二氧化碳自由基诱导卤代抗生素的同步降解、脱卤和毒性削减

丁艳洲, 俞霞, 吕树光, 镇华君, 赵文涛, 彭程, 王佳希, 朱怡雯, 朱城霏, 周磊, 隋倩

工程(英文) ›› 2024, Vol. 37 ›› Issue (6) : 88-96.

PDF(1754 KB)
PDF(1754 KB)
工程(英文) ›› 2024, Vol. 37 ›› Issue (6) : 88-96. DOI: 10.1016/j.eng.2024.03.006
研究论文
Article

二氧化碳自由基诱导卤代抗生素的同步降解、脱卤和毒性削减

作者信息 +

Simultaneous Degradation, Dehalogenation, and Detoxification of Halogenated Antibiotics by Carbon Dioxide Radical Anions

Author information +
History +

Highlight

• $ \mathrm{CO}_{2}^{·-}$ can universally degrade and dehalogenate halogenated antibiotics;

• The chlorine moiety of FF was more susceptible to the nucleophilic attack of $ \mathrm{CO}_{2}^{·-}$;

• pH, inorganic anions and humic acid exhibited neglectable effect on FF degradation.

摘要

高级氧化技术(advanced oxidation processes,AOPs)在水处理领域已被广泛用于降解各类新污染物,但由于含卤官能团在氧化环境中具有很强的反应惰性,限制了AOPs对卤代抗生素的脱卤和毒性削减效果。为克服上述缺陷,本研究以氟苯尼考(florfenicol,FF)为代表性污染物,利用二氧化碳自由基(carbon dioxide radical anions,CO2·-)为主导的高级还原技术(advanced reduction processes,ARPs),实现了卤代抗生素的同步降解、脱卤和毒性削减。结果表明:在CO2·-体系中FF实现了完全降解和高效脱卤,120 min内脱氯和脱氟效率分别达到了100%和46%;同时FF的毒性削减效果和脱卤效率呈线性负相关(R2=0.97,p<0.01)。与羟基自由基(hydroxyl radical,•OH)体系相比,无卤产物生成是CO2·-体系具有更好毒性削减效果的主要原因。产物鉴定和密度泛函理论(density functional theory,DFT)计算结果表明,FF的含氯官能团比其他官能团更容易受到CO2·-的亲核进攻,进而诱导后续脱卤过程。除FF外,CO2·-体系对包括氯霉素(CAP)、甲砜霉素(THA)、双氯芬酸(DLF)、三氯生(TCS)和环丙沙星(CIP)在内的多种卤代抗生素均表现出良好脱卤效果(>75%)。该体系不仅对天然水体组分和溶液pH具有良好的耐受性,而且在实际地下水中具有卓越的降解性能,证明CO2·-体系具有很强的应用潜力。本研究阐明了CO2·-用于卤代抗生素同步降解、脱卤和毒性削减的可行性。

Abstract

Despite the extensive application of advanced oxidation processes (AOPs) in water treatment, the efficiency of AOPs in eliminating various emerging contaminants such as halogenated antibiotics is constrained by a number of factors. Halogen moieties exhibit strong resistance to oxidative radicals, affecting the dehalogenation and detoxification efficiencies. To address these limitations of AOPs, advanced reduction processes (ARPs) have been proposed. Herein, a novel nucleophilic reductant—namely, the carbon dioxide radical anion ($\mathrm{CO}_{2}^{·-}$) —is introduced for the simultaneous degradation, dehalogenation, and detoxification of florfenicol (FF), a typical halogenated antibiotic. The results demonstrate that FF is completely eliminated by $ \mathrm{CO}_{2}^{·-}$, with approximately 100% of Cl and 46% of F released after 120 min of treatment. Simultaneous detoxification is observed, which exhibits a linear response to the release of free inorganic halogen ions (R2 = 0.97, p < 0.01). The formation of halogen-free products is the primary reason for the superior detoxification performance of this method, in comparison with conventional hydroxyl-radical-based AOPs. Products identification and density functional theory (DFT) calculations reveal the underlying dehalogenation mechanism, in which the chlorine moiety of FF is more susceptible than other moieties to nucleophilic attack by $ \mathrm{CO}_{2}^{·-}$. Moreover, $ \mathrm{CO}_{2}^{·-}$- based ARPs exhibit superior dehalogenation efficiencies (> 75%) in degrading a series of halogenated antibiotics, including chloramphenicol (CAP), thiamphenicol (THA), diclofenac (DLF), triclosan (TCS), and ciprofloxacin (CIP). The system shows high tolerance to the pH of the solution and the presence of natural water constituents, and demonstrates an excellent degradation performance in actual groundwater, indicating the strong application potential of $ \mathrm{CO}_{2}^{·-}$-based ARPs in real life. Overall, this study elucidates the feasibility of $ \mathrm{CO}_{2}^{·-}$ for the simultaneous degradation, dehalogenation, and detoxification of halogenated antibiotics and provides a promising method for their regulation during water or wastewater treatment.

关键词

二氧化碳自由基 / 高级还原技术 / 卤代抗生素 / 脱卤 / 毒性削减

Keywords

Carbon dioxide radical anions / Advanced reduction processes / Halogenated antibiotics / Dehalogenation / Detoxification

引用本文

导出引用
丁艳洲, 俞霞, 吕树光. 二氧化碳自由基诱导卤代抗生素的同步降解、脱卤和毒性削减. Engineering. 2024, 37(6): 88-96 https://doi.org/10.1016/j.eng.2024.03.006

参考文献

[1]
X. Yu, Q. Sui, S. Lyu, W. Zhao, J. Liu, Z. Cai, et al. Municipal solid waste landfills: an underestimated source of pharmaceutical and personal care products in the water environment. Environ Sci Technol, 54 (16) (2020), pp. 9757-9768.
[2]
K. Oberlé, M.J. Capdeville, T. Berthe, H. Budzinski, F. Petit. Evidence for a complex relationship between antibiotics and antibiotic-resistant Escherichia coli: from medical center patients to a receiving environment. Environ Sci Technol, 46 (3) (2012), pp. 1859-1868.
[3]
N.E. Andrzejczyk, J.B. Greer, E. Nelson, J. Zhang, J.M. Rimoldi, R.S.V. Gadepalli, et al. Novel disinfection byproducts formed from the pharmaceutical gemfibrozil are bioaccumulative and elicit increased toxicity relative to the parent compound in marine polychaetes (Neanthes arenaceodentata). Environ Sci Technol, 54 (18) (2020), pp. 11127-11136.
[4]
P.R. Kodavanti, M.C. Curras-Collazo. Neuroendocrine actions of organohalogens: thyroid hormones, arginine vasopressin, and neuroplasticity. Front Neuroendocrinol, 31 (4) (2010), pp. 479-496.
[5]
R. Guo, Y. Zhang, X. Zhang, Q. Zhang, R. Cheng, R. Md Mostafizur, et al. Effects of florfenicol exposure on growth, development and antioxidant capacity of flounder Paralichthys olivaceus larvae at different developmental stages. J Oceanol Limnol, 38 (2) (2020), pp. 550-559.
[6]
L. Guilhermino, L.R. Vieira, D. Ribeiro, A.S. Tavares, V. Cardoso, A. Alves, et al. Uptake and effects of the antimicrobial florfenicol, microplastics and their mixtures on freshwater exotic invasive bivalve Corbicula fluminea. Sci Total Environ, 622-623 (2018), pp. 1131-1142.
[7]
J.C. Hanekamp, A. Bast. Antibiotics exposure and health risks: chloramphenicol. Environ Toxicol Pharmacol, 39 (1) (2015), pp. 213-220.
[8]
Y. Zhang, J. Li, L. Zhou, G. Wang, Y. Feng, Z. Wang, et al. Aqueous photodegradation of antibiotic florfenicol: kinetics and degradation pathway studies. Environ Sci Pollut Res Int, 23 (7) (2016), pp. 6982-6989.
[9]
Y.M. Lee, G. Lee, K.D. Zoh. Benzophenone-3 degradation via UV/H2O2 and UV/persulfate reactions. J Hazard Mater, 403 (2021), Article 123591.
[10]
Y. Zhang, L. Li, Z. Pan, Y. Zhu, Y. Shao, Y. Wang, et al. Degradation of sulfamethoxazole by UV/persulfate in different water samples: influential factors, transformation products and toxicity. Chem Eng J, 379 (2020), Article 122354.
[11]
W. Chen, X. Li, Z. Pan, S. Ma, L. Li. Effective mineralization of diclofenac by catalytic ozonation using Fe-MCM-41 catalyst. Chem Eng J, 304 (2016), pp. 594-601.
[12]
P. Yan, Q. Sui, S. Lyu, H. Hao, H.F. Schroder, W. Gebhardt. Elucidation of the oxidation mechanisms and pathways of sulfamethoxazole degradation under Fe(II) activated percarbonate treatment. Sci Total Environ, 640-641 (2018), pp. 973-980.
[13]
X. Li, J. Ma, G. Liu, J. Fang, S. Yue, Y. Guan, et al. Efficient reductive dechlorination of monochloroacetic acid by sulfite/UV process. Environ Sci Technol, 46 (13) (2012), pp. 7342-7349.
[14]
F. Alonso, I.P. Beletskaya, M. Yus. Metal-mediated reductive hydrodehalogenation of organic halides. Chem Rev, 102 (11) (2002), pp. 4009-4092.
[15]
Y. Xue, Z. Wang, R. Bush, F. Yang, R. Yuan, J. Liu, et al. Resistance of alkyl chloride on chloramphenicol to oxidative degradation by sulfate radicals: kinetics and mechanism. Chem Eng J, 415 (2021), Article 129041.
[16]
M. Fang, J. Guo, D. Chen, A. Li, D.E. Hinton, W. Dong. Halogenated carbazoles induce cardiotoxicity in developing zebrafish (Danio rerio) embryos. Environ Toxicol Chem, 35 (10) (2016), pp. 2523-2529.
[17]
S. Periyasamy, X. Lin, S.O. Ganiyu, S.K. Kamaraj, A. Thiam, D. Liu. Insight into BDD electrochemical oxidation of florfenicol in water: kinetics, reaction mechanism, and toxicity. Chemosphere, 288 (Pt 1) (2022), Article 132433.
[18]
B.P. Vellanki, B. Batchelor, A. Abdel-Wahab. Advanced reduction processes: a new class of treatment processes. Environ Eng Sci, 30 (5) (2013), pp. 264-271.
[19]
Y.H. Chuang, K.M. Parker, W.A. Mitch. Development of predictive models for the degradation of halogenated disinfection byproducts during the UV/H2O2 advanced oxidation process. Environ Sci Technol, 50 (20) (2016), pp. 11209-11217.
[20]
X. Liu, J. Zhong, L. Fang, L. Wang, M. Ye, Y. Shao, et al. Trichloroacetic acid reduction by an advanced reduction process based on carboxyl anion radical. Chem Eng J, 303 (2016), pp. 56-63.
[21]
G.V. Buxton, C.L. Greenstock, W.P. Helman, A.B. Ross. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/⋅O-) in aqueous solution. J Phys Chem Ref Data, 17 (2) (1988), p. 513.
[22]
H. Milh, X. Yu, D. Cabooter, R. Dewil. Degradation of ciprofloxacin using UV-based advanced removal processes: comparison of persulfate-based advanced oxidation and sulfite-based advanced reduction processes. Sci Total Environ, 764 (2021), Article 144510.
[23]
X. Liu, T. Zhang, L. Wang, Y. Shao, L. Fang. Hydrated electron-based degradation of atenolol in aqueous solution. Chem Eng J, 260 (2015), pp. 740-748.
[24]
Z. Zhang, X. Wang, Y. Xue, H. Li, W. Dong. Enhanced dechlorination of triclosan by hydrated electron reduction in aqueous solution. Chem Eng J, 263 (2015), pp. 186-193.
[25]
D. Deng, F. Deng, B. Tang, J. Zhang, J. Liu. Electrocatalytic reduction of low-concentration thiamphenicol and florfenicol in wastewater with multi-walled carbon nanotubes modified electrode. J Hazard Mater, 332 (2017), pp. 168-175.
[26]
Z. Sun, C. Zhang, P. Chen, Q. Zhou, M.R. Hoffmann. Impact of humic acid on the photoreductive degradation of perfluorooctane sulfonate (PFOS) by UV/iodide process. Water Res, 127 (2017), pp. 50-58.
[27]
D. Kong, B. Liang, H. Yun, H. Cheng, J. Ma, M. Cui, et al. Cathodic degradation of antibiotics: characterization and pathway analysis. Water Res, 72 (2015), pp. 281-292.
[28]
J.A. Rosso, S.G. Bertolotti, A.M. Braun, D.O. Mártire, M.C. Gonzalez. Reactions of carbon dioxide radical anion with substituted benzenes. J Phys Org Chem, 14 (5) (2001), pp. 300-309.
[29]
W. Jiang, P. Tang, S. Lu, X. Zhang, Z. Qiu, Q. Sui. Enhanced reductive degradation of carbon tetrachloride by carbon dioxide radical anion-based sodium percarbonate/Fe(II)/formic acid system in aqueous solution. Front Environ Sci Eng, 12 (2) (2018), p. 6.
[30]
C.M. Hendy, G.C. Smith, Z. Xu, T. Lian, N.T. Jui. Radical chain reduction via carbon dioxide radical anion (CO2). J Am Chem Soc, 143 (24) (2021), pp. 8987-8992.
[31]
Z. Lin, L. Zhao, Y. Dong. Effects of low molecular weight organic acids and fulvic acid on 2,4,4’-trichlorobiphenyl degradation and hydroxyl radical formation in a goethite-catalyzed Fenton-like reaction. Chem Eng J, 326 (2017), pp. 201-209.
[32]
B. Heckel, S. Cretnik, S. Kliegman, O. Shouakar-Stash, K. McNeill, M. Elsner. Reductive outer-sphere single electron transfer is an exception rather than the rule in natural and engineered chlorinated ethene dehalogenation. Environ Sci Technol, 51 (17) (2017), pp. 9663-9673.
[33]
Z. Jiang, D. Adjei, S.A. Denisov, M. Mostafavi, J. Ma. Transient kinetics of short-chain perfluoroalkyl sulfonate with radiolytic reducing species. Environ Sci Technol Lett, 10 (1) (2023), pp. 59-65.
[34]
T. Tachikawa, S. Tojo, M. Fujitsuka, T. Majima. Direct observation of the one-electron reduction of methyl viologen mediated by the CO2 radical anion during TiO2 photocatalytic reactions. Langmuir, 20 (22) (2004), pp. 9441-9444.
[35]
Y. Ding, Y. Zhu, X. Yu, S. Lyu, Y. Wu, L. Zhou, et al. Mechanistic and kinetic aspects of florfenicol degradation by ·OH: chloride moiety resistance. Chem Eng J, 479 (2024), Article 147696.
[36]
Q. Zhang, G. Ying, C. Pan, Y. Liu, J. Zhao. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance. Environ Sci Technol, 49 (11) (2015), pp. 6772-6782.
[37]
A.J. Browne, M.G. Chipeta, G. Haines-Woodhouse, E.P.A. Kumaran, B.H.K. Hamadani, S. Zaraa, et al. Global antibiotic consumption and usage in humans, 2000-2018: a spatial modelling study. Lancet Planet Health, 5 (12) (2021), pp. 893-904.
[38]
H. Zong, D. Ma, J. Wang, J. Hu. Research on florfenicol residue in coastal area of Dalian (northern China) and analysis of functional diversity of the microbial community in marine sediment. Bull Environ Contam Toxicol, 84 (2) (2010), pp. 245-249.
[39]
Y. Han, W. Zhou, Y. Tang, W. Shi, Y. Shao, P. Ren, et al. Microplastics aggravate the bioaccumulation of three veterinary antibiotics in the thick shell mussel Mytilus coruscus and induce synergistic immunotoxic effects. Sci Total Environ, 770 (2021), Article 145273.
[40]
W. Jiang, P. Tang, S. Lyu, M.L. Brusseau, Y. Xue, X. Zhang, et al. Enhanced redox degradation of chlorinated hydrocarbons by the Fe(II)-catalyzed calcium peroxide system in the presence of formic acid and citric acid. J Hazard Mater, 368 (2019), pp. 506-513.
[41]
A. Eisentraeger, W. Dott, J. Klein, S. Hahn. Comparative studies on algal toxicity testing using fluorometric microplate and Erlenmeyer flask growth-inhibition assays. Ecotoxicol Environ Saf, 54 (3) (2003), pp. 346-354.
[42]
T. Lu, F. Chen. Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem, 33 (5) (2012), pp. 580-592.
[43]
R. Xu, M. Zhao, Z. Chen, Z. Gao, H. Song, T. An, et al. Degradation pathways of penthiopyrad by δ-MnO2 mediated processes: a combined density functional theory and experimental study. Environ Sci Process Impacts, 23 (12) (2021), pp. 1977-1985.
[44]
Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al. Gaussian 09 (Revision D. 01) [software]. Wallingford: Gaussian, Inc.; 2009.
[45]
Y. Ji, J. Lu, L. Wang, M. Jiang, Y. Yang, P. Yang, et al. Non- activated peroxymonosulfate oxidation of sulfonamide antibiotics in water: kinetics, mechanisms, and implications for water treatment. Water Res, 147 (2018), pp. 82-90.
[46]
Y. Yao, Y. Xie, B. Zhao, L. Zhou, Y. Shi, Y. Wang, et al. N- dependent ozonation efficiency over nitrogen-containing heterocyclic contaminants: a combined density functional theory study on reaction kinetics and degradation pathways. Chem Eng J, 382 (2020), Article 122708.
[47]
M. Zheng, K.D. Daniels, M. Park, A.B. Nienhauser, E.C. Clevenger, Y. Li, et al. Attenuation of pharmaceutically active compounds in aqueous solution by UV/CaO2 process: influencing factors, degradation mechanