加压富氧燃烧过程中多污染物的生成与控制——硫氧化物、氮氧化物、颗粒物和汞

戴高峰, 张嘉烨, Zia ur Rahman, 张宇峰, 张伊黎, Milan Vujanović, Hrvoje Mikulčić, Nebojsa Manić, Aneta Magdziarz, 谭厚章, Richard L. Axelbaum, 王学斌

工程(英文) ›› 2024, Vol. 39 ›› Issue (8) : 127-153.

PDF(6535 KB)
PDF(6535 KB)
工程(英文) ›› 2024, Vol. 39 ›› Issue (8) : 127-153. DOI: 10.1016/j.eng.2024.03.005
研究论文
Review

加压富氧燃烧过程中多污染物的生成与控制——硫氧化物、氮氧化物、颗粒物和汞

作者信息 +

Multi-Pollutant Formation and Control in Pressurized Oxy-Combustion: SOx, NOx, Particulate Matter, and Mercury

Author information +
History +

摘要

富氧燃烧是一种前景广阔的碳捕集技术,但常压富氧燃烧的净发电效率相对较低,限制了其在发电厂中的应用。在加压富氧燃烧系统中,空气分离装置、锅炉、烟气再循环装置以及二氧化碳净化和压缩装置均在加压下运行,这使得该技术效率更高,与常压富氧燃烧相比具有许多优势,如氮氧化物排放量低、锅炉体积小等。加压富氧燃烧在工业应用方面更有前景,近年来引起了广泛的研究,它可以产生纯度约为95%的高压二氧化碳,能够直接用于提高石油采收率或地质封存,然而,其污染物排放必须符合碳捕集、封存和利用的标准。由于加压富氧燃烧中的氧气和水分浓度较高,通过硫氧化物和氮氧化物的氧化和溶解形成的酸会增加,加剧管道和设备的腐蚀。此外,颗粒物和汞排放也会危害环境和人类健康。加压富氧燃烧与常压富氧燃烧的主要区别在于前者的压力较高,因此,必须了解压力对加压富氧燃烧过程中硫氧化物、氮氧化物、颗粒物和汞排放的影响,并采用有效的控制方法减少这些污染物的生成。本文综述了有关加压富氧燃烧系统中硫氧化物、氮氧化物、颗粒物和汞的生成与控制研究的最新进展,有助于实现加压富氧燃烧系统污染物的高效控制。

Abstract

Oxy-combustion is a promising carbon-capture technology, but atmospheric-pressure oxy-combustion has a relatively low net efficiency, limiting its application in power plants. In pressurized oxy-combustion (POC), the boiler, air separation unit, flue gas recirculation unit, and C O 2 purification and compression unit are all operated at elevated pressure; this makes the process more efficient, with many advantages over atmospheric pressure, such as low N O x emissions, a smaller boiler size, and more. POC is also more promising for industrial application and has attracted widespread research interest in recent years. It can produce high-pressure C O 2 with a purity of approximately 95 %, which can be used directly for enhanced oil recovery or geo-sequestration. However, the pollutant emissions must meet the standards for carbon capture, storage, and utilization. Because of the high oxygen and moisture concentrations in POC, the formation of acids via the oxidation and solution of S O x and N O x can be increased, causing the corrosion of pipelines and equipment. Furthermore, particulate matter (PM) and mercury emissions can harm the environment and human health. The main distinction between pressurized and atmospheric-pressure oxy-combustion is the former’s elevated pressure; thus, the effect of this pressure on the pollutants emitted from P O C -including S O x , N O x , P M, and mercury-must be understood, and effective control methodologies must be incorporated to control the formation of these pollutants. This paper reviews recent advances in research on S O x , N O x , P M, and mercury formation and control in POC systems that can aid in pollutant control in such systems.

关键词

加压富氧燃烧 / 硫氧化物 / 氮氧化物 / 颗粒物 / / 直接接触冷凝管 / 碳捕集与封存

Keywords

Pressurized oxy-combustion / Sulfur oxides / Nitrogen oxides / Particulate matter / Mercury / Direct contact cooler / Carbon capture and sequestration

引用本文

导出引用
戴高峰, 张嘉烨, Zia ur Rahman. 加压富氧燃烧过程中多污染物的生成与控制——硫氧化物、氮氧化物、颗粒物和汞. Engineering. 2024, 39(8): 127-153 https://doi.org/10.1016/j.eng.2024.03.005

参考文献

[1]
H. Mikulčić, I. Ridjan Skov, D.F. Dominković, S.R. Wan Alwi, Z.A. Manan, R. Tan, et al. Flexible carbon capture and utilization technologies in future energy systems and the utilization pathways of captured CO2. Renew Sustain Energy Rev, 114 (2019), p. 109338.
[2]
C. Chao, Y. Deng, R. Dewil, J. Baeyens, X. Fan. Post-combustion carbon capture. Renew Sustain Energy Rev, 138 (2021), p. 110490.
[3]
R. Stanger, T. Wall, R. Spörl, M. Paneru, S. Grathwohl, M. Weidmann, et al. Oxyfuel combustion for CO2 capture in power plants. Int J Greenh Gas Control, 40 (2015), pp. 55-125.
[4]
T. Wall, Y. Liu, C. Spero, L. Elliott, S. Khare, R. Rathnam, et al. An overview on oxyfuel coal combustion—state of the art research and technology development. Chem Eng Res Des, 87 (8) (2009), pp. 1003-1016.
[5]
E. Koohestanian, F. Shahraki. Review on principles, recent progress, and future challenges for oxy-fuel combustion CO2 capture using compression and purification unit. J Environ Chem Eng, 9 (4) (2021), p. 105777.
[6]
Zheng L, Pomalis R, Clements B, Herage T. Optimization of a high pressure oxy-fuel combustion process for power generation and CO2 capture. In:Proceedings of the 35th International Technical Conference on Clean Coal & Fuel Systems; 2010 Jun 6- 10; Clearwater, FL, USA. 2010.
[7]
Fassbender A. Pressurized oxy-fuel combustion for multi-pollutant capture. In:Proceedings of The 30th International Technical Conference on Coal Utilization and Fuel Systems; 2005 Apr 17- 21; Clearwater, FL, USA. 2005.
[8]
Malavasi M,Rossetti E, inventors. High-efficiency combustors with reduced environmental impact and processes for power generation derivable therefrom. United States patent US 8453583. 2013 Jun 4.
[9]
J. Hong, G. Chaudhry, J.G. Brisson, R. Field, M. Gazzino, A.F. Ghoniem. Analysis of oxy-fuel combustion power cycle utilizing a pressurized coal combustor. Energy, 34 (9) (2009), pp. 1332-1340.
[10]
J. Hong, R. Field, M. Gazzino, A.F. Ghoniem. Operating pressure dependence of the pressurized oxy-fuel combustion power cycle. Energy, 35 (12) (2010), pp. 5391-5399.
[11]
A. Gopan, B.M. Kumfer, R.L. Axelbaum. Effect of operating pressure and fuel moisture on net plant efficiency of a staged, pressurized oxy-combustion power plant. Int J Greenh Gas Control, 39 (2015), pp. 390-396.
[12]
Z. Yang, D. Khatri, P. Verma, T. Li, A. Adeosun, B.M. Kumfer, et al. Experimental study and demonstration of pilot-scale, dry feed, oxy-coal combustion under pressure. Appl Energy, 285 (2021), p. 116367.
[13]
H. Hagi, M. Nemer, Y. Le Moullec, C. Bouallou. Towards second generation oxy-pulverized coal power plants: energy penalty reduction potential of pressurized oxy-combustion systems. Energy Procedia, 63 (2014), pp. 431-439.
[14]
A. Gopan, B.M. Kumfer, J. Phillips, D. Thimsen, R. Smith, R.L. Axelbaum. Process design and performance analysis of a staged, pressurized oxy-combustion (SPOC) power plant for carbon capture. Appl Energy, 125 (2014), pp. 179-188.
[15]
T.Z. Tumsa, S.H. Lee, F. Normann, K. Andersson, S. Ajdari, W. Yang. Concomitant removal of NOx and SOx from a pressurized oxy-fuel combustion process using a direct contact column. Chem Eng Res Des, 131 (2018), pp. 626-634.
[16]
J. Zhang, C. Chen, J. Lu, Z. Shi, A. Zhou, H. Tan, et al. Modeling coal swelling during pyrolysis at elevated pressure by using a single bubble model: validation and application. Combust Sci Technol, 195 (5) (2023), pp. 1138-1150.
[17]
W. Zhang, Y. Zhao, S. Sun, D. Feng, P. Li. Effects of pressure on the characteristics of bituminous coal pyrolysis char formed in a pressurized drop tube furnace. Energy Fuels, 33 (12) (2019), pp. 12219-12226.
[18]
M. Lei, Y. Zhang, D. Hong, B. Ye. Characterization of nitrogen and sulfur migration during pressurized coal pyrolysis and oxy-fuel combustion. Fuel, 317 (2022), p. 123484.
[19]
X. Liang, Q. Wang, Z. Luo, E. Eddings, T. Ring, S. Li, et al. Experimental study on sulfur-containing products in pressurised oxy-fuel pyrolysis of pulverised coal. J Clean Prod, 279 (2021), p. 123818.
[20]
Y. Duan, L. Duan, J. Wang, E.J. Anthony. Observation of simultaneously low CO, NOx and SO2 emission during oxy-coal combustion in a pressurized fluidized bed. Fuel, 242 (2019), pp. 374-381.
[21]
L. Pang, Y. Shao, W. Zhong, Z. Gong, H. Liu. Experimental study of NOx emissions in a 30 kWth pressurized oxy-coal fluidized bed combustor. Energy, 194 (2020), p. 116756.
[22]
Z. Dobó, M. Backman, K.J. Whitty. Experimental study and demonstration of pilot-scale oxy-coal combustion at elevated temperatures and pressures. Appl Energy, 252 (2019), p. 113450.
[23]
S. Gardner, C. Carpenter, J. Tuia, A. Skousen, D. Badger, S. Thomas, et al. Design and performance of a laboratory scale pressurized oxy-coal reactor. Results Eng, 18 (2023), p. 101192.
[24]
Schmitt J, Malavasi M. Development of a 25 MWth flameless pressurized oxy-combustion pilot. In:Proceedings of ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition; 2021 Jun 7- 11; online. 2021.
[25]
J.A. Lasek, K. Głód, M. Janusz, K. Kazalski, J. Zuwała. Pressurized oxy-fuel combustion: a study of selected parameters. Energy Fuels, 26 (11) (2012), pp. 6492-6500.
[26]
C. Bai, W. Zhang, L. Deng, Y. Zhao, S. Sun, D. Feng, et al. Experimental study of nitrogen conversion during char combustion under a pressurized O2/H2O atmosphere. Fuel, 311 (2022), p. 122529.
[27]
R. Zu, X. Wang, J. Zhang, J. Baleta, M. Vujanović, H. Tan. Kinetic study and optimization on SNCR process in pressurized oxy-combustion. J Energy Inst, 94 (2021), pp. 263-271.
[28]
C. Iloeje, R. Field, A.F. Ghoniem. Modeling and parametric analysis of nitrogen and sulfur oxide removal from oxy-combustion flue gas using a single column absorber. Fuel, 160 (2015), pp. 178-188.
[29]
Z. Abbas, T. Mezher, M.R.M. Abu-Zahra. Evaluation of CO2 purification requirements and the selection of processes for impurities deep removal from the CO2 product stream. Energy Procedia, 37 (2013), pp. 2389-2396.
