[1] |
Cong B, Liu XA, Zhang S, Ni Z, Wang L. Revolutionizing the life sciences by developing a holographic digital mannequin. Engineering 2023;27:14-17..
|
[2] |
L. Castelo-Soccio, H. Kim, M. Gadina, P.L. Schwartzberg, A. Laurence, J.J. O’Shea. Protein kinases: drug targets for immunological disorders. Nat Rev Immunol, 23 (12) (2023), pp. 787-806.
|
[3] |
T. Söllner, S.W. Whiteheart, M. Brunner, H. Erdjument-Bromage, S. Geromanos, P. Tempst, et al. SNAP receptors implicated in vesicle targeting and fusion. Nature, 362 (6418) (1993), pp. 318-324.
|
[4] |
M. Anton. New York City (Readers of the book of life: contextualizing developmental evolutionary biology. (1st ed.ed.), Oxford University Press, 2002).
|
[5] |
S.S. Ranade, S.H. Woo, A.E. Dubin, R.A. Moshourab, C. Wetzel, M. Petrus, et al. Piezo 2 is the major transducer of mechanical forces for touch sensation in mice. Nature, 516 (7529) (2014), pp. 121-125.
|
[6] |
S. SenGupta, C.A. Parent, J.E. Bear. The principles of directed cell migration. Nat Rev Mol Cell Biol, 22 (8) (2021), pp. 529-547.
|
[7] |
S. Naik, S.B. Larsen, C.J. Cowley, E. Fuchs. Two to tango: dialog between immunity and stem cells in health and disease. Cell, 175 (4) (2018), pp. 908-920.
|
[8] |
T. Barkay, A.J. Poulain. Mercury (micro)biogeochemistry in polar environments. FEMS Microbiol Ecol, 59 (2) (2007), pp. 232-241.
|
[9] |
T.C. Owyong, P. Subedi, J. Deng, E. Hinde, J.J. Paxman, J.M. White, et al. A molecular chameleon for mapping subcellular polarity in an unfolded proteome environment. Angew Chem Int Ed Engl, 59 (25) (2020), pp. 10129-10135.
|
[10] |
S. Knoll, T. Rösch, C. Huhn. Trends in sample preparation and separation methods for the analysis of very polar and ionic compounds in environmental water and biota samples. Anal Bioanal Chem, 412 (24) (2020), pp. 6149-6165.
|
[11] |
E. Martinho. Electrical resistivity and induced polarization methods for environmental investigations: an overview. Water Air Soil Pollut, 234 (4) (2023), p. 215.
|
[12] |
T. Maes, R. Jessop, N. Wellner, K. Haupt, A.G. Mayes. A rapid-screening approach to detect and quantify microplastics based on fluorescent tagging with Nile Red. Sci Rep, 7 (1) (2017), p. 44501.
|
[13] |
K.O. Alfarouk, S.B.M. Ahmed, A. Ahmed, R.L. Elliott, M.E. Ibrahim, H.S. Ali, et al. The interplay of dysregulated pH and electrolyte imbalance in cancer. Cancers, 12 (4) (2020), p. 898.
|
[14] |
L.B. Baker. Sweating rate and sweat sodium concentration in athletes: a review of methodology and intra/interindividual variability. Sports Med, 47 (S1) (2017), pp. 111-128.
|
[15] |
S. Eitelmann, J. Stephan, K. Everaerts, S. Durry, N. Pape, N.J. Gerkau, et al. Changes in astroglial K+ upon brief periods of energy deprivation in the mouse neocortex. Int J Mol Sci, 23 (9) (2022), p. 4836.
|
[16] |
S. Brouwer, T. Hoffmeister, A. Gresch, L. Schönhoff, M. Düfer. Resveratrol influences pancreatic islets by opposing effects on electrical activity and insulin release. Mol Nutr Food Res, 62 (5) (2018), p. 1700902.
|
[17] |
D. Lovisolo. Patch clamp: the first four decades of a technique that revolutionized electrophysiology and beyond. Rev Physiol Biochem Pharmacol, 186 (2023), pp. 1-28.
|
[18] |
Steinegger O.S. Wolfbeis S.M. Borisov. Optical sensing and imaging of pH values: spectroscopies, materials, and applications. Chem Rev, 120 (22) (2020), pp. 12357-12489.
|
[19] |
N. Demaurex. pH homeostasis of cellular organelles. News Physiol Sci, 17 (2002), pp. 1-5.
|
[20] |
P. Paroutis, N. Touret, S. Grinstein. The pH of the secretory pathway: measurement, determinants, and regulation. Physiology, 19 (4) (2004), pp. 207-215.
