月面原位大规模建造——月壤固化技术的量化评估

包查润, 张道博, 王钦玉, 崔一飞, 冯鹏

工程(英文) ›› 2024, Vol. 39 ›› Issue (8) : 204-221.

PDF(4674 KB)
PDF(4674 KB)
工程(英文) ›› 2024, Vol. 39 ›› Issue (8) : 204-221. DOI: 10.1016/j.eng.2024.03.004
研究论文
Article

月面原位大规模建造——月壤固化技术的量化评估

作者信息 +

Lunar In Situ Large-Scale Construction: Quantitative Evaluation of Regolith Solidification Techniques

Author information +
History +

摘要

月球基地建设对探月任务的成功至关重要。由于地月运输条件的限制,世界各国对月面原位材料加工技术进行了广泛研究。本文目的是对这些技术进行全面的综述、准确的分类和定量的评价,重点介绍了四种方法:化学反应固化、烧结熔融固化、黏结固化和约束成形。为了评估这些技术的可行性,确定了构建低成本高性能建造系统的8个关键指标:原位材料占比、固化温度、固化时间、实施条件、抗压强度、抗拉强度、成形尺寸和环境适应性,评分阈值是通过比较建造需求和现实能力确定的。在参与评估的技术中,月壤袋约束成形技术由于其原位材料占比高、时间要求低、没有高温需求、短板较少(仅抗压强度指标低于中性分数,通常为 2~3 MPa)而成为一种有前途的选择。所提出的月壤袋结构施工方案具有许多优点,包括快速大规模建造能力,可靠的抗拉强度,减少对设备和能源的依赖。本文提出了月壤固化技术的评估建议和发展方向,基于月壤袋结构的月球栖息地设计为未来的研究提供了实用参考。

Abstract

Lunar habitat construction is crucial for successful lunar exploration missions. Due to the limitations of transportation conditions, extensive global research has been conducted on lunar in situ material processing techniques in recent years. The aim of this paper is to provide a comprehensive review, precise classification, and quantitative evaluation of these approaches, focusing specifically on four main approaches: reaction solidification (RS), sintering/melting (SM), bonding solidification (BS), and confinement formation (CF). Eight key indicators have been identified for the construction of low-cost and high-performance systems to assess the feasibility of these methods: in situ material ratio, curing temperature, curing time, implementation conditions, compressive strength, tensile strength, curing dimensions, and environmental adaptability. The scoring thresholds are determined by comparing the construction requirements with the actual capabilities. Among the evaluated methods, regolith bagging has emerged as a promising option due to its high in situ material ratio, low time requirement, lack of high-temperature requirements, and minimal shortcomings, with only the compressive strength falling below the neutral score. The compressive strength still maintains a value of 2 - 3 M P a. The proposed construction scheme utilizing regolith bags offers numerous advantages, including rapid and large-scale construction, ensured tensile strength, and reduced reliance on equipment and energy. In this study, guidelines for evaluating regolith solidification techniques are provided, and directions for improvement are offered. The proposed lunar habitat design based on regolith bags is a practical reference for future research.

关键词

月球基地 / 月面原位建造 / 月壤袋 / 固化成形 / 原位材料 / 评估方法

Keywords

Lunar habitats / Lunar in situ construction / Regolith bag / Solidification and formation / In situ materials / Evaluation method

引用本文

导出引用
包查润, 张道博, 王钦玉. 月面原位大规模建造——月壤固化技术的量化评估. Engineering. 2024, 39(8): 204-221 https://doi.org/10.1016/j.eng.2024.03.004

参考文献

[1]
Smith M, Craig D, Herrmann N, Mahoney E, Krezel J, McIntyre N, et al. The artemis program:an overview of NASA’s activities to return humans to the moon. In: Proceedings of the 2020 IEEE Aerospace Conference; 2020 Mar 7-14; Big Sky, MT, USA. New York City: IEEE; 2020. p. 1-10.
[2]
J. Song. China emphasizes international cooperation in future lunar and deep space exploration. Bull Chin Acad Sci, 2 (2019), pp. 72-79.
[3]
A. Jones, P. Patel, E. Waltz, N. Bajema. The latest developments in technology, engineering, and science: news. IEEE Spectr, 58 (2021), pp. 6-13.
[4]
Flahaut J, van der Bogert CH, Crawford IA, Vincent-Bonnieu S. Scientific perspectives on Lunar exploration in Europe. npj Microgravity 2023;9:50.
[5]
Sasaki H, Director J. JAXA’s Lunar exploration activities. In: Proceedingsof the 62nd Session of the Committee on the Peaceful Uses of Outer Space COPUOS; Jun 12-21 Austria. 2019. p. 2019 ; Vienna, Vienna: United Nations Office for Outer Space Affairs; 12-21.
[6]
H.J. An. South Korea’s space program. Asia Policy, 15 (2020), pp. 34-42.
[7]
T. Hoshino, S. Wakabayashi, M. Ohtake, Y. Karouji, T. Hayashi, H. Morimoto, et al. Lunar polar exploration mission for water prospection—JAXA’s current status of joint study with ISRO. Acta Astronaut, 176 (2020), pp. 52-58.
[8]
International Space Exploration Coordination Group.In-situ resource gap assessment report. Vienna: International Space Exploration Coordination Group; 2021 Apr 21.
[9]
C. Zhou, R. Chen, J. Xu, L. Ding, H. Luo, J. Fan, et al. In-situ construction method for lunar habitation: Chinese super mason. Autom Construct, 104 (2019), pp. 66-79.
[10]
H. Roedel, M. Lepech, D. Loftus. Protein—regolith composites for space construction. Earth Space, 2014 ( 2014), pp. 291-300.
[11]
A.D. Roberts, D.R. Whittall, R. Breitling, E. Takano, J.J. Blaker, S. Hay, et al. Blood, sweat, and tears: extraterrestrial regolith biocomposites with in vivo binders. Mater Today Bio, 12 (2021), Article 100136.
[12]
P.T. Metzger, G.W. Autry. The cost of Lunar landing pads with a trade study of construction methods. New Space, 11 (2023), pp. 94-123.
[13]
Levri J, Fisher JW, Jones HW, Drysdale AE, Ewert MK, Hanford AJ et al. Advanced life support equivalent system mass guidelines document. Washington, DC: National Aeronautics and Space Administration; 2003.
[14]
G. Cesaretti, E. Dini, X. De Kestelier, V. Colla, L. Pambaguian. Building components for an outpost on the lunar soil by means of a novel 3D printing technology. Acta Astronaut, 93 (2014), pp. 430-450.
[15]
C. Montes, K. Broussard, M. Gongre, N. Simicevic, J. Mejia, J. Tham, et al. Evaluation of lunar regolith geopolymer binder as a radioactive shielding material for space exploration applications. Adv Space Res, 56 (2015), pp. 1212-1221.
[16]
S. Wilhelm, M. Curbach. Manufacturing of lunar concrete by steam. Earth Space, 2014 ( 2015), pp. 274-282.
[17]
Lin T, Love H, Stark D. Physical properties of concrete made with Apollo 16 lunar soil sample. In:Proceedings of the Second Conference on Lunar Bases and Space Activities of the 21st Century; 1988 Apr 5- 7 ; Huston, TX, USA. Washington, DC: NASA Conference Publication; 1992.
[18]
J.M. Neves, S. Ramanathan, P. Suraneni, R. Grugel, A. Radlińska. Characterization, mechanical properties, and microstructural development of lunar regolith simulant-portland cement blended mixtures. Constr Build Mater, 258 (2020), Article 120315.
[19]
K.T. Wang, P.N. Lemougna, Q. Tang, W. Li, X.M. Cui. Lunar regolith can allow the synthesis of cement materials with near-zero water consumption. Gondwana Res, 44 (2017), pp. 1-6.
[20]
S. Ma, Y. Jiang, S. Fu, P. He, C. Sun, X. Duan, et al. 3D-printed Lunar regolith simulant-based geopolymer composites with bio-inspired sandwich architectures. J Adv Ceram, 12 (2023), pp. 510-525.
[21]
A. Alexiadis, F. Alberini, M.E. Meyer. Geopolymers from lunar and Martian soil simulants. Adv Space Res, 59 (2017), pp. 490-495.
[22]
Z. Geng, L. Zhang, H. Pan, W. She, C. Zhou, H. Zhou, et al. In-situ solidification of alkali-activated lunar regolith: Insights into the chemical and physical origins. J Clean Prod, 391 (2023), Article 136147.
[23]
G. Davis, C. Montes, S. Eklund. Preparation of lunar regolith based geopolymer cement under heat and vacuum. Adv Space Res, 59 (2017), pp. 1872-1885.
[24]
G. Xiong, X. Guo, S. Yuan, M. Xia, Z. Wang. The mechanical and structural properties of lunar regolith simulant based geopolymer under extreme temperature environment on the moon through experimental and simulation methods. Constr Build Mater, 325 (2022), Article 126679.
[25]
R. Zhang, S. Zhou, F. Li. Preparation of geopolymer based on lunar regolith simulant at in-situ lunar temperature and its durability under lunar high and cryogenic temperature. Constr Build Mater, 318 (2022), Article 126033.
[26]
S. Pilehvar, M. Arnhof, R. Pamies, L. Valentini, AL. Kjøniksen. Utilization of urea as an accessible superplasticizer on the moon for lunar geopolymer mixtures. J Clean Prod, 247 (2020), Article 119177.
[27]
S. Zhou, Z. Yang, R. Zhang, X. Zhu, F. Li. Preparation and evaluation of geopolymer based on BH-2 lunar regolith simulant under lunar surface temperature and vacuum condition. Acta Astronaut, 189 (2021), pp. 90-98.
[28]
S. Zhou, X. Zhu, C. Lu, F. Li. Synthesis and characterization of geopolymer from lunar regolith simulant based on natural volcanic scoria. Chin J Aeronauti, 35 (2022), pp. 144-159.
[29]
J.N. Mills, M. Katzarova, N.J. Wagner. Comparison of lunar and Martian regolith simulant-based geopolymer cements formed by alkali-activation for in-situ resource utilization. Adv Space Res, 69 (2022), pp. 761-777.
[30]
Pakulski DM, Knox KJ. 92 May 31-Jun 4; Denver, CO, USA. Steam injection system for lunar concrete. In: Engineering, Construction, and Operations in space-III: Space’Proceedings of the 3rd International Conference; 1992 Online: The SAO/NASA Astrophysics Data System; 1992. p. 1347-58.
[31]
T. Lin. Dry-mix/steam-injection method for producing high-strength concrete in one day. Spec Publ, 149 (1994), pp. 665-678.
[32]
N. Su, Y.N. Peng. The characteristics and engineering properties of dry-mix/steam-injection concrete. Cement Concr Res, 31 (2001), pp. 609-619.
[33]
L. Cai, L. Ding, H. Luo, X. Yi. Preparation of autoclave concrete from basaltic lunar regolith simulant: effect of mixture and manufacture process. Constr Build Mater, 207 (2019), pp. 373-386.
[34]
W. Han, L. Ding, L. Cai, J. Zhu, H. Luo, T. Tang. Sintering of HUST-1 lunar regolith simulant. Constr Build Mater, 324 (2022), Article 126655.
[35]
S. Lim, J. Bowen, G. Degli-Alessandrini, M. Anand, A. Cowley, P.V. Levin. Investigating the microwave heating behaviour of lunar soil simulant JSC-1A at different input powers. Sci Rep, 11 (2021), p. 2133.
[36]
E.J. Faierson, K.V. Logan, B.K. Stewart, M.P. Hunt. Demonstration of concept for fabrication of lunar physical assets utilizing lunar regolith simulant and a geothermite reaction. Acta Astronaut, 67 (2010), pp. 38-45.
[37]
Altemir D. Cold press sintering of simulated lunar basalt. In: Proceedings of the 24th Lunar and Planetary Science Conference; 1993 Mar 15-19; Houston, TX, USA. Online: NASA Astrophysics Data System; 1993. p. 23-4.
[38]
T. Gualtieri, A. Bandyopadhyay. Compressive deformation of porous lunar regolith. Mater Lett, 143 (2015), pp. 276-278.
[39]
A. Meurisse, J.C. Beltzung, M. Kolbe, A. Cowley, M. Sperl. Influence of mineral composition on sintering Lunar regolith. J Aerosp Eng, 30 (4) (2017), Article 040170.
[40]
Hoshino T, Wakabayashi S, Yoshihara S, Hatanaka N. Key technology development for future Lunar utilization—block production using Lunar regolith. Trans Jpn Soc Aeronaut Space Sci Aero Technol Japan 2016;14:Pk_35-40.
[41]
S.L. Taylor, A.E. Jakus, K.D. Koube, A.J. Ibeh, N.R. Geisendorfer, R.N. Shah, et al. Sintering of micro-trusses created by extrusion-3D-printing of lunar regolith inks. Acta Astronaut, 143 (2018), pp. 1-8.
[42]
Effinger M, Tucker D. Statistical design study of lunar ceramic. Washington, DC: National Aeronautics and Space Administration Marshall Space Flight Center; 1994.
[43]
S.J. Indyk, H. Benaroya. A structural assessment of unrefined sintered lunar regolith simulant. Acta Astronaut, 140 (2017), pp. 517-536.
[44]
Khoshnevis B, Zhang J. Extraterrestrial construction using contour crafting. In:Proceedings of the 2012 International Solid Freeform Fabrication Symposium: An Additive Manufacturing Conference; 2012 Aug 6-8; Austin, TX, USA. Austin:University of Texas at Austin; 2012.
[45]
M. Liu, W. Tang, W. Duan, S. Li, R. Dou, G. Wang, et al. Digital light processing of lunar regolith structures with high mechanical properties. Ceram Int, 45 (2019), pp. 5829-5836.
[46]
M. Fateri, A. Cowley, M. Kolbe, O. Garcia, M. Sperl, S. Cristoforetti. Localized microwave thermal posttreatment of sintered samples of lunar simulant. J Aerosp Eng, 32 (2019), p. 04019051.
[47]
Y.J. Kim, B.H. Ryu, H. Jin, J. Lee, H.S. Shin. Microstructural, mechanical, and thermal properties of microwave-sintered KLS-1 lunar regolith simulant. Ceram Int, 47 (2021), pp. 26891-26897.
[48]
L.A. Taylor, T.T. Meek. Microwave sintering of lunar soil: properties, theory, and practice. J Aerosp Eng, 18 (2005), pp. 188-196.
[49]
Ishikawa Y, Sasaki T, Higasayama T. 92 May 31-Jun 4; Denver, CO, USA. Simple and efficient methods to produce construction materials for lunar and Mars bases. In: Engineering, Construction, and Operations in space-III: Space’Proceedings of the 3rd International Conference; 1992 Online: The SAO/NASA Astrophysics Data System; 1992. p. 1335-46.
[50]
Meek T, Vaniman D, Blake R, Godbole M. Sintering of lunar soil simulants using 2.45 GHz microwave radiation. In: Abstracts of the Lunar and Planetary Science Conference; 1987 Mar 16-20; Houston, TX, USA. Washington, DC: NASA Lunar and Planetary Institute; 1987. p. 635.
[51]
Ferguson RE, Shafirovich E, Mantovani JG. Combustion joining of regolith tiles for in situ fabrication of launch/landing pads on the moon and mars. In:Proceedings of the 16th Biennial International Conference on Engineering, Science, Construction, and Operations in Challenging Environments; 2018 Apr 9- 12 ; Cleveland, OH, USA. Houston: Lunar and Planetary Institute; 2018. p. 281-8.
[52]
Hobosyan M, Martirosyan K. Sintering of regolith by activated thermites:a novel approach for lunar in-situ resource utilization. In: Proceedings of the 43rd Annual Lunar and Planetary Science Conference; 2012 Mar 19-23; The Woodlands, TX, USA. Houston: Lunar and Planetary Institute; 2012. p. 1019.
[53]
A. Delgado, E. Shafirovich. Towards better combustion of lunar regolith with magnesium. Combust Flame, 160 (2013), pp. 1876-1882.
[54]
Faierson EJ, Logan KV. Geothermite reactions for in situ resource utilization on the moon and beyond. In: Proceedings of the Earth and Space 2010: Engineering, Operations in Challenging Environments;Science, Construction, and 2010 Mar 14-17; Honolulu, HI, USA. Washington, DC: American Society of Civil Engineers; 2010. p. 1152-61.
[55]
G. Corrias, R. Licheri, R. Orrù, G. Cao. Self-propagating high-temperature reactions for the fabrication of Lunar and Martian physical assets. Acta Astronaut, 70 (2012), pp. 69-76.
[56]
A. Meurisse, A. Makaya, C. Willsch, M. Sperl. Solar 3D printing of lunar regolith. Acta Astronaut, 152 (2018), pp. 800-810.
[57]
JC. Ginés-Palomares, M. Fateri, E. Kalhöfer, T. Schubert, L. Meyer, N. Kolsch, et al. Laser melting manufacturing of large elements of lunar regolith simulant for paving on the Moon. Sci Rep, 13 (1) (2023), p. 15593.
[58]
Desai CS. Development and mechanical properties of structural materials from lunar simulant. Tucson: NASA Space Engineering Research Center for Utilization of Local Planetary Resources; 1991.
[59]
J. Appelbaum, D.J. Flood. Solar radiation on Mars. Sol Energy, 45 (1990), pp. 353-363.
[60]
Hintze P, Curran J, Back T. Lunar surface stabilization via sintering or the use of heat cured polymers. In:Proceedings of the 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition; 2009 Jan 5- 8 ; Orlando, FL, USA. Reston: American Institute of Aeronautics and Astronautics; 2009.
[61]
W. Zheng, G. Qiao. Mechanical behavior of the metal parts welded with extraterrestrial regolith simulant by the solar concentrator in ISRU & ISRF application. Adv Space Res, 65 (2020), pp. 2303-2314.
[62]
M. Fateri, A. Meurisse, M. Sperl, D. Urbina, H.K. Madakashira, S. Govindaraj, et al. Solar sintering for Lunar additive manufacturing. J Aerosp Eng, 32 (6) (2019), p. 04019101.
[63]
V.K. Balla, L.B. Roberson, G.W. O’Connor, S. Trigwell, S. Bose, A. Bandyopadhyay. First demonstration on direct laser fabrication of lunar regolith parts. Rapid Prototyping J, 18 (2012), pp. 451-457.
[64]
M. Fateri, A. Gebhardt. Process parameters development of selective laser melting of Lunar regolith for on-site manufacturing applications. Int J Appl Ceram Technol, 12 (2015), pp. 46-52.
[65]
A. Goulas, J.G.P. Binner, D.S. Engstrøm, R.A. Harris, R.J. Friel. Mechanical behaviour of additively manufactured lunar regolith simulant components. Proc Inst Mech Eng Part L: J Mater Des Appl, 233 (2018), pp. 1629-1644.
[66]
L. Caprio, A.G. Demir, B. Previtali, B.M. Colosimo. Determining the feasible conditions for processing lunar regolith simulant via laser powder bed fusion. Addit Manuf, 32 (2020), Article 101029.
[67]
J.A. Happel. Indigenous materials for lunar construction. Appl Mech Rev, 46 (1993), pp. 313-325.
[68]
W. Zheng, G. Qiao. Microstructure, thermophysical, and mechanical properties of bulk glass prepared from molten lunar regolith simulant. Adv Space Res, 69 (2022), pp. 3130-3139.
[69]
Happel JA, Willam K, Shing B. 92 May 31-Jun 4; Denver, CO, USA. Prototype lunar base construction using indigenous materials. In: Engineering, Construction, and Operations in space-III: Space’Proceedings of the 3rd International Conference; 1992 Online: The SAO/NASA Astrophysics Data System; 1992. p. 112-22.
[70]
H.A. Toutanji, S. Evans, R.N. Grugel. Performance of lunar sulfur concrete in lunar environments. Constr Build Mater, 29 (2012), pp. 444-448.
[71]
H. Liao, J. Zhu, S. Chang, G. Xue, J. Pang, H. Zhu. Lunar regolith-AlSi10Mg composite fabricated by selective laser melting. Vacuum, 187 (2021), Article 110122.
[72]
T.S. Lee, J. Lee, A.K. Yong. Manufacture of polymeric concrete on the Moon. Acta Astronaut, 114 (2015), pp. 60-64.
[73]
Gosau JM. Regolith stabilization and building materials for the lunar surface. In:Proceedings of the 13th ASCE Aerospacespace Division Conference on Engineering, Science, Construction, and Operations in Challenging Environments, and the 5th NASA/ASCE Workshop On Granular Materials in Space Exploration; 2012 Apr 15- 18 ; Pasadena, CA, USA. Washington, DC: American Society of Civil Engineers; 2012. p. 243-9.
[74]
Omar HA. Production of lunar concrete using molten sulfur. Report. Washington, DC: The National Aeronautics and Space Administration; 1993. NASA Grant NAG8-278.
[75]
Toutanji H, Glenn-Loper B, Schrayshuen B. Strength and durability performance of waterless lunar concrete. In:Proceedings of the 43rd AIAA Aerospace Sciences Meeting and Exhibit; 2005 Jan 10- 13 ; Reno, NV, USA. Reston: American Institute of Aeronautics and Astronautics; 2005.
[76]
Liu Z, Li J, Yang C, Wang X, Xiao J, Wang L et al. Cold sintering of lunar regolith simulant: an energy-efficient and high-reliable strategy for building lunar bases. 2023. SSRN 4371120.
[77]
Smithers GA, Nehls MK, Hovater MA, Evans SW, Miller JS, Broughton RM Jr, et al. A one-piece lunar regolith bag garage prototype. Report. Huntsville: NASA Marshall Space Flight Center; 2007. No. NASA/TM-2007-215073.
[78]
Finckenor M. Comparison of high-performance fiber materials properties in simulated and actual space environments. Technical Memorandum. Huntsville: NASA Marshall Space Flight Center; 2017. No. NASA/TM-2017-219634.
[79]
Z. Zhao, Q. Lu, X. Jiang. An energy efficient building system using natural resources—superadobe system research. Procedia Eng, 121 (2015), pp. 1179-1185.
[80]
Ruess F, Zacny K, Braun B. Lunar in-situ resource utilization:regolith bags automated filling technology. In:Proceedings of the AIAA SPACE 2008 Conference & Exposition; 2008 Sep 9-11 ; San Diego, CA, USA. Reston: American Institute of Aeronautics and Astronautics; 2008.
[81]
H. Mei, W. Bao, D. Yu, P. Liu, Y. Wang, W. Pan, et al. Research on building plans design for future lunar base. J Deep Space Explor, 9 (2022), pp. 553-559.
[82]
A.R. Tóth, K. Bagi. Analysis of a lunar base structure using the discrete-element method. J Aerosp Eng, 24 (2011), pp. 397-401.
[83]
Soleymani T, Trianni V, Bonani M, Mondada F, Dorigo M. Autonomous construction with compliant building material. In:Intelligent Autonomous Systems 13: Proceedings of the 13th International Conference IAS-13 (Advances in Intelligent Systems and Computing, 302); 2014 Jul 15-18; Padova, Italy. Berlin:Springer; 2016. p. 1371-88.
[84]
B. Harvey. China in space:the great leap forward. Springer Nature, Berlin (2019).
[85]
T. Rousek, K. Eriksson, O. Doule. SinterHab. Acta Astronaut, 74 (2012), pp. 98-111.
[86]
R.A. Robie, B.S. Hemingway, W.H. Wilson. Specific heats of lunar surface materials from 90 to 350 degrees Kelvin. Science, 167 ( 1970), pp. 749-750.
[87]
Colozza AJ. Small lunar base camp and in situ resource utilization oxygen production facility power system comparison. Report. Cleveland: Glenn Research Center; 2020. NASA/CR-2020-220368.
[88]
C. Zhou, B. Tang, L. Ding, P. Sekula, Y. Zhou, Z. Zhang. Design and automated assembly of Planetary LEGO Brick for lunar in-situ construction. Autom Const, 118 (2020), Article 103282.
[89]
S. Mottaghi, H. Benaroya. Design of a lunar surface structure. I: design configuration and thermal analysis. J Aerosp Eng, 28 (2015), p. 04014052.
[90]
C. Meyers, H. Toutanji. Analysis of lunar-habitat structure using waterless concrete and tension glass fibers. J Aerosp Eng, 20 (2007), pp. 220-226.
[91]
Malla RB, Chaudhuri D. Analysis of a 3D frame—membrane structure for lunar base. In:Proceedings of the 10th Biennial International Conference on Engineering, Construction, and Operations in Challenging Environments and Second NASA/ARO/ASCE Workshop on Granular Materials in Lunar and Martian Exploration; 2006 Mar 5- 8 ; Houston, TX, USA. Washington, DC: American Society of Civil Engineers; 2006. p. 1-8.
[92]
J. Straub. In search of technology readiness level (TRL) 10. Aerosp Sci Technol, 46 (2015), pp. 312-320.
[93]
Land P. Lunar base design. In: Lunar bases and space activities of the 21st century. Houston: Lunar and Planetary Institute; 1985. p. 363.
[94]
M.Z. Naser. Extraterrestrial construction materials. Prog Mater Sci, 105 (2019), Article 100577.
[95]
Kessler P, Prater T, Nickens T, Harris D. Artemis deep space habitation:enabling a sustained human presence on the Moon and beyond. In:Proceedings of the 2022 IEEE Aerospace Conference (AERO); 2022 Mar 5- 12 ; Big Sky, MA, USA. Reston: American Institute of Aeronautics and Astronautics; 2022. p. 1-12.
[96]
Harris DW, Kessler PD, Nickens TM, Choate AJ, Horvath BL, Simon MA et al. Moon to Mars (M2M) habitation considerations: a snap shot as of January 2022. Technical Memorandum. Huntsville: NASA Marshall Space Flight Center; 2022. No. NASA/TM-20220000524.
[97]
Flores G, Harris D, McCauley R, Canerday S, Ingram L, Herrmann N. Deep space habitation:establishing a sustainable human presence on the moon and beyond. In: Proceedings of the 2021 IEEE Aerospace Conference ( 50100;2021 Mar6-13 ; Big Sky, MA, USA. New York City: IEEE; 2021. p. 1-7.
[98]
Woerner J. Moon Village: a vision for global cooperation and Space 4.0 [Internet]. Paris: European Space Agency; 2016 Dec 23 [cited 2024 Feb 9]. Available from:
[99]
Inocente D, Koop C, Petrov GI, Hoffman JA, Sumini V, Makaya A et al. Master planning and space architecture for a moon village. In:Proceedings of the 70th International Astronautical Congress (IAC); 2019 Oct 21- 25 ; Washington, DC, USA. Paris: International Astronautical Federation (IAF); 2019.
[100]
Whitmore M, Boyer J, Holubec K. NASA-STD-3001, space flight human-system standard and the human integration design handbook. In: Proceedings of the Industrial and Systems Engineering Research Conference; 2012 May 19-23; Orlando, FL, USA. San Diego: INCOSE-International Council On Systems Engineering; 2012.
[101]
Drysdale A. Esm history, capability, and methods. London: SAE International; 2003. SAE Technical Paper 2003-01-2630.
[102]
Nagendra NP. System analysis and evaluation of greenhouse modules within Moon/Mars habitats. In: Proceedingsof the 39th COSPAR Scientific Assembly; Jul 14-22 India. 2012 ; Mysore, Online: the SAO/NASA Astrophysics Data System; 2012.
[103]
K.W. Farries, P. Visintin, S.T. Smith,P. van Eyk. Sintered or melted regolith for lunar construction: state-of-the-art review and future research directions. Constr Build Mater, 296 (2021), Article 123627.
[104]
China’s Lunar andDeep Space Exploration. Notice on soliciting intentions for the development of scientific payloads and operational robots for the Chang’e-8 mission [Internet]. Beijing: China National Space Administration; 2024 Feb 7 [cited 2024 Feb 29]. Available from:
PDF(4674 KB)

Accesses

Citation

Detail

段落导航
相关文章

/