[1] |
X. Yu, Q. Sui, S. Lyu, W. Zhao, J. Liu, Z. Cai, et al. Municipal solid waste landfills: an underestimated source of pharmaceutical and personal care products in the water environment. Environ Sci Technol, 54 (16) (2020), pp. 9757-9768.
|
[2] |
K. Oberlé, M.J. Capdeville, T. Berthe, H. Budzinski, F. Petit. Evidence for a complex relationship between antibiotics and antibiotic-resistant Escherichia coli: from medical center patients to a receiving environment. Environ Sci Technol, 46 (3) (2012), pp. 1859-1868.
|
[3] |
N.E. Andrzejczyk, J.B. Greer, E. Nelson, J. Zhang, J.M. Rimoldi, R.S.V. Gadepalli, et al. Novel disinfection byproducts formed from the pharmaceutical gemfibrozil are bioaccumulative and elicit increased toxicity relative to the parent compound in marine polychaetes (Neanthes arenaceodentata). Environ Sci Technol, 54 (18) (2020), pp. 11127-11136.
|
[4] |
P.R. Kodavanti, M.C. Curras-Collazo. Neuroendocrine actions of organohalogens: thyroid hormones, arginine vasopressin, and neuroplasticity. Front Neuroendocrinol, 31 (4) (2010), pp. 479-496.
|
[5] |
R. Guo, Y. Zhang, X. Zhang, Q. Zhang, R. Cheng, R. Md Mostafizur, et al. Effects of florfenicol exposure on growth, development and antioxidant capacity of flounder Paralichthys olivaceus larvae at different developmental stages. J Oceanol Limnol, 38 (2) (2020), pp. 550-559.
|
[6] |
L. Guilhermino, L.R. Vieira, D. Ribeiro, A.S. Tavares, V. Cardoso, A. Alves, et al. Uptake and effects of the antimicrobial florfenicol, microplastics and their mixtures on freshwater exotic invasive bivalve Corbicula fluminea. Sci Total Environ, 622-623 (2018), pp. 1131-1142.
|
[7] |
J.C. Hanekamp, A. Bast. Antibiotics exposure and health risks: chloramphenicol. Environ Toxicol Pharmacol, 39 (1) (2015), pp. 213-220.
|
[8] |
Y. Zhang, J. Li, L. Zhou, G. Wang, Y. Feng, Z. Wang, et al. Aqueous photodegradation of antibiotic florfenicol: kinetics and degradation pathway studies. Environ Sci Pollut Res Int, 23 (7) (2016), pp. 6982-6989.
|
[9] |
Y.M. Lee, G. Lee, K.D. Zoh. Benzophenone-3 degradation via UV/H2O2 and UV/persulfate reactions. J Hazard Mater, 403 (2021), Article 123591.
|
[10] |
Y. Zhang, L. Li, Z. Pan, Y. Zhu, Y. Shao, Y. Wang, et al. Degradation of sulfamethoxazole by UV/persulfate in different water samples: influential factors, transformation products and toxicity. Chem Eng J, 379 (2020), Article 122354.
|
[11] |
W. Chen, X. Li, Z. Pan, S. Ma, L. Li. Effective mineralization of diclofenac by catalytic ozonation using Fe-MCM-41 catalyst. Chem Eng J, 304 (2016), pp. 594-601.
|
[12] |
P. Yan, Q. Sui, S. Lyu, H. Hao, H.F. Schroder, W. Gebhardt. Elucidation of the oxidation mechanisms and pathways of sulfamethoxazole degradation under Fe(II) activated percarbonate treatment. Sci Total Environ, 640-641 (2018), pp. 973-980.
|
[13] |
X. Li, J. Ma, G. Liu, J. Fang, S. Yue, Y. Guan, et al. Efficient reductive dechlorination of monochloroacetic acid by sulfite/UV process. Environ Sci Technol, 46 (13) (2012), pp. 7342-7349.
|
[14] |
F. Alonso, I.P. Beletskaya, M. Yus. Metal-mediated reductive hydrodehalogenation of organic halides. Chem Rev, 102 (11) (2002), pp. 4009-4092.
|
[15] |
Y. Xue, Z. Wang, R. Bush, F. Yang, R. Yuan, J. Liu, et al. Resistance of alkyl chloride on chloramphenicol to oxidative degradation by sulfate radicals: kinetics and mechanism. Chem Eng J, 415 (2021), Article 129041.
|
[16] |
M. Fang, J. Guo, D. Chen, A. Li, D.E. Hinton, W. Dong. Halogenated carbazoles induce cardiotoxicity in developing zebrafish (Danio rerio) embryos. Environ Toxicol Chem, 35 (10) (2016), pp. 2523-2529.
