN, Longo E, Leite ER, Paiva-Santos CO, et al.Effects of synthesis and processing on supersaturated rare earth-doped nanometric SnO2 powders.Nano Lett 2002; 2(9):969-973.
[27]
Xu X, Zhang R, Zeng X, Han X, Li Y, Liu Y, et al.Effects of La, Ce, and Y oxides on SnO2 catalysts for CO and CH4 oxidation.ChemCatChem 2013; 5(7):2025-2036.
[28]
Zeng X, Zhang R, Xu X, Wang X.Study on ceria-modified SnO2 for CO and CH4 oxidation.J Rare Earths 2012; 30(10):1013-1019.
[29]
Liu J, He G, Shan W, Yu Y, Huo Y, Zhang Y, et al.Introducing tin to develop ternary metal oxides with excellent hydrothermal stability for NH3 selective catalytic reduction of NOx.Appl Catal B 2021; 291:120125.
[30]
Perdew JP, Burke K, Ernzerhof M.Generalized gradient approximation made simple.Phys Rev Lett 1996; 77(18):3865-3868.
[31]
Kresse G, Furthmüller J.Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set.Phys Rev B 1996; 54(16):11169-11186.
[32]
Zhang Y, Wang H, Chen R.Improved high-temperature hydrothermal stability of Cu-SSZ-13 by an ammonium hexafluorosilicate treatment.RSC Adv 2015; 5(83):67841-67848.
[33]
Bridges C, Greedan JE, Barbier J.Structure of the defect perovskite Ce1/3NbO3: a redetermination by electron and neutron powder diffraction.Acta Cryst B 2000; 56(2):183-188.
[34]
Vullum F, Grande T.Oxygen driven decomposition of CeNbO4 in pure oxygen.Chem Mater 2008; 20(16):5434-5437.
[35]
Maciel AP, Lisboa-Filho PN, Leite ER, Paiva-Santos CO, Schreiner WH, Maniette Y, et al.Microstructural and morphological analysis of pure and Ce-doped tin dioxide nanoparticles.J Eur Ceram Soc 2003; 23(5):707-713.
[36]
Marini C, Diaz-Rovira AM, Kennedy BJ, Joseph B.Local structure around Nb site of a potential thermoelectric material La1/3NbO3 from temperature-dependent extended X-ray absorption fine structure spectroscopy.J Mater Eng Perform 2018; 27(12):6322-6327.
[37]
Tanaka T, Yoshida T, Yoshida H, Aritani H, Funabiki T, Yoshida S, et al.XAFS study of niobium oxide on alumina.Catal Today 1996; 28(1–2):71-78.
[38]
Casapu M, Kröcher O, Mehring M, Nachtegaal M, Borca C, Harfouche M, et al.Characterization of Nb-containing MnOx–CeO2 catalyst for low-temperature selective catalytic reduction of NO with NH3.J Phys Chem C 2010; 114(21):9791-9801.
[39]
Zhang G, Han W, Zhao H, Zong L, Tang Z.Solvothermal synthesis of well-designed ceria–tin–titanium catalysts with enhanced catalytic performance for wide temperature NH3–SCR reaction.Appl Catal B 2018; 226:117-126.
[40]
Zhang T, Qiu F, Chang H, Peng Y, Li J.Novel W-modified SnMnCeOx catalyst for the selective catalytic reduction of NOx with NH3.Catal Commun 2017; 100:117-120.
[41]
Zhao K, Han W, Lu G, Lu J, Tang Z, Zhen X.Promotion of redox and stability features of doped Ce–W–Ti for NH3–SCR reaction over a wide temperature range.Appl Surf Sci 2016; 379:316-322.
[42]
Sto Dšić, Bennici S, Raki Vć, Auroux A.CeO2–Nb2O5 mixed oxide catalysts: preparation, characterization and catalytic activity in fructose dehydration reaction.Catal Today 2012; 192(1):160-168.
[43]
Gong P, Xie J, Cheng X, Fang D, He F, Li F, et al.Elucidate the promotional effects of Sn on Ce–Ti catalysts for NH3–SCR activity.J Energy Inst 2020; 93(3):1053-1063.
[44]
Zhao X, Huang L, Li H, Hu H, Hu X, Shi L, et al.Promotional effects of zirconium doped CeVO4 for the low-temperature selective catalytic reduction of NOx with NH3.Appl Catal B 2016; 183:269-281.
[45]
Yang B, Shen Y, Zeng Y, Li B, Shen S, Zhu S.Effects of tin doping level on structure, acidity and catalytic performance of Ti–Ce–Ox catalyst for selective catalytic reduction of NO by ammonia.J Mol Catal A, 418–419 2016; 138-145.
[46]
Abee MW, Cox DF.NH3 chemisorption on stoichiometric and oxygen-deficient SnO2(110) surfaces.Surf Sci 2002; 520(1–2):65-77.
[47]
Kovalenko VV, Zhukova AA, Rumyantseva MN, Gaskov AM, Yushchenko VV, Ivanova II, et al.Surface chemistry of nanocrystalline SnO2: effect of thermal treatment and additives.Sens Actuators B 2007; 126(1):52-55.
[48]
Song I, Lee J, Lee G, Han JW, Kim DH.Chemisorption of NH3 on monomeric vanadium oxide supported on anatase TiO2: a combined DRIFT and DFT study.J Phys Chem C 2018; 122(29):16674-16682.
[49]
Tran R, Xu Z, Radhakrishnan B, Winston D, Sun W, Persson KA, et al.Surface energies of elemental crystals.Sci Data 2016; 3(1):160080.
基金
 
PDF(3463 KB)

Accesses

Citation

Detail

段落导航
相关文章

/