[1] |
Smith M, Craig D, Herrmann N, Mahoney E, Krezel J, McIntyre N, et al. The artemis program:an overview of NASA’s activities to return humans to the moon. In: Proceedings of the 2020 IEEE Aerospace Conference; 2020 Mar 7-14; Big Sky, MT, USA. New York City: IEEE; 2020. p. 1-10.
|
[2] |
J. Song. China emphasizes international cooperation in future lunar and deep space exploration. Bull Chin Acad Sci, 2 (2019), pp. 72-79.
|
[3] |
A. Jones, P. Patel, E. Waltz, N. Bajema. The latest developments in technology, engineering, and science: news. IEEE Spectr, 58 (2021), pp. 6-13.
|
[4] |
Flahaut J, van der Bogert CH, Crawford IA, Vincent-Bonnieu S. Scientific perspectives on Lunar exploration in Europe. npj Microgravity 2023;9:50.
|
[5] |
Sasaki H, Director J. JAXA’s Lunar exploration activities. In: Proceedingsof the 62nd Session of the Committee on the Peaceful Uses of Outer Space COPUOS; Jun 12-21 Austria. 2019. p. 2019 ; Vienna, Vienna: United Nations Office for Outer Space Affairs; 12-21.
|
[6] |
H.J. An. South Korea’s space program. Asia Policy, 15 (2020), pp. 34-42.
|
[7] |
T. Hoshino, S. Wakabayashi, M. Ohtake, Y. Karouji, T. Hayashi, H. Morimoto, et al. Lunar polar exploration mission for water prospection—JAXA’s current status of joint study with ISRO. Acta Astronaut, 176 (2020), pp. 52-58.
|
[8] |
International Space Exploration Coordination Group.In-situ resource gap assessment report. Vienna: International Space Exploration Coordination Group; 2021 Apr 21.
|
[9] |
C. Zhou, R. Chen, J. Xu, L. Ding, H. Luo, J. Fan, et al. In-situ construction method for lunar habitation: Chinese super mason. Autom Construct, 104 (2019), pp. 66-79.
|
[10] |
H. Roedel, M. Lepech, D. Loftus. Protein—regolith composites for space construction. Earth Space, 2014 ( 2014), pp. 291-300.
|
[11] |
A.D. Roberts, D.R. Whittall, R. Breitling, E. Takano, J.J. Blaker, S. Hay, et al. Blood, sweat, and tears: extraterrestrial regolith biocomposites with in vivo binders. Mater Today Bio, 12 (2021), Article 100136.
|
[12] |
P.T. Metzger, G.W. Autry. The cost of Lunar landing pads with a trade study of construction methods. New Space, 11 (2023), pp. 94-123.
|
[13] |
Levri J, Fisher JW, Jones HW, Drysdale AE, Ewert MK, Hanford AJ et al. Advanced life support equivalent system mass guidelines document. Washington, DC: National Aeronautics and Space Administration; 2003.
|
[14] |
G. Cesaretti, E. Dini, X. De Kestelier, V. Colla, L. Pambaguian. Building components for an outpost on the lunar soil by means of a novel 3D printing technology. Acta Astronaut, 93 (2014), pp. 430-450.
|
[15] |
C. Montes, K. Broussard, M. Gongre, N. Simicevic, J. Mejia, J. Tham, et al. Evaluation of lunar regolith geopolymer binder as a radioactive shielding material for space exploration applications. Adv Space Res, 56 (2015), pp. 1212-1221.
|
[16] |
S. Wilhelm, M. Curbach. Manufacturing of lunar concrete by steam. Earth Space, 2014 ( 2015), pp. 274-282.
|
[17] |
Lin T, Love H, Stark D. Physical properties of concrete made with Apollo 16 lunar soil sample. In:Proceedings of the Second Conference on Lunar Bases and Space Activities of the 21st Century; 1988 Apr 5- 7 ; Huston, TX, USA. Washington, DC: NASA Conference Publication; 1992.
|
[18] |
J.M. Neves, S. Ramanathan, P. Suraneni, R. Grugel, A. Radlińska. Characterization, mechanical properties, and microstructural development of lunar regolith simulant-portland cement blended mixtures. Constr Build Mater, 258 (2020), Article 120315.