[30]
P. Lako, A.J. van der Welle, M. Harmelink, M.D.C. van der Kuip, A. Haan-Kamminga, F. Blank, et al. Issues concerning the implementation of the CCS directive in the Netherlands. Energy Procedia, 4 (2011), pp. 5479-5486.
[31]
Z. Hu, X. Wang, Y. Zhou, H. Wu, P. Glarborg, H. Tan. Assessment of the effect of alkali chemistry on post-flame aerosol formation during oxy-combustion of biomass. Fuel, 311 (2022), p. 122521.
[32]
X. Wang, G.S. Yablonsky, Z. ur Rahman, Z. Yang, P. Du, H. Tan, et al. Assessment of sulfur trioxide formation due to enhanced interaction of nitrogen oxides and sulfur oxides in pressurized oxy-combustion. Fuel, 290 (2021), p. 119964.
[33]
G. Dai, W. Ma, J. Zhang, Y. Zheng, X. Wang, H. You, et al. Experimental and density functional study of sulfur trioxide formation catalyzed by hematite in pressure oxy-combustion. Fuel, 323 (2022), p. 124433.
[34]
G. Dai, J. Zhang, X. Wang, H. Tan, Z. Rahman. Calcination and desulfurization characteristics of calcium carbonate in pressurized oxy-combustion. Energy, 261 (2022), p. 125150.
[35]
R. Zu. Nitrogen evolution,NOx formation and reduction in pressurized oxy coal combustion. Renew Sustain Energy Rev, 157 (2022), p. 112020.
[36]
X. Wang, G. Dai, G. Yablonsk, M. Vujanovic, R. Axelbaum. A kinetic evaluation on NO2 formation in the post-flame region of pressurized oxy-combustion process. Therm Sci, 5 (4) (2020), pp. 2609-2620.
[37]
R. Zu. Numerical assessment of NOx evolution in ammonia oxidation and its control by reburning in pressurized oxy-combustion. J Energy Inst, 100 (2022), pp. 89-98.
[38]
R. Zu, J. Zhang, L. Zhang, X. Wang, Z. Yang, H. Tan, et al. A kinetic evaluation and optimization study on NOx reduction by reburning under pressurized oxy-combustion. J Environ Manage, 290 (2021), p. 112690.
[39]
J. Zhang, Y. Zheng, X. Wang, G. Dai, H. Tan, Z. Rahman. Nitrogen oxide reduction in pressurized oxy-coal combustion. Combust Flame, 246 (2022), p. 112418.
[40]
J. Zhang, Z. Shi, Y. Zheng, H. Tan, X. Wang. Fragmentation and mineral transformation behavior during combustion of char produced at elevated pressure. Energy Convers Manage, 258 (2022), p. 115538.
[41]
J. Zhang, C. Chen, A. Zhou, Z. Rahman, X. Wang, D. Stojiljković, et al. Morphology of char particles from coal pyrolysis in a pressurized entrained flow reactor: effects of pressure and atmosphere. Energy, 238 (2022), p. 121846.
[42]
J. Zhang, C. Chen, J. Lu, Z. Shi, A. Zhou, H. Tan, et al. Modeling coal swelling during pyrolysis at elevated pressure by using a single bubble model: validation and application. Combust Sci Technol, 195 (5) (2021), pp. 1138-1150.
[43]
C.L. Chou. Sulfur in coals: a review of geochemistry and origins. Int J Coal Geol, 100 (2012), pp. 1-13.
[44]
L.P. Belo, R. Spörl, K.V. Shah, L.K. Elliott, R.J. Stanger, J. Maier, et al. Sulfur capture by fly ash in air and oxy-fuel pulverized fuel combustion. Energy Fuels, 28 (8) (2014), pp. 5472-5479.
[45]
R.K. Srivastava, C.A. Miller, C. Erickson, R. Jambhekar. Emissions of sulfur trioxide from coal-fired power plants. J Air Waste Manag Assoc, 54 (6) (2004), pp. 750-762.
[46]
L. Tian, W. Yang, Z. Chen, X. Wang, H. Yang, H. Chen. Sulfur behavior during coal combustion in oxy-fuel circulating fluidized bed condition by using TG-FTIR. J Energy Inst, 89 (2) (2016), pp. 264-270.
[47]
L. Duan, C. Zhao, W. Zhou, C. Liang, X. Chen. Sulfur evolution from coal combustion in O2/CO2 mixture. J Anal Appl Pyrolysis, 86 (2) (2009), pp. 269-273.
[48]
L. Chen, S. Bhattacharya. Sulfur emission from victorian brown coal under pyrolysis, oxy-fuel combustion and gasification conditions. Environ Sci Technol, 47 (3) (2013), pp. 1729-1734.
[49]
X. Liang, Q. Wang, Z. Luo, E. Eddings, T. Ring, S. Li, et al. Experimental and numerical investigation on sulfur transformation in pressurized oxy-fuel combustion of pulverized coal. Appl Energy, 253 (2019), p. 113542.
[50]
H. Zan, X. Chen, W. Zhong, J. Ma, D. Liu, G. Lian, et al. Coal combustion emissions and ash formation characteristics during oxy-fuel combustion in a 100 kWth pressurized circulating fluidized bed. Fuel Process Technol, 228 (2022), p. 107140.
[51]
L. Pang, Y. Shao, W. Zhong, H. Liu. Oxy-coal combustion in a 30 kWth pressurized fluidized bed: effect of combustion pressure on combustion performance, pollutant emissions and desulfurization. Proc Combust Inst, 38 (3) (2021), pp. 4121-4129.
[52]
R. Tang, Q. Liu, W. Zhong, G. Lian, H. Yu. Experimental study of SO2 emission and sulfur conversion characteristics of pressurized oxy-fuel co-combustion of coal and biomass. Energy Fuels, 34 (12) (2020), pp. 16693-16704.
[53]
Q. Liu, W. Zhong, A. Yu, C.H. Wang. Co-firing of coal and biomass under pressurized oxy-fuel combustion mode in a 10 kWth fluidized bed: nitrogen and sulfur pollutants. Chem Eng J, 450 (2022), p. 138401.
[54]
C. Wang, M. Lei, W. Yan, S. Wang, L. Jia. Combustion characteristics and ash formation of pulverized coal under pressurized oxy-fuel conditions. Energy Fuels, 25 (10) (2011), pp. 4333-4344.
[55]
J. Shabanian, J. Chaouki. Effects of temperature, pressure, and interparticle forces on the hydrodynamics of a gas-solid fluidized bed. Chem Eng J, 313 (2017), pp. 580-590.
[56]
R. Spörl, J. Maier, L. Belo, K. Shah, R. Stanger, T. Wall, et al. Mercury and SO3 emissions in oxy-fuel combustion. Energy Procedia, 63 (2014), pp. 386-402.
[57]
P. Glarborg, D. Kubel, K. Dam-Johansen, H.M. Chiang, J.W. Bozzelli. Impact of SO2 and NO on CO oxidation under post-flame conditions. Int J Chem Kinet, 28 (10) (1996), pp. 773-790.
[58]
Y. Sarbassov, L. Duan, V. Manovic, E.J. Anthony. Sulfur trioxide formation/emissions in coal-fired air- and oxy-fuel combustion processes: a review. Greenh Gases, 8 (3) (2018), pp. 402-428.
[59]