|
[21] |
M.M. Wu, M. Grabe, S. Adams, R.Y. Tsien, H.P. Moore, T.E. Machen. Mechanisms of pH regulation in the regulated secretory pathway. J Biol Chem, 276 (35) (2001), pp. 33027-33035.
|
[22] |
J.S. Cohen, M. Motiei, S. Carmi, D. Shiperto, O. Yefet, I. Ringel. Determination of intracellular pH and compartmentation using diffusion-weighted NMR spectroscopy with pH-sensitive indicators. Magn Reson Med, 51 (5) (2004), pp. 900-903.
|
[23] |
A.L. Vavere, G.B. Biddlecombe, W.M. Spees, J.R. Garbow, D. Wijesinghe, O.A. Andreev, et al. A novel technology for the imaging of acidic prostate tumors by positron emission tomography. Cancer Res, 69 (10) (2009), pp. 4510-4516.
|
[24] |
R.J. Gillies, D.L. Morse. In vivo magnetic resonance spectroscopy in cancer. Annu Rev Biomed Eng, 7 (1) (2005), pp. 287-326.
|
[25] |
M. Hassan, J. Riley, V. Chernomordik, P. Smith, R. Pursley, S.B. Lee, et al. Fluorescence lifetime imaging system for in vivo studies. Mol Imaging, 6 (4) (2007), pp. 229-236.
|
[26] |
M. Anderson, A. Moshnikova, D.M. Engelman, Y.K. Reshetnyak, O.A. Andreev. Probe for the measurement of cell surface pH in vivo and ex vivo. Proc Natl Acad Sci USA, 113 (29) (2016), pp. 8177-8181.
|
[27] |
SAC/TC16.GB/T 3102.8-1993: Quantities and units of physical chemistry and molecular physics. Chinese standard. Beijing: Standardization Administration of the People’s Republic of China; 1993. Chinese.
|
[28] |
J. Lemière, P. Real-Calderon, L.J. Holt, T.G. Fai, F. Chang. Control of nuclear size by osmotic forces in Schizosaccharomyces pombe. eLife, 11 (2022), p. e76075.
|
[29] |
J.H. Yeh, S.S. Sidhu, A.C. Chan. Regulation of a late phase of T cell polarity and effector functions by CRTAM. Cell, 132 (5) (2008), pp. 846-859.
|
[30] |
N. Rohani, L. Hao, M.S. Alexis, B.A. Joughin, K. Krismer, M.N. Moufarrej, et al. Acidification of tumor at stromal boundaries drives transcriptome alterations associated with aggressive phenotypes. Cancer Res, 79 (8) (2019), pp. 1952-1966.
|
[31] |
S.K. Vodnala, R. Eil, R.J. Kishton, M. Sukumar, T.N. Yamamoto, N.H. Ha, et al. T cell stemness and dysfunction in tumors are triggered by a common mechanism. Science, 363 (6434) (2019), p. eaau0135.
|
[32] |
R.D. Leone, J.D. Powell. Metabolism of immune cells in cancer. Nat Rev Cancer, 20 (9) (2020), pp. 516-531.
|
[33] |
L.M. Doyle, M.Z. Wang. Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells, 8 (7) (2019), p. 727.
|
[34] |
D. Bennet, Y. Khorsandian, J. Pelusi, A. Mirabella, P. Pirrotte, F. Zenhausern. Molecular and physical technologies for monitoring fluid and electrolyte imbalance: a focus on cancer population. Clin Transl Med, 11 (6) (2021), p. e461.
|
[35] |
F.M. Pinto, A. Odriozola, L. Candenas, N. Subirán. The role of sperm membrane potential and ion channels in regulating sperm function. Int J Mol Sci, 24 (8) (2023), p. 6995.
|
[36] |
H.R. Pohl, J.S. Wheeler, H.E. Murray. Sodium and potassium in health and disease. Met Ions Life Sci, 13 (2013), pp. 29-47.
|
[37] |
B.F. Palmer. Potassium binders for hyperkalemia in chronic kidney disease-diet, renin-angiotensin-aldosterone system inhibitor therapy, and hemodialysis. Mayo Clin Proc, 95 (2) (2020), pp. 339-354.
|
[38] |
R.J. Unwin, F.C. Luft, D.G. Shirley. Pathophysiology and management of hypokalemia: a clinical perspective. Nat Rev Nephrol, 7 (2) (2011), pp. 75-84.
|
[39] |
D. Eisner, E. Neher, H. Taschenberger, G. Smith. Physiology of intracellular calcium buffering. Physiol Rev, 103 (4) (2023), pp. 2767-2845.
|
[40] |
F.P. Buelens, H. Leonov, B.L. de Groot, H. Grubmüller. ATP-magnesium coordination: protein structure-based force field evaluation and corrections. J Chem Theory Comput, 17 (3) (2021), pp. 1922-1930.