|
[19] |
K.T. Wang, P.N. Lemougna, Q. Tang, W. Li, X.M. Cui. Lunar regolith can allow the synthesis of cement materials with near-zero water consumption. Gondwana Res, 44 (2017), pp. 1-6.
|
[20] |
S. Ma, Y. Jiang, S. Fu, P. He, C. Sun, X. Duan, et al. 3D-printed Lunar regolith simulant-based geopolymer composites with bio-inspired sandwich architectures. J Adv Ceram, 12 (2023), pp. 510-525.
|
[21] |
A. Alexiadis, F. Alberini, M.E. Meyer. Geopolymers from lunar and Martian soil simulants. Adv Space Res, 59 (2017), pp. 490-495.
|
[22] |
Z. Geng, L. Zhang, H. Pan, W. She, C. Zhou, H. Zhou, et al. In-situ solidification of alkali-activated lunar regolith: Insights into the chemical and physical origins. J Clean Prod, 391 (2023), Article 136147.
|
[23] |
G. Davis, C. Montes, S. Eklund. Preparation of lunar regolith based geopolymer cement under heat and vacuum. Adv Space Res, 59 (2017), pp. 1872-1885.
|
[24] |
G. Xiong, X. Guo, S. Yuan, M. Xia, Z. Wang. The mechanical and structural properties of lunar regolith simulant based geopolymer under extreme temperature environment on the moon through experimental and simulation methods. Constr Build Mater, 325 (2022), Article 126679.
|
[25] |
R. Zhang, S. Zhou, F. Li. Preparation of geopolymer based on lunar regolith simulant at in-situ lunar temperature and its durability under lunar high and cryogenic temperature. Constr Build Mater, 318 (2022), Article 126033.
|
[26] |
S. Pilehvar, M. Arnhof, R. Pamies, L. Valentini, AL. Kjøniksen. Utilization of urea as an accessible superplasticizer on the moon for lunar geopolymer mixtures. J Clean Prod, 247 (2020), Article 119177.
|
[27] |
S. Zhou, Z. Yang, R. Zhang, X. Zhu, F. Li. Preparation and evaluation of geopolymer based on BH-2 lunar regolith simulant under lunar surface temperature and vacuum condition. Acta Astronaut, 189 (2021), pp. 90-98.
|
[28] |
S. Zhou, X. Zhu, C. Lu, F. Li. Synthesis and characterization of geopolymer from lunar regolith simulant based on natural volcanic scoria. Chin J Aeronauti, 35 (2022), pp. 144-159.
|
[29] |
J.N. Mills, M. Katzarova, N.J. Wagner. Comparison of lunar and Martian regolith simulant-based geopolymer cements formed by alkali-activation for in-situ resource utilization. Adv Space Res, 69 (2022), pp. 761-777.
|
[30] |
Pakulski DM, Knox KJ. 92 May 31-Jun 4; Denver, CO, USA. Steam injection system for lunar concrete. In: Engineering, Construction, and Operations in space-III: Space’Proceedings of the 3rd International Conference; 1992 Online: The SAO/NASA Astrophysics Data System; 1992. p. 1347-58.
|
[31] |
T. Lin. Dry-mix/steam-injection method for producing high-strength concrete in one day. Spec Publ, 149 (1994), pp. 665-678.
|
[32] |
N. Su, Y.N. Peng. The characteristics and engineering properties of dry-mix/steam-injection concrete. Cement Concr Res, 31 (2001), pp. 609-619.
|
[33] |
L. Cai, L. Ding, H. Luo, X. Yi. Preparation of autoclave concrete from basaltic lunar regolith simulant: effect of mixture and manufacture process. Constr Build Mater, 207 (2019), pp. 373-386.
|
[34] |
W. Han, L. Ding, L. Cai, J. Zhu, H. Luo, T. Tang. Sintering of HUST-1 lunar regolith simulant. Constr Build Mater, 324 (2022), Article 126655.
|
[35] |
S. Lim, J. Bowen, G. Degli-Alessandrini, M. Anand, A. Cowley, P.V. Levin. Investigating the microwave heating behaviour of lunar soil simulant JSC-1A at different input powers. Sci Rep, 11 (2021), p. 2133.
|
[36] |
E.J. Faierson, K.V. Logan, B.K. Stewart, M.P. Hunt. Demonstration of concept for fabrication of lunar physical assets utilizing lunar regolith simulant and a geothermite reaction. Acta Astronaut, 67 (2010), pp. 38-45.