L.P. Belo, L.K. Elliott, R.J. Stanger, R. Spörl, K.V. Shah, J. Maier, et al. High-temperature conversion of SO2 to SO3: homogeneous experiments and catalytic effect of fly ash from air and oxy-fuel firing. Energy Fuels, 28 (11) (2014), pp. 7243-7251.
[60]
T.L. Jørgensen, H. Livbjerg, P. Glarborg. Homogeneous and heterogeneously catalyzed oxidation of SO2. Chem Eng Sci, 62 (16) (2007), pp. 4496-4499.
[61]
E. Croiset, K.V. Thambimuthu. NOx and SO2 emissions from O2/CO2 recycle coal combustion. Fuel, 80 (14) (2001), pp. 2117-2121.
[62]
J. Ahn, R. Okerlund, A. Fry, E.G. Eddings. Sulfur trioxide formation during oxy-coal combustion. Int J Greenh Gas Control, 5 (2011), pp. S127-S135.
[63]
B. Roy, L. Chen, S. Bhattacharya. Nitrogen oxides, sulfur trioxide, and mercury emissions during oxy-fuel fluidized bed combustion of victorian brown coal. Environ Sci Technol, 48 (24) (2014), pp. 14844-14850.
[64]
B. Xiang, M. Zhang, Y. Wu, H. Yang, H. Zhang, J. Lu. Experimental and modeling studies on sulfur trioxide of flue gas in a coal-fired boiler. Energy Fuels, 31 (6) (2017), pp. 6284-6297.
[65]
L. Duan, Y. Duan, Y. Sarbassov, Y. Li, E.J. Anthony. SO3 formation under oxy-CFB combustion conditions. Int J Greenh Gas Control, 43 (2015), pp. 172-178.
[66]
X. Wang, J. Zhang, Z. Wang, Y. Wang, M. Vujanović, P. Li, et al. Experimental and kinetics study on SO3 catalytic formation by Fe2O3 in oxy-combustion. J Environ Manage, 236 (2019), pp. 420-427.
[67]
G. Dai, X. Wang, H. You, Y. Wang, Z. Shan, H. Tan. Catalytic function of ferric oxide and effect of water on the formation of sulfur trioxide. J Environ Manage, 264 (2020), p. 110499.
[68]
X. Wang, A. Adeosun, G. Yablonsky, A. Gopan, P. Du, R.L. Axelbaum. Synergistic SOx/NOx chemistry leading to enhanced SO3 and NO2 formation during pressurized oxy-combustion. React Kinet Mech Catal, 123 (2) (2018), pp. 313-322.
[69]
E.H. Baker. The calcium oxide-carbon dioxide system in the pressure range 1-300 atmospheres. J Chem Soc (1962), pp. 464-470.
[70]
K. Myöhänen, T. Hyppänen, T. Pikkarainen, T. Eriksson, A. Hotta. Near zero CO2 emissions in coal firing with oxy-fuel circulating fluidized bed boiler. Chem Eng Technol, 32 (3) (2009), pp. 355-363.
[71]
E.J. Anthony, E.M. Bulewicz, L. Jia. Reactivation of limestone sorbents in FBC for SO2 capture. Pror Energy Combust Sci, 33 (2) (2007), pp. 171-210.
[72]
M.J.H. Snow, J.P. Longwell, A.F. Sarofim. Direct sulfation of calcium carbonate. Ind Eng Chem Res, 27 (2) (1988), pp. 268-273.
[73]
G. Hu, K. Dam-Johansen, S. Wedel, H.J. Peter. Review of the direct sulfation reaction of limestone. Pror Energy Combust Sci, 32 (4) (2006), pp. 386-407.
[74]
C. Chen, C. Zhao, S. Liu, C. Wang. Direct sulfation of limestone based on oxy-fuel combustion technology. Environ Eng Sci, 26 (10) (2009), pp. 1481-1488.
[75]
M.D.L. Obras-Loscertales, A. Rufas, L.F.D. Diego, F. García-Labiano, P. Gayán, A. Abad, et al. Effects of temperature and flue gas recycle on the SO2 and NOx emissions in an oxy-fuel fluidized bed combustor. Energy Procedia, 37 (2013), pp. 1275-1282.
[76]
M. Gómez, A. Fernández, I. Llavona, R. Kuivalainen. Experiences in sulphur capture in a 30 MWth circulating fluidized bed boiler under oxy-combustion conditions. Appl Therm Eng, 65 (1-2) (2014), pp. 617-622.
[77]
S. Rahiala, T. Hyppänen, T. Pikkarainen. Bench-scale and modeling study of sulfur capture by limestone in typical CO2 concentrations and temperatures of fluidized-bed air and oxy-fuel combustion. Energy Fuels, 27 (12) (2013), pp. 7664-7672.
[78]
Y.B. Kim, Y.R. Gwak, S.I. Keel, J.H. Yun, S.H. Lee. Direct desulfurization of limestones under oxy-circulating fluidized bed combustion conditions. Chem Eng J, 377 (2019), p. 119650.
[79]
S. Boskovic, B.V. Reddy, P. Basu. Effect of operating parameters on sulphur capture in a pressurized circulating fluidized bed combustor. Int J Energy Res, 26 (2) (2002), pp. 173-183.
[80]
K. Qiu, O. Lindqvist. Direct sulfation of limestone at elevated pressures. Chem Eng Sci, 55 (16) (2000), pp. 3091-3100.
[81]
S.Y. Kang, S.B. Seo, E.S. Go, H.W. Kim, S.I. Keel, Y.K. Park, et al. Effect of particle size on in-situ desulfurization for oxy-fuel CFBC. Fuel, 291 (2021), p. 120270.
[82]
Y. Li, R. Cai, M. Zhang, H. Yang, J. Lyu. Characterization of the sulfation reactivity of limestones with different particle size in a large-capacity TGA. Fuel, 271 (2020), p. 117292.
[83]
L. Chen, Z. Wang, C. Wang, H. Wang, E.J. Anthony. Sulfation of limestone under O2/H2O combustion conditions in circulating fluidized bed. Int J Greenh Gas Control, 95 (2020), p. 102979.
[84]
M.A. Hanif, N. Ibrahim, J.A. Abdul. Sulfur dioxide removal: an overview of regenerative flue gas desulfurization and factors affecting desulfurization capacity and sorbent regeneration. Environ Sci Pollut Res Int, 27 (22) (2020), pp. 27515-27540.
[85]
T. Neveux, H. Hagi, Y. Le Moullec. Performance simulation of full-scale wet flue gas desulfurization for oxy-coal combustion. Energy Procedia, 63 (2014), pp. 463-470.
[86]
Hume SA. Enabling staged pressurized oxy-combustion:improving flexibility and performance at reduced cost. Report. Palo Alto: Electric Power Research Institute; 2018. Report No.: DOE-EPRI-29087-4.
[87]
D. Stokie, P. Verma, B.M. Kumfer, G. Yablonsky, A.K. Suresh, R.L. Axelbaum. Pilot-scale testing of direct contact cooler for the removal of SOx and NOx from the flue gas of pressurized oxy-coal combustion. Chem Eng J, 414 (2021), p. 128757.
[88]
V. White, A. Wright, S. Tappe, J. Yan. The air products vattenfall oxyfuel CO2 compression and purification pilot plant at Schwarze Pumpe. Energy Procedia, 37 (2013), pp. 1490-1499.
[89]
P. Verma, Z. Yang, R.L. Axelbaum. A direct contact cooler design for simultaneously recovering latent heat and capturing SOx and NOx from pressurized flue gas. Energy Convers Manage, 254 (2022), p. 115216.
[90]
F. Châtel-Pélage, R.K. Varagani, P. Pranda, N. Perrin, H. Farzan, J. Vecci, et al. Applications of oxygen for NOx control and CO2 capture in coal-fired power plants. Therm Sci, 10 (3) (2006), pp. 119-142.