|
[41] |
E. Helte, A. Åkesson, S.C. Larsson. Assessing causality in associations of serum calcium and magnesium levels with heart failure: a two-sample mendelian randomization study. Front Genet, 10 (2019), p. 1069.
|
[42] |
M.F. Rahman, C. Askwith, R. Govindarajan. Molecular determinants of acidic pH-dependent transport of human equilibrative nucleoside transporter 3. J Biol Chem, 292 (36) (2017), pp. 14775-14785.
|
[43] |
M.P. Schutzmann, F. Hasecke, S. Bachmann, M. Zielinski, S. Hänsch, G.F. Schröder, et al. Endo-lysosomal Aβ concentration and pH trigger formation of Aβ oligomers that potently induce Tau missorting. Nat Commun, 12 (1) (2021), p. 4634.
|
[44] |
X. Jiang, G.C. Bett, X. Li, V.E. Bondarenko, R.L. Rasmusson. C-type inactivation involves a significant decrease in the intracellular aqueous pore volume of Kv1.4 K+ channels expressed in Xenopus oocytes. J Physiol, 549 (Pt 3) (2003), pp. 683-695.
|
[45] |
Persaud C. Jiang Z. Liu G. Kefalas W.L. Demian D. Rotin.Elevated intracellular Na+ and osmolarity stimulate catalytic activity of the ubiquitin ligaseNedd4-2. Proc Natl Acad Sci USA, 119 (30) (2022), Article e2122495119.
|
[46] |
J.M. Baltz, A.P. Tartia. Cell volume regulation in oocytes and early embryos: connecting physiology to successful culture media. Hum Reprod Update, 16 (2) (2010), pp. 166-176.
|
[47] |
S. Richard, A.P. Tartia, D. Boison, J.M. Baltz. Mouse oocytes acquire mechanisms that permit independent cell volume regulation at the end of oogenesis. J Cell Physiol, 232 (9) (2017), pp. 2436-2446.
|
[48] |
Z.N. Ling, Y.F. Jiang, J.N. Ru, J.H. Lu, B. Ding, J. Wu. Amino acid metabolism in health and disease. Signal Transduct Target Ther, 8 (1) (2023), p. 345.
|
[49] |
L.N. Borgheti-Cardoso, J.S.R. Viegas, A.V.P. Silvestrini, A.L. Caron, F.G. Praça, M. Kravicz, et al. Nanotechnology approaches in the current therapy of skin cancer. Adv Drug Deliv Rev, 153 (2020), pp. 109-136.
|
[50] |
Ray A.K. Mitra. Mitra K. Cholkar A. Chapter 8—nanotechnology in intracellular trafficking, imaging, and delivery of therapeutic agents. A.K. Mandal (Eds.), Emerging nanotechnologies for diagnostics, drug delivery and medical devices, Elsevier, Boston (2017), pp. 169-188.
|
[51] |
A.K. Balci, O. Koksal, A. Kose, E. Armagan, F. Ozdemir, T. Inal, et al. General characteristics of patients with electrolyte imbalance admitted to emergency department. World J Emerg Med, 4 (2) (2013), pp. 113-116.
|
[52] |
S.Y. Choi, C.C. Collins, P.W. Gout, Y. Wang. Cancer-generated lactic acid: a regulatory, immunosuppressive metabolite>. J Pathol, 230 (4) (2013), pp. 350-355.
|
[53] |
B.A. Webb, M. Chimenti, M.P. Jacobson, D.L. Barber. Dysregulated pH: a perfect storm for cancer progression. Nat Rev Cancer, 11 (9) (2011), pp. 671-677.
|
[54] |
F. Cappellesso, M.P. Orban, N. Shirgaonkar, E. Berardi, J. Serneels, M.A. Neveu, et al. Targeting the bicarbonate transporter SLC4A 4 overcomes immunosuppression and immunotherapy resistance in pancreatic cancer. Nat Can, 3 (12) (2022), pp. 1464-1483.
|
[55] |
S. Wakabayashi, M. Shigekawa, J. Pouyssegur. Molecular physiology of vertebrate Na+/H+ exchangers. Physiol Rev, 77 (1) (1997), pp. 51-74.
|
[56] |
R.A. Cardone, V. Casavola, S.J. Reshkin. The role of disturbed pH dynamics and the Na+/H+ exchanger in metastasis. Nat Rev Cancer, 5 (10) (2005), pp. 786-795.
|
[57] |
Y. Yang, S. Li, Y. Wang, Y. Zhao, Q. Li. Protein tyrosine kinase inhibitor resistance in malignant tumors: molecular mechanisms and future perspective. Signal Transduct Target Ther, 7 (1) (2022), p. 329.
|