|
[37] |
Altemir D. Cold press sintering of simulated lunar basalt. In: Proceedings of the 24th Lunar and Planetary Science Conference; 1993 Mar 15-19; Houston, TX, USA. Online: NASA Astrophysics Data System; 1993. p. 23-4.
|
[38] |
T. Gualtieri, A. Bandyopadhyay. Compressive deformation of porous lunar regolith. Mater Lett, 143 (2015), pp. 276-278.
|
[39] |
A. Meurisse, J.C. Beltzung, M. Kolbe, A. Cowley, M. Sperl. Influence of mineral composition on sintering Lunar regolith. J Aerosp Eng, 30 (4) (2017), Article 040170.
|
[40] |
Hoshino T, Wakabayashi S, Yoshihara S, Hatanaka N. Key technology development for future Lunar utilization—block production using Lunar regolith. Trans Jpn Soc Aeronaut Space Sci Aero Technol Japan 2016;14:Pk_35-40.
|
[41] |
S.L. Taylor, A.E. Jakus, K.D. Koube, A.J. Ibeh, N.R. Geisendorfer, R.N. Shah, et al. Sintering of micro-trusses created by extrusion-3D-printing of lunar regolith inks. Acta Astronaut, 143 (2018), pp. 1-8.
|
[42] |
Effinger M, Tucker D. Statistical design study of lunar ceramic. Washington, DC: National Aeronautics and Space Administration Marshall Space Flight Center; 1994.
|
[43] |
S.J. Indyk, H. Benaroya. A structural assessment of unrefined sintered lunar regolith simulant. Acta Astronaut, 140 (2017), pp. 517-536.
|
[44] |
Khoshnevis B, Zhang J. Extraterrestrial construction using contour crafting. In:Proceedings of the 2012 International Solid Freeform Fabrication Symposium: An Additive Manufacturing Conference; 2012 Aug 6-8; Austin, TX, USA. Austin:University of Texas at Austin; 2012.
|
[45] |
M. Liu, W. Tang, W. Duan, S. Li, R. Dou, G. Wang, et al. Digital light processing of lunar regolith structures with high mechanical properties. Ceram Int, 45 (2019), pp. 5829-5836.
|
[46] |
M. Fateri, A. Cowley, M. Kolbe, O. Garcia, M. Sperl, S. Cristoforetti. Localized microwave thermal posttreatment of sintered samples of lunar simulant. J Aerosp Eng, 32 (2019), p. 04019051.
|
[47] |
Y.J. Kim, B.H. Ryu, H. Jin, J. Lee, H.S. Shin. Microstructural, mechanical, and thermal properties of microwave-sintered KLS-1 lunar regolith simulant. Ceram Int, 47 (2021), pp. 26891-26897.
|
[48] |
L.A. Taylor, T.T. Meek. Microwave sintering of lunar soil: properties, theory, and practice. J Aerosp Eng, 18 (2005), pp. 188-196.
|
[49] |
Ishikawa Y, Sasaki T, Higasayama T. 92 May 31-Jun 4; Denver, CO, USA. Simple and efficient methods to produce construction materials for lunar and Mars bases. In: Engineering, Construction, and Operations in space-III: Space’Proceedings of the 3rd International Conference; 1992 Online: The SAO/NASA Astrophysics Data System; 1992. p. 1335-46.
|
[50] |
Meek T, Vaniman D, Blake R, Godbole M. Sintering of lunar soil simulants using 2.45 GHz microwave radiation. In: Abstracts of the Lunar and Planetary Science Conference; 1987 Mar 16-20; Houston, TX, USA. Washington, DC: NASA Lunar and Planetary Institute; 1987. p. 635.
|
[51] |
Ferguson RE, Shafirovich E, Mantovani JG. Combustion joining of regolith tiles for in situ fabrication of launch/landing pads on the moon and mars. In:Proceedings of the 16th Biennial International Conference on Engineering, Science, Construction, and Operations in Challenging Environments; 2018 Apr 9- 12 ; Cleveland, OH, USA. Houston: Lunar and Planetary Institute; 2018. p. 281-8.
|
[52] |
Hobosyan M, Martirosyan K. Sintering of regolith by activated thermites:a novel approach for lunar in-situ resource utilization. In: Proceedings of the 43rd Annual Lunar and Planetary Science Conference; 2012 Mar 19-23; The Woodlands, TX, USA. Houston: Lunar and Planetary Institute; 2012. p. 1019.