[91]
L.V. Moskaleva, M.C. Lin. The spin-conserved reaction CH + N2→H + NCN: a major pathway to prompt no studied by quantum/statistical theory calculations and kinetic modeling of rate constant. Proc Combust Inst, 28 (2) (2000), pp. 2393-2401.
[92]
K.M. Nichols, P.O. Hedman, L.D. Smoot. Release and reaction of fuel-nitrogen in a high-pressure entrained-coal gasifier. Fuel, 66 (9) (1987), pp. 1257-1263.
[93]
H. Zhou, Y. Huang, G. Mo, Z. Liao, K. Cen. Experimental investigations of the conversion of fuel-N, volatile-N and char-N to NOx and N2O during single coal particle fluidized bed combustion. J Energy Inst, 90 (1) (2017), pp. 62-72.
[94]
L. Duan, C. Zhao, Q. Ren, Z. Wu, X. Chen. NOx precursors evolution during coal heating process in CO2 atmosphere. Fuel, 90 (4) (2011), pp. 1668-1673.
[95]
C. Ndibe, R. Spörl, J. Maier, G. Scheffknecht. Experimental study of NO and NO2 formation in a PF oxy-fuel firing system. Fuel, 107 (2013), pp. 749-756.
[96]
G. Loffler, D. Andahazy, C. Wartha, F. Winter, H. Hofbauer. NOx and N2O formation mechanisms—a detailed chemical kinetic modeling study on a single fuel particle in a laboratory-scale fluidized bed. J Energy Resour Technol, 123 (3) (2001), pp. 228-235.
[97]
A. Jensen, J.E. Johnsson, J. Andries, K. Laughlin, G. Read, M. Mayer, et al. Formation and reduction of NOx in pressurized fluidized bed combustion of coal. Fuel, 74 (11) (1995), pp. 1555-1569.
[98]
S. Niksa, G.S. Liu, R.H. Hurt. Coal conversion submodels for design applications at elevated pressures. Part I. Devolatilization and char oxidation. Pror Energy Combust Sci, 29 (5) (2003), pp. 425-477.
[99]
A. Megaritis, R. Messenböck, A.G. Collot, Y. Zhuo, D. Dugwell, R. Kandiyoti. Internal consistency of coal gasification reactivities determined in bench-scale reactors: effect of pyrolysis conditions on char reactivities under high-pressure CO2. Fuel, 77 (13) (1998), pp. 1411-1420.
[100]
J.E. Johnsson. Formation and reduction of nitrogen oxides in fluidized-bed combustion. Fuel, 73 (9) (1994), pp. 1398-1415.
[101]
Y. Duan, L. Duan, E.J. Anthony, C. Zhao. Nitrogen and sulfur conversion during pressurized pyrolysis under CO2 atmosphere in fluidized bed. Fuel, 189 (2017), pp. 98-106.
[102]
C.Z. Li, L.L. Tan. Formation of NOx and SOx precursors during the pyrolysis of coal and biomass. Part III. Further discussion on the formation of HCN and NH3 during pyrolysis. Fuel, 79 (15) (2000), pp. 1899-1906.
[103]
P. Glarborg, A. Jensen, J.E. Johnsson. Fuel nitrogen conversion in solid fuel fired systems. Pror Energy Combust Sci, 29 (2) (2003), pp. 89-113.
[104]
J.P. Hämäläinen, M.J. Aho. Conversion of fuel nitrogen through HCN and NH3 to nitrogen oxides at elevated pressure. Fuel, 75 (12) (1996), pp. 1377-1386.
[105]
H.Y. Cai, A. Güell, D. Dugwell, R. Kandiyoti. Heteroatom distribution in pyrolysis products as a function of heating rate and pressure. Fuel, 72 (3) (1993), pp. 321-327.
[106]
F.J. Tian, H. Wu, J. Yu, L.J. McKenzie, S. Konstantinidis, J. Hayashi, et al. Formation of NOx precursors during the pyrolysis of coal and biomass. Part VIII. Effects of pressure on the formation of NH3 and HCN during the pyrolysis and gasification of Victorian brown coal in steam. Fuel, 84 (16) (2005), pp. 2102-2108.
[107]
K.M. Laughlin, D.G. Gavin, G.P. Reed. Coal and char nitrogen chemistry during pressurized fluidized bed combustion. Fuel, 73 (7) (1994), pp. 1027-1033.
[108]
K. Maliutina, A. Tahmasebi, J. Yu. The transformation of nitrogen during pressurized entrained-flow pyrolysis of Chlorella vulgaris. Bioresour Technol, 262 (2018), pp. 90-97.
[109]
K. Svoboda, M. Pohořelý. Influence of operating conditions and coal properties on NOx and N2O emissions in pressurized fluidized bed combustion of subbituminous coals. Fuel, 83 (7-8) (2004), pp. 1095-1103.
[110]
Z. Gong, Y. Shao, L. Pang, W. Zhong, C. Chen. Study on the emission characteristics of nitrogen oxides with coal combustion in pressurized fluidized bed. Chin J Chem Eng, 27 (5) (2019), pp. 1177-1183.
[111]
T. Ting, R. Stanger, T. Wall. Laboratory investigation of high pressure NO oxidation to NO2 and capture with liquid and gaseous water under oxy-fuel CO2 compression conditions. Int J Greenh Gas Control, 18 (2013), pp. 15-22.
[112]
Y. Lu. Laboratory studies on devolatilization and char oxidation under PFBC conditions. 2. Fuel Nitrogen conversion to nitrogen oxides. Energy Fuels, 10 (2) (1996), pp. 357-363.
[113]
Y. Lu, A. Jahkola, I. Hippinen, J. Jalovaara. The emissions and control of NOx and N2O in pressurized fluidized bed combustion. Fuel, 71 (6) (1992), pp. 693-699.
[114]
D. Hong, X. Guo, C. Wang. A reactive molecular dynamics study of HCN oxidation during pressurized oxy-fuel combustion. Fuel Process Technol, 224 (2021), p. 107020.
[115]
X. Liang, Q. Wang, Z. Luo, H. Zhang, K. Li, Y. Feng, et al. Simulation of nitrogen transformation in pressurized oxy-fuel combustion of pulverized coal. RSC Advances, 8 (62) (2018), pp. 35690-35699.
[116]
A.N. Hayhurst, A.D. Lawrence. The amounts of NOx and N2O formed in a fluidized bed combustor during the burning of coal volatiles and also of char. Combust Flame, 105 (3) (1996), pp. 341-357.
[117]
M. Aho, K. Paakkinen, P. Pirkonen, P. Kilpinen, M. Hupa. The effects of pressure, oxygen partial pressure, and temperature on the formation of N2O, NO, and NO2 from pulverized coal. Combust Flame, 102 (3) (1995), pp. 387-400.
[118]
S. Hansen, P. Glarborg. A simplified model for volatile-N oxidation. Energy Fuels, 24 (5) (2010), pp. 2883-2890.
[119]
P. Glarborg, J.A. Miller, B. Ruscic, S.J. Klippenstein. Modeling nitrogen chemistry in combustion. Pror Energy Combust Sci, 67 (2018), pp. 31-68.
[120]
Z. Lv, Z. ur Rahman, X. Wang, X. Xiong, H. Tan. Interactions of HCN with NO in pressurized oxy-combustion. Asia-Pac J Chem Eng, 18 (1) (2023), p. e2851.
[121]
D. Xu, D.R. Tree, R.S. Lewis. The effects of syngas impurities on syngas fermentation to liquid fuels. Biomass Bioenergy, 35 (7) (2011), pp. 2690-2696.
[122]
S. Sukumaran, S.C. Kong. Modeling fuel NOx formation from combustion of biomass-derived producer gas in a large-scale burner. Combust Flame, 160 (10) (2013), pp. 2159-2168.
[123]
Y. Liu, J. Cheng, C. Zou, L. Lu, H. Jing. Ignition delay times of ethane under O2/CO2 atmosphere at different pressures by shock tube and simulation methods. Combust Flame, 204 (2019), pp. 380-390.
[124]
H. Xiao, A. Valera-Medina, R. Marsh, P.J. Bowen. Numerical study assessing various ammonia/methane reaction models for use under gas turbine conditions. Fuel, 196 (2017), pp. 344-351.
[125]
S. Lin, Y. Suzuki, H. Hatano. Effect of pressure on NOx emission from char particle combustion. Energy Fuels, 16 (3) (2002), pp. 634-639.
[126]
F. Kasuya, P. Glarborg, J.E. Johnsson, K. Dam-Johansen. The thermal DeNOx process: influence of partial pressures and temperature. Chem Eng Sci, 50 (9) (1995), pp. 1455-1466.
[127]
E.C. Zabetta, M. Hupa, K. Saviharju. Reducing NOx emissions using fuel staging, air staging, and selective noncatalytic reduction in synergy. Ind Eng Chem Res, 44 (13) (2005), pp. 4552-4561.
[128]
M. Mueller, R.A. Yetter, F. Dryer. Kinetic modeling of the CO/H2O/O2/NO/SO2 system: implications for high-pressure fall-off in the SO2 + O (+ M) = SO3 (+ M) reaction. Int J Chem Kinet, 32 (6) (2000), pp. 317-339.
[129]
P. Dagaut, J. Luche, M. Cathonnet. The kinetics of C1 to C4 hydrocarbons/no interactions in relation with reburning. Proc Combust Inst, 28 (2) (2000), pp. 2459-2465.
[130]
P. Dagaut, F. Lecomte. Experiments and kinetic modeling study of NO-reburning by gases from biomass pyrolysis in a JSR. Energy Fuels, 17 (3) (2003), pp. 608-613.
[131]
S.L. Chen, J.M. McCarthy, W.D. Clark, M.P. Heap, W.R. Seeker, D.W. Pershing. Bench and pilot scale process evaluation of reburning for in-furnace NOx reduction. Symp (Int) Combust, 21 (1) (1988), pp. 1159-1169.
[132]
E. Croiset, C. Heurtebise, J.P. Rouan, J.R. Richard. Influence of pressure on the heterogeneous formation and destruction of nitrogen oxides during char combustion. Combust Flame, 112 (1-2) (1998), pp. 33-44.
[133]
J. Rodriguez-Mirasol, A. Ooms, J. Pels, F. Kapteijn, J.N.O. Moulijn. NO and N2O decomposition over coal char at fluidized-bed combustion conditions. Combust Flame, 99 (3-4) (1994), pp. 499-507.
[134]
X. Liu, M. Xu, H. Yao, D. Yu, X. Gao, Q. Cao, et al. Effect of combustion parameters on the emission and chemical composition of particulate matter during coal combustion. Energy Fuels, 21 (1) (2007), pp. 157-162.
[135]
X. Wang, D. Zhao, L. He, L. Jiang, Q. He, Y. Chen. Modeling of a coal-fired slagging combustor: development of a slag submodel. Combust Flame, 149 (3) (2007), pp. 249-260.
[136]
T.F. Wall, G. Liu, H. Wu, D.G. Roberts, K.E. Benfell, S. Gupta, et al. The effects of pressure on coal reactions during pulverised coal combustion and gasification. Pror Energy Combust Sci, 28 (5) (2002), pp. 405-433.
[137]
H. Wu, G. Bryant, K. Benfell, T. Wall. An experimental study on the effect of system pressure on char structure of an Australian bituminous coal. Energy Fuels, 14 (2) (2000), pp. 282-290.
[138]
W. Zhang, S. Sun, Y. Zhao, Z. Zhao, P. Wang, D. Feng, et al. Effects of total pressure and CO2 partial pressure on the physicochemical properties and reactivity of pressurized coal char produced at rapid heating rate. Energy, 208 (2020), p. 118297.
[139]
Zeng D. Effects of pressure on coal pyrolysis at high heating rates and char combustion [dissertation]. Provo: Brigham Young University; 2005.
[140]
M.R. Khan, R.G. Jenkins. Swelling and plastic properties of coal devolatilized at elevated pressures: an examination of the influences of coal type. Fuel, 65 (5) (1986), pp. 725-731.
[141]
J. Yu, J.A. Lucas, T.F. Wall. Formation of the structure of chars during devolatilization of pulverized coal and its thermoproperties: a review. Pror Energy Combust Sci, 33 (2) (2007), pp. 135-170.
[142]
R.C. Shurtz, K.K. Kolste, T.H. Fletcher. Coal swelling model for high heating rate pyrolysis applications. Energy Fuels, 25 (5) (2011), pp. 2163-2173.
[143]
M.S. Oh, W.A. Peters, J.B. Howard. An experimental and modeling study of softening coal pyrolysis. AIChE J, 35 (5) (1989), pp. 775-792.
[144]
J. Yu, J. Lucas, T. Wall, G. Liu, C. Sheng. Modeling the development of char structure during the rapid heating of pulverized coal. Combust Flame, 136 (4) (2004), pp. 519-532.
[145]
H. Yang, H. Chen, F. Ju, R. Yan, S. Zhang. Influence of pressure on coal pyrolysis and char gasification. Energy Fuels, 21 (6) (2007), pp. 3165-3170.
[146]
Solomon PR, Serio MA, Hamblen DG, Smoot LD, Brewster BS. Measurement and modeling of advanced coal conversion processes. Report. Morgantown: Morgantown Energy Technology Center; 1991. Report No.: DOE/MC/23075-3081.
[147]
C. Sheng, J. Azevedo. Modeling the evolution of particle morphology during coal devolatilization. Proc Combust Inst, 28 (2) (2000), pp. 2225-2232.
[148]
G. Liu, H. Wu, R. Gupta, J. Lucas, A. Tate, T. Wall. Modeling the fragmentation of non-uniform porous char particles during pulverized coal combustion. Fuel, 79 (6) (2000), pp. 627-633.
[149]
D. Yu, M. Xu, H. Yao, J. Sui, X. Liu, Y. Yu, et al. Use of elemental size distributions in identifying particle formation modes. Proc Combust Inst, 31 (2) (2007), pp. 1921-1928.
[150]
R. Ruan, X. Xu, H. Tan, S. Zhang, X. Lu, P. Zhang, et al. Emission characteristics of particulate matter from two ultralow-emission coal-fired industrial boilers in Xi’an, China. Energy Fuels, 33 (3) (2019), pp. 1944-1954.
[151]
H. Liu, F. Yang, H. Tan, Z. Li, P. Feng, Y. Du. Experimental and numerical investigation on the structure characteristics of vortex generators affecting particle agglomeration. Powder Technol, 362 (2020), pp. 805-816.