|
[17] |
S. Periyasamy, X. Lin, S.O. Ganiyu, S.K. Kamaraj, A. Thiam, D. Liu. Insight into BDD electrochemical oxidation of florfenicol in water: kinetics, reaction mechanism, and toxicity. Chemosphere, 288 (Pt 1) (2022), Article 132433.
|
[18] |
B.P. Vellanki, B. Batchelor, A. Abdel-Wahab. Advanced reduction processes: a new class of treatment processes. Environ Eng Sci, 30 (5) (2013), pp. 264-271.
|
[19] |
Y.H. Chuang, K.M. Parker, W.A. Mitch. Development of predictive models for the degradation of halogenated disinfection byproducts during the UV/H2O2 advanced oxidation process. Environ Sci Technol, 50 (20) (2016), pp. 11209-11217.
|
[20] |
X. Liu, J. Zhong, L. Fang, L. Wang, M. Ye, Y. Shao, et al. Trichloroacetic acid reduction by an advanced reduction process based on carboxyl anion radical. Chem Eng J, 303 (2016), pp. 56-63.
|
[21] |
G.V. Buxton, C.L. Greenstock, W.P. Helman, A.B. Ross. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/⋅O-) in aqueous solution. J Phys Chem Ref Data, 17 (2) (1988), p. 513.
|
[22] |
H. Milh, X. Yu, D. Cabooter, R. Dewil. Degradation of ciprofloxacin using UV-based advanced removal processes: comparison of persulfate-based advanced oxidation and sulfite-based advanced reduction processes. Sci Total Environ, 764 (2021), Article 144510.
|
[23] |
X. Liu, T. Zhang, L. Wang, Y. Shao, L. Fang. Hydrated electron-based degradation of atenolol in aqueous solution. Chem Eng J, 260 (2015), pp. 740-748.
|
[24] |
Z. Zhang, X. Wang, Y. Xue, H. Li, W. Dong. Enhanced dechlorination of triclosan by hydrated electron reduction in aqueous solution. Chem Eng J, 263 (2015), pp. 186-193.
|
[25] |
D. Deng, F. Deng, B. Tang, J. Zhang, J. Liu. Electrocatalytic reduction of low-concentration thiamphenicol and florfenicol in wastewater with multi-walled carbon nanotubes modified electrode. J Hazard Mater, 332 (2017), pp. 168-175.
|
[26] |
Z. Sun, C. Zhang, P. Chen, Q. Zhou, M.R. Hoffmann. Impact of humic acid on the photoreductive degradation of perfluorooctane sulfonate (PFOS) by UV/iodide process. Water Res, 127 (2017), pp. 50-58.
|
[27] |
D. Kong, B. Liang, H. Yun, H. Cheng, J. Ma, M. Cui, et al. Cathodic degradation of antibiotics: characterization and pathway analysis. Water Res, 72 (2015), pp. 281-292.
|
[28] |
J.A. Rosso, S.G. Bertolotti, A.M. Braun, D.O. Mártire, M.C. Gonzalez. Reactions of carbon dioxide radical anion with substituted benzenes. J Phys Org Chem, 14 (5) (2001), pp. 300-309.
|
[29] |
W. Jiang, P. Tang, S. Lu, X. Zhang, Z. Qiu, Q. Sui. Enhanced reductive degradation of carbon tetrachloride by carbon dioxide radical anion-based sodium percarbonate/Fe(II)/formic acid system in aqueous solution. Front Environ Sci Eng, 12 (2) (2018), p. 6.
|
[30] |
C.M. Hendy, G.C. Smith, Z. Xu, T. Lian, N.T. Jui. Radical chain reduction via carbon dioxide radical anion (CO2). J Am Chem Soc, 143 (24) (2021), pp. 8987-8992.
|
[31] |
Z. Lin, L. Zhao, Y. Dong. Effects of low molecular weight organic acids and fulvic acid on 2,4,4’-trichlorobiphenyl degradation and hydroxyl radical formation in a goethite-catalyzed Fenton-like reaction. Chem Eng J, 326 (2017), pp. 201-209.
|
[32] |
B. Heckel, S. Cretnik, S. Kliegman, O. Shouakar-Stash, K. McNeill, M. Elsner. Reductive outer-sphere single electron transfer is an exception rather than the rule in natural and engineered chlorinated ethene dehalogenation. Environ Sci Technol, 51 (17) (2017), pp. 9663-9673.
|
[33] |
Z. Jiang, D. Adjei, S.A. Denisov, M. Mostafavi, J. Ma. Transient kinetics of short-chain perfluoroalkyl sulfonate with radiolytic reducing species. Environ Sci Technol Lett, 10 (1) (2023), pp. 59-65.
|
[34] |
T. Tachikawa, S. Tojo, M. Fujitsuka, T. Majima. Direct observation of the one-electron reduction of methyl viologen mediated by the CO2 radical anion during TiO2 photocatalytic reactions. Langmuir, 20 (22) (2004), pp. 9441-9444.
|
[35] |
Y. Ding, Y. Zhu, X. Yu, S. Lyu, Y. Wu, L. Zhou, et al. Mechanistic and kinetic aspects of florfenicol degradation by ·OH: chloride moiety resistance. Chem Eng J, 479 (2024), Article 147696.
|
[36] |
Q. Zhang, G. Ying, C. Pan, Y. Liu, J. Zhao. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance. Environ Sci Technol, 49 (11) (2015), pp. 6772-6782.
|
[37] |
A.J. Browne, M.G. Chipeta, G. Haines-Woodhouse, E.P.A. Kumaran, B.H.K. Hamadani, S. Zaraa, et al. Global antibiotic consumption and usage in humans, 2000-2018: a spatial modelling study. Lancet Planet Health, 5 (12) (2021), pp. 893-904.
|
[38] |
H. Zong, D. Ma, J. Wang, J. Hu. Research on florfenicol residue in coastal area of Dalian (northern China) and analysis of functional diversity of the microbial community in marine sediment. Bull Environ Contam Toxicol, 84 (2) (2010), pp. 245-249.
|
[39] |
Y. Han, W. Zhou, Y. Tang, W. Shi, Y. Shao, P. Ren, et al. Microplastics aggravate the bioaccumulation of three veterinary antibiotics in the thick shell mussel Mytilus coruscus and induce synergistic immunotoxic effects. Sci Total Environ, 770 (2021), Article 145273.
|
[40] |
W. Jiang, P. Tang, S. Lyu, M.L. Brusseau, Y. Xue, X. Zhang, et al. Enhanced redox degradation of chlorinated hydrocarbons by the Fe(II)-catalyzed calcium peroxide system in the presence of formic acid and citric acid. J Hazard Mater, 368 (2019), pp. 506-513.
|
[41] |
A. Eisentraeger, W. Dott, J. Klein, S. Hahn. Comparative studies on algal toxicity testing using fluorometric microplate and Erlenmeyer flask growth-inhibition assays. Ecotoxicol Environ Saf, 54 (3) (2003), pp. 346-354.
|
[42] |
T. Lu, F. Chen. Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem, 33 (5) (2012), pp. 580-592.
|
[43] |
R. Xu, M. Zhao, Z. Chen, Z. Gao, H. Song, T. An, et al. Degradation pathways of penthiopyrad by δ-MnO2 mediated processes: a combined density functional theory and experimental study. Environ Sci Process Impacts, 23 (12) (2021), pp. 1977-1985.
|
[44] |
Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al. Gaussian 09 (Revision D. 01) [software]. Wallingford: Gaussian, Inc.; 2009.
|
[45] |
Y. Ji, J. Lu, L. Wang, M. Jiang, Y. Yang, P. Yang, et al. Non- activated peroxymonosulfate oxidation of sulfonamide antibiotics in water: kinetics, mechanisms, and implications for water treatment. Water Res, 147 (2018), pp. 82-90.
|
[46] |
Y. Yao, Y. Xie, B. Zhao, L. Zhou, Y. Shi, Y. Wang, et al. N- dependent ozonation efficiency over nitrogen-containing heterocyclic contaminants: a combined density functional theory study on reaction kinetics and degradation pathways. Chem Eng J, 382 (2020), Article 122708.
|
[47] |
M. Zheng, K.D. Daniels, M. Park, A.B. Nienhauser, E.C. Clevenger, Y. Li, et al. Attenuation of pharmaceutically active compounds in aqueous solution by UV/CaO2 process: influencing factors, degradation mechanism and pathways. Water Res, 164 (2019), Article 114922.
|
[48] |
K. Yin, L. Deng, J. Luo, J. Crittenden, C. Liu, Y. Wei, et al. Destruction of phenicol antibiotics using the UV/H2O2 process: kinetics, byproducts, toxicity evaluation and trichloromethane formation potential. Chem Eng J, 351 (2018), pp. 867-877.
|
[49] |
K. Li, P. Zhang, L. Ge, H. Ren, C. Yu, X. Chen, et al. Concentration-dependent photodegradation kinetics and hydroxyl-radical oxidation of phenicol antibiotics. Chemosphere, 111 (2014), pp. 278-282.
|
[50] |
Q. Sui, W. Gebhardt, H.F. Schröder, W. Zhao, S. Lu, G. Yu. Identification of new oxidation products of bezafibrate for better understanding of its toxicity evolution and oxidation mechanisms during ozonation. Environ Sci Technol, 51 (4) (2017), pp. 2262-2270.
|
[51] |
United Nations. Globally harmonized system of classification and labelling of chemicals (GHS). 4th ed. New York City: United Nations Publications; 2011.
|