|
[53] |
A. Delgado, E. Shafirovich. Towards better combustion of lunar regolith with magnesium. Combust Flame, 160 (2013), pp. 1876-1882.
|
[54] |
Faierson EJ, Logan KV. Geothermite reactions for in situ resource utilization on the moon and beyond. In: Proceedings of the Earth and Space 2010: Engineering, Operations in Challenging Environments;Science, Construction, and 2010 Mar 14-17; Honolulu, HI, USA. Washington, DC: American Society of Civil Engineers; 2010. p. 1152-61.
|
[55] |
G. Corrias, R. Licheri, R. Orrù, G. Cao. Self-propagating high-temperature reactions for the fabrication of Lunar and Martian physical assets. Acta Astronaut, 70 (2012), pp. 69-76.
|
[56] |
A. Meurisse, A. Makaya, C. Willsch, M. Sperl. Solar 3D printing of lunar regolith. Acta Astronaut, 152 (2018), pp. 800-810.
|
[57] |
JC. Ginés-Palomares, M. Fateri, E. Kalhöfer, T. Schubert, L. Meyer, N. Kolsch, et al. Laser melting manufacturing of large elements of lunar regolith simulant for paving on the Moon. Sci Rep, 13 (1) (2023), p. 15593.
|
[58] |
Desai CS. Development and mechanical properties of structural materials from lunar simulant. Tucson: NASA Space Engineering Research Center for Utilization of Local Planetary Resources; 1991.
|
[59] |
J. Appelbaum, D.J. Flood. Solar radiation on Mars. Sol Energy, 45 (1990), pp. 353-363.
|
[60] |
Hintze P, Curran J, Back T. Lunar surface stabilization via sintering or the use of heat cured polymers. In:Proceedings of the 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition; 2009 Jan 5- 8 ; Orlando, FL, USA. Reston: American Institute of Aeronautics and Astronautics; 2009.
|
[61] |
W. Zheng, G. Qiao. Mechanical behavior of the metal parts welded with extraterrestrial regolith simulant by the solar concentrator in ISRU & ISRF application. Adv Space Res, 65 (2020), pp. 2303-2314.
|
[62] |
M. Fateri, A. Meurisse, M. Sperl, D. Urbina, H.K. Madakashira, S. Govindaraj, et al. Solar sintering for Lunar additive manufacturing. J Aerosp Eng, 32 (6) (2019), p. 04019101.
|
[63] |
V.K. Balla, L.B. Roberson, G.W. O’Connor, S. Trigwell, S. Bose, A. Bandyopadhyay. First demonstration on direct laser fabrication of lunar regolith parts. Rapid Prototyping J, 18 (2012), pp. 451-457.
|
[64] |
M. Fateri, A. Gebhardt. Process parameters development of selective laser melting of Lunar regolith for on-site manufacturing applications. Int J Appl Ceram Technol, 12 (2015), pp. 46-52.
|
[65] |
A. Goulas, J.G.P. Binner, D.S. Engstrøm, R.A. Harris, R.J. Friel. Mechanical behaviour of additively manufactured lunar regolith simulant components. Proc Inst Mech Eng Part L: J Mater Des Appl, 233 (2018), pp. 1629-1644.
|
[66] |
L. Caprio, A.G. Demir, B. Previtali, B.M. Colosimo. Determining the feasible conditions for processing lunar regolith simulant via laser powder bed fusion. Addit Manuf, 32 (2020), Article 101029.
|
[67] |
J.A. Happel. Indigenous materials for lunar construction. Appl Mech Rev, 46 (1993), pp. 313-325.
|
[68] |
W. Zheng, G. Qiao. Microstructure, thermophysical, and mechanical properties of bulk glass prepared from molten lunar regolith simulant. Adv Space Res, 69 (2022), pp. 3130-3139.
|
[69] |
Happel JA, Willam K, Shing B. 92 May 31-Jun 4; Denver, CO, USA. Prototype lunar base construction using indigenous materials. In: Engineering, Construction, and Operations in space-III: Space’Proceedings of the 3rd International Conference; 1992 Online: The SAO/NASA Astrophysics Data System; 1992. p. 112-22.
|
[70] |
H.A. Toutanji, S. Evans, R.N. Grugel. Performance of lunar sulfur concrete in lunar environments. Constr Build Mater, 29 (2012), pp. 444-448.
|
[71] |
H. Liao, J. Zhu, S. Chang, G. Xue, J. Pang, H. Zhu. Lunar regolith-AlSi10Mg composite fabricated by selective laser melting. Vacuum, 187 (2021), Article 110122.
|
[72] |
T.S. Lee, J. Lee, A.K. Yong. Manufacture of polymeric concrete on the Moon. Acta Astronaut, 114 (2015), pp. 60-64.
|
[73] |
Gosau JM. Regolith stabilization and building materials for the lunar surface. In:Proceedings of the 13th ASCE Aerospacespace Division Conference on Engineering, Science, Construction, and Operations in Challenging Environments, and the 5th NASA/ASCE Workshop On Granular Materials in Space Exploration; 2012 Apr 15- 18 ; Pasadena, CA, USA. Washington, DC: American Society of Civil Engineers; 2012. p. 243-9.
|
[74] |
Omar HA. Production of lunar concrete using molten sulfur. Report. Washington, DC: The National Aeronautics and Space Administration; 1993. NASA Grant NAG8-278.
|
[75] |
Toutanji H, Glenn-Loper B, Schrayshuen B. Strength and durability performance of waterless lunar concrete. In:Proceedings of the 43rd AIAA Aerospace Sciences Meeting and Exhibit; 2005 Jan 10- 13 ; Reno, NV, USA. Reston: American Institute of Aeronautics and Astronautics; 2005.
|
[76] |
Liu Z, Li J, Yang C, Wang X, Xiao J, Wang L et al. Cold sintering of lunar regolith simulant: an energy-efficient and high-reliable strategy for building lunar bases. 2023. SSRN 4371120.
|
[77] |
Smithers GA, Nehls MK, Hovater MA, Evans SW, Miller JS, Broughton RM Jr, et al. A one-piece lunar regolith bag garage prototype. Report. Huntsville: NASA Marshall Space Flight Center; 2007. No. NASA/TM-2007-215073.
|
[78] |
Finckenor M. Comparison of high-performance fiber materials properties in simulated and actual space environments. Technical Memorandum. Huntsville: NASA Marshall Space Flight Center; 2017. No. NASA/TM-2017-219634.
|
[79] |
Z. Zhao, Q. Lu, X. Jiang. An energy efficient building system using natural resources—superadobe system research. Procedia Eng, 121 (2015), pp. 1179-1185.
|
[80] |
Ruess F, Zacny K, Braun B. Lunar in-situ resource utilization:regolith bags automated filling technology. In:Proceedings of the AIAA SPACE 2008 Conference & Exposition; 2008 Sep 9-11 ; San Diego, CA, USA. Reston: American Institute of Aeronautics and Astronautics; 2008.
|
[81] |
H. Mei, W. Bao, D. Yu, P. Liu, Y. Wang, W. Pan, et al. Research on building plans design for future lunar base. J Deep Space Explor, 9 (2022), pp. 553-559.
|
[82] |
A.R. Tóth, K. Bagi. Analysis of a lunar base structure using the discrete-element method. J Aerosp Eng, 24 (2011), pp. 397-401.
|
[83] |
Soleymani T, Trianni V, Bonani M, Mondada F, Dorigo M. Autonomous construction with compliant building material. In:Intelligent Autonomous Systems 13: Proceedings of the 13th International Conference IAS-13 (Advances in Intelligent Systems and Computing, 302); 2014 Jul 15-18; Padova, Italy. Berlin:Springer; 2016. p. 1371-88.
|
[84] |
B. Harvey. China in space:the great leap forward. Springer Nature, Berlin (2019).
|
[85] |
T. Rousek, K. Eriksson, O. Doule. SinterHab. Acta Astronaut, 74 (2012), pp. 98-111.
|
[86] |
R.A. Robie, B.S. Hemingway, W.H. Wilson. Specific heats of lunar surface materials from 90 to 350 degrees Kelvin. Science, 167 ( 1970), pp. 749-750.
|
[87] |
Colozza AJ. Small lunar base camp and in situ resource utilization oxygen production facility power system comparison. Report. Cleveland: Glenn Research Center; 2020. NASA/CR-2020-220368.