[152]
M. Marjamäki, J. Keskinen, D.R. Chen, D.Y. Pui. Performance evaluation of the electrical low-pressure impactor (ELPI). J Aerosol Sci, 31 (2) (2000), pp. 249-261.
[153]
H. Wu, D.K. Zhang, C. Kong, T.F. Wall. Ash formation from the combustion of coals with maceral concentrates at various pressures. Dev Chem Eng Miner Process, 13 (3-4) (2005), pp. 415-422.
[154]
H. Wu, G. Bryant, T. Wall. The effect of pressure on ash formation during pulverized coal combustion. Energy Fuels, 14 (4) (2000), pp. 745-750.
[155]
Latorre ACD. Ash formation under pressurized pulverized coal combustion conditions [dissertation]. Mansfield: University of Connecticut; 2005.
[156]
H. Wiinikka, P. Toth, K. Jansson, R. Molinder, M. Broström, L. Sandström, et al. Particle formation during pressurized entrained flow gasification of wood powder: effects of process conditions on chemical composition, nanostructure, and reactivity. Combust Flame, 189 (2018), pp. 240-256.
[157]
L. Duan, J. Wang, X. Qiu, Y. Wang, J. Wendt, C. Zhao. Particulate matter formation and alkali and alkaline earth metal partitioning in a pressurized oxy-fuel fluidized-bed combustor. Energy Fuels, 33 (11) (2019), pp. 10895-10903.
[158]
X. Li, Y. Wang, J.O. Wendt. Characteristics of the sub-micron ash aerosol generated during oxy-coal combustion at atmospheric and elevated pressures. Proc Combust Inst, 38 (3) (2021), pp. 4063-4071.
[159]
D. Khatri, Z. Yang, T. Li, R.L. Axelbaum. Development of an aerosol sampler for pressurized systems and its application to investigate the effect of residence time on PM1 formation in a 15 bar oxy-coal combustor. Aerosol Sci Technol, 55 (4) (2021), pp. 438-448.
[160]
C. Wang, X. Liu, D. Li, W. Wu, Y. Xu, J. Si, et al. Effect of H2O and SO2 on the distribution characteristics of trace elements in particulate matter at high temperature under oxy-fuel combustion. Int J Greenh Gas Control, 23 (2014), pp. 51-60.
[161]
Y. Xu, X. Liu, Z. Zhou, L. Sheng, C. Wang, M. Xu. The role of steam in silica vaporization and ultrafine particulate matter formation during wet oxy-coal combustion. Appl Energy, 133 (2014), pp. 144-151.
[162]
Z. Kang, Z. Wu, J. Deng, Z. Hu, L. Li. Experimental research of diffusion combustion and emissions characteristics under oxy-fuel combustion mode. J Eng Gas Turbine Power, 142 (6) (2020), p. 061002.
[163]
Y. Jia, J.S. Lighty. Ash particulate formation from pulverized coal under oxy-fuel combustion conditions. Environ Sci Technol, 46 (9) (2012), pp. 5214-5221.
[164]
R. Ruan, H. Tan, X. Wang, F. Yang, Z. Hu, Z. Ren. Characteristic of particulate matter from combustion of Zhundong lignite: a comparison between air and oxy-fuel atmospheres. Energy Fuels, 33 (12) (2019), pp. 12260-12269.
[165]
Z. Zhan, A.R. Fry, J.O.L. Wendt. Relationship between submicron ash aerosol characteristics and ash deposit compositions and formation rates during air- and oxy-coal combustion. Fuel, 181 (2016), pp. 1214-1223.
[166]
Z. Xiao, Y. Tang, J. Zhuo, Q. Yao. Effect of the interaction between sodium and soot on fine particle formation in the early stage of coal combustion. Fuel, 206 (2017), pp. 546-554.
[167]
T.H. Fletcher, J. Ma, J.R. Rigby, A.L. Brown, B.W. Webb. Soot in coal combustion systems. Pror Energy Combust Sci, 23 (3) (1997), pp. 283-301.
[168]
F. Xia, Z. Yang, A. Adeosun, A. Gopan, B.M. Kumfer, R.L. Axelbaum. Pressurized oxy-combustion with low flue gas recycle: computational fluid dynamic simulations of radiant boilers. Fuel, 181 (2016), pp. 1170-1178.
[169]
X. Qiu, Y. Wang, Z. Zhou, Y. Duan, L. Duan. Particulate matter formation mechanism during pressurized air-and oxy-coal combustion in a 10kWth fluidized bed. Fuel Process Technol, 225 (2022), p. 107064.
[170]
X. Liu, Y. Xu, J. Qi, H. Wang, T. Zhang, M. Xu. Effects of kaolin-limestone blended additive on the formation and emission of particulate matter: field study on a 1000 MW coal-firing power station. J Hazard Mater, 399 (2020), p. 123091.
[171]
Q. Yao, S.Q. Li, H.W. Xu, J.K. Zhuo, Q. Song. Reprint of studies on formation and control of combustion particulate matter in China: a review. Energy, 35 (11) (2010), pp. 4480-4493.
[172]
R. Ruan, Q. An, H. Tan, S. Jia, X. Wang, J. Peng, et al. Effect of calcined kaolin on PM 0.4 formation from combustion of Zhundong lignite. Fuel, 319 (2022), p. 123622.
[173]
J. Zhang, Y. Zheng, X. Wang, G. Dai, H. Tan, Z. ur Rahman. Nitrogen oxide reduction in pressurized oxy-coal combustion. Combust Flame, 246 (2022), p. 112418.
[174]
G. Wang, Z. Ma, J. Deng, Z. Li, L. Duan, Q. Zhang, et al. Characteristics of particulate matter from four coal-fired power plants with low-low temperature electrostatic precipitator in China. Sci Total Environ, 662 (2019), pp. 455-461.
[175]
P.D. Christofides, M. Li, L. Mädler. Control of particulate processes: recent results and future challenges. Powder Technol, 175 (1) (2007), pp. 1-7.
[176]
Y. Zhao, J. Yang, S. Ma, S. Zhang, H. Liu, B. Gong, et al. Emission controls of mercury and other trace elements during coal combustion in China: a review. Int Geol Rev, 60 (5-6) (2018), pp. 638-670.
[177]
R.B. Finkelman, C.A. Palmer, P. Wang. Quantification of the modes of occurrence of 42 elements in coal. Int J Coal Geol, 185 (2018), pp. 138-160.
[178]
K.C. Galbreath, C.J. Zygarlicke. Mercury transformations in coal combustion flue gas. Fuel Process Technol, 65 (2000), pp. 289-310.
[179]
H. Wang, Y. Duan, Y. Mao. Mercury speciation in air-coal and oxy-coal combustion. H. Qi, B. Zhao (Eds.), Cleaner combustion and sustainable world, Springer, Berlin (2013), pp. 427-432.
[180]
R. Spörl, L. Belo, K. Shah, R. Stanger, R. Giniyatullin, J. Maier, et al. Mercury emissions and removal by ash in coal-fired oxy-fuel combustion. Energy Fuels, 28 (1) (2014), pp. 123-135.
[181]
Y. Sun, G. Lv, H. Zhang, X. Zhang, X. Bu, X. Wang, et al. Characteristics of speciated mercury emissions from coal combustion in air and oxygen-enriched environment. Bull Environ Contam Toxicol, 102 (5) (2019), pp. 695-700.
[182]
H. Chen, Q. Huo, Y. Wang, L. Han, Z. Lei, J. Wang, et al. Upcycling coal liquefaction residue into sulfur-rich activated carbon for efficient Hg 0 removal from coal-fired flue gas. Fuel Process Technol, 206 (2020), p. 106467.
[183]
Y.E. Yudovich, M. Ketris. Mercury in coal: a review. Part 2. Coal use and environmental problems. Int J Coal Geol, 62 (3) (2005), pp. 135-165.
[184]
F. Wang, B. Shen, J. Yang, S. Singh. Review of mercury formation and capture from CO2-enriched oxy-fuel combustion flue gas. Energy Fuels, 31 (2) (2017), pp. 1053-1064.
[185]
H. Wang, Y. Duan, Y. Li, Y. Xue, M. Liu. Investigation of mercury emission and its speciation from an oxy-fuel circulating fluidized bed combustor with recycled warm flue gas. Chem Eng J, 300 (2016), pp. 230-235.
[186]
N. Fernández-Miranda, M.A. Lopez-Anton, M. Díaz-Somoano, M.R. Martínez-Tarazona. Effect of oxy-combustion flue gas on mercury oxidation. Environ Sci Technol, 48 (12) (2014), pp. 7164-7170.
[187]
B. Roy, W.L. Choo, S. Bhattacharya. Prediction of distribution of trace elements under oxy-fuel combustion condition using Victorian brown coals. Fuel, 114 (2013), pp. 135-142.
[188]
P.A. Buitrago, B. Van Otten, C.L. Senior, G.D. Silcox. Impinger-based mercury speciation methods and gas-phase mercury oxidation by bromine in combustion systems. Energy Fuels, 27 (10) (2013), pp. 6255-6261.
[189]
I. Preciado, T. Young, G. Silcox. Mercury oxidation by halogens under air-and oxygen-fired conditions. Energy Fuels, 28 (2) (2014), pp. 1255-1261.
[190]
N. Fernández-Miranda, M. Rumayor, M.A. Lopez-Anton, M. Díaz-Somoano, M.R. Martínez-Tarazona. Mercury retention by fly ashes from oxy-fuel processes. Energy Fuels, 29 (4) (2015), pp. 2227-2233.
[191]
R. Meij, L.H. Vredenbregt, H. te Winkel. The fate and behavior of mercury in coal-fired power plants. J Air Waste Manag Assoc, 52 (8) (2002), pp. 912-917.
[192]
Y. Mitsui, N. Imada, H. Kikkawa, A. Katagawa. Study of Hg and SO3 behavior in flue gas of oxy-fuel combustion system. Int J Greenh Gas Control, 5 (2011), pp. S143-S150.
[193]
H. Wu, B. Zhang, Y. Qiu, G. Luo, H. Yao. Experiment study on mercury migration across wet flue gas desulfurization slurry under oxy-coal combustion atmosphere. Fuel, 181 (2016), pp. 1184-1190.
[194]
R. Ochoa-González, M. Díaz-Somoano, M.R. Martínez-Tarazona. A comprehensive evaluation of the influence of air combustion and oxy-fuel combustion flue gas constituents on Hg(0) re-emission in WFGD systems. J Hazard Mater, 276 (2014), pp. 157-163.
[195]
H.N. Jang, S.K. Back, J.H. Sung, Y.S. Kang, J. Jurng, Y.C. Seo. The simultaneous capture of mercury and fine particles by hybrid filter with powder activated carbon injection. Environ Pollut, 237 (2018), pp. 531-540.
[196]
H. Li, M. Zhang, L. Zhu, J. Yang. Stability of mercury on a novel mineral sulfide sorbent used for efficient mercury removal from coal combustion flue gas. Environ Sci Pollut Res Int, 25 (28) (2018), pp. 28583-28593.
[197]
S.H. Ho, S. Zhu, J.S. Chang. Recent advances in nanoscale-metal assisted biochar derived from waste biomass used for heavy metals removal. Bioresour Technol, 246 (2017), pp. 123-134.
[198]
Y. Yi, C. Li, L. Zhao, X. Du, L. Gao, J. Chen, et al. The synthetic evaluation of CuO-MnOx-modified pinecone biochar for simultaneous removal formaldehyde and elemental mercury from simulated flue gas. Environ Sci Pollut Res Int, 25 (5) (2018), pp. 4761-4775.
[199]
S. Wang, Y. Zhang, Y. Gu, J. Wang, Y. Zhang, Y. Cao, et al. Using modified fly ash for mercury emissions control for coal-fired power plant applications in China. Fuel, 181 (2016), pp. 1230-1237.
[200]
Y. Zhang, D. Mei, T. Wang, J. Wang, Y. Gu, Z. Zhang, et al. In-situ capture of mercury in coal-fired power plants using high surface energy fly ash. Environ Sci Technol, 53 (13) (2019), pp. 7913-7920.
[201]
H. Li, C.Y. Wu, Y. Li, L. Li, Y. Zhao, J. Zhang. Impact of SO2 on elemental mercury oxidation over CeO2-TiO2 catalyst. Chem Eng J, 219 (2013), pp. 319-326.
[202]
F. Wang, B. Shen, L. Gao, J. Yang. Simultaneous removal of NO and Hg0 from oxy-fuel combustion flue gas over CeO2-modified low-V2O5-based catalysts. Fuel Process Technol, 168 (2017), pp. 131-139.
[203]
H. Liu, Y. Zhao, Y. Zhou, L. Chang, J. Zhang. Removal of gaseous elemental mercury by modified diatomite. Sci Total Environ, 652 (2019), pp. 651-659.
[204]
M.A. Lopez-Anton, R. Gil, E. Fuente, M. Díaz-Somoano, M. Martínez-Tarazona, B. Ruiz. Activated carbons from biocollagenic wastes of the leather industry for mercury capture in oxy-combustion. Fuel, 142 (2015), pp. 227-234.
[205]
Y. Zhuang, J.H. Pavlish, N.B. Lentz, L.L. Hamre. Mercury measurement and control in a CO2-enriched flue gas. Int J Greenh Gas Control, 5 (2011), pp. S136-S142.
[206]
Y. Li, Y. Duan, H. Wang, S. Zhao, M. Chen, M. Liu, et al. Effects of acidic gases on mercury adsorption by activated carbon in simulated oxy-fuel combustion flue gas. Energy Fuels, 31 (9) (2017), pp. 9745-9751.
[207]
R. Stanger, L. Belo, T. Ting, C. Spero, T. Wall. Mercury and SO3 measurements on the fabric filter at the callide oxy-fuel project during air and oxy-fuel firing transitions. Int J Greenh Gas Control, 47 (2016), pp. 221-232.
[208]
M.A. Lopez-Anton, M. Rumayor, M. Díaz-Somoano, M.R. Martínez-Tarazona. Influence of a CO2-enriched flue gas on mercury capture by activated carbons. Chem Eng J, 262 (2015), pp. 1237-1243.
[209]
F. Wang, G. Li, B. Shen, Y. Wang, C. He. Mercury removal over the vanadia-titania catalyst in CO2-enriched conditions. Chem Eng J, 263 (2015), pp. 356-363.
[210]
N. Fernández-Miranda, M.A. Lopez-Anton, M. Díaz-Somoano, M.R. Martínez-Tarazona. Mercury oxidation in catalysts used for selective reduction of NOx (SCR) in oxy-fuel combustion. Chem Eng J, 285 (2016), pp. 77-82.
PDF(6535 KB)

Accesses

Citation

Detail

段落导航
相关文章

/