|
[88] |
C. Zhou, B. Tang, L. Ding, P. Sekula, Y. Zhou, Z. Zhang. Design and automated assembly of Planetary LEGO Brick for lunar in-situ construction. Autom Const, 118 (2020), Article 103282.
|
[89] |
S. Mottaghi, H. Benaroya. Design of a lunar surface structure. I: design configuration and thermal analysis. J Aerosp Eng, 28 (2015), p. 04014052.
|
[90] |
C. Meyers, H. Toutanji. Analysis of lunar-habitat structure using waterless concrete and tension glass fibers. J Aerosp Eng, 20 (2007), pp. 220-226.
|
[91] |
Malla RB, Chaudhuri D. Analysis of a 3D frame—membrane structure for lunar base. In:Proceedings of the 10th Biennial International Conference on Engineering, Construction, and Operations in Challenging Environments and Second NASA/ARO/ASCE Workshop on Granular Materials in Lunar and Martian Exploration; 2006 Mar 5- 8 ; Houston, TX, USA. Washington, DC: American Society of Civil Engineers; 2006. p. 1-8.
|
[92] |
J. Straub. In search of technology readiness level (TRL) 10. Aerosp Sci Technol, 46 (2015), pp. 312-320.
|
[93] |
Land P. Lunar base design. In: Lunar bases and space activities of the 21st century. Houston: Lunar and Planetary Institute; 1985. p. 363.
|
[94] |
M.Z. Naser. Extraterrestrial construction materials. Prog Mater Sci, 105 (2019), Article 100577.
|
[95] |
Kessler P, Prater T, Nickens T, Harris D. Artemis deep space habitation:enabling a sustained human presence on the Moon and beyond. In:Proceedings of the 2022 IEEE Aerospace Conference (AERO); 2022 Mar 5- 12 ; Big Sky, MA, USA. Reston: American Institute of Aeronautics and Astronautics; 2022. p. 1-12.
|
[96] |
Harris DW, Kessler PD, Nickens TM, Choate AJ, Horvath BL, Simon MA et al. Moon to Mars (M2M) habitation considerations: a snap shot as of January 2022. Technical Memorandum. Huntsville: NASA Marshall Space Flight Center; 2022. No. NASA/TM-20220000524.
|
[97] |
Flores G, Harris D, McCauley R, Canerday S, Ingram L, Herrmann N. Deep space habitation:establishing a sustainable human presence on the moon and beyond. In: Proceedings of the 2021 IEEE Aerospace Conference ( 50100;2021 Mar6-13 ; Big Sky, MA, USA. New York City: IEEE; 2021. p. 1-7.
|
[98] |
Woerner J. Moon Village: a vision for global cooperation and Space 4.0 [Internet]. Paris: European Space Agency; 2016 Dec 23 [cited 2024 Feb 9]. Available from:
|
[99] |
Inocente D, Koop C, Petrov GI, Hoffman JA, Sumini V, Makaya A et al. Master planning and space architecture for a moon village. In:Proceedings of the 70th International Astronautical Congress (IAC); 2019 Oct 21- 25 ; Washington, DC, USA. Paris: International Astronautical Federation (IAF); 2019.
|
[100] |
Whitmore M, Boyer J, Holubec K. NASA-STD-3001, space flight human-system standard and the human integration design handbook. In: Proceedings of the Industrial and Systems Engineering Research Conference; 2012 May 19-23; Orlando, FL, USA. San Diego: INCOSE-International Council On Systems Engineering; 2012.
|
[101] |
Drysdale A. Esm history, capability, and methods. London: SAE International; 2003. SAE Technical Paper 2003-01-2630.
|
[102] |
Nagendra NP. System analysis and evaluation of greenhouse modules within Moon/Mars habitats. In: Proceedingsof the 39th COSPAR Scientific Assembly; Jul 14-22 India. 2012 ; Mysore, Online: the SAO/NASA Astrophysics Data System; 2012.
|
[103] |
K.W. Farries, P. Visintin, S.T. Smith,P. van Eyk. Sintered or melted regolith for lunar construction: state-of-the-art review and future research directions. Constr Build Mater, 296 (2021), Article 123627.
|
[104] |
China’s Lunar andDeep Space Exploration. Notice on soliciting intentions for the development of scientific payloads and operational robots for the Chang’e-8 mission [Internet]. Beijing: China National Space Administration; 2024 Feb 7 [cited 2024 Feb 29]. Available from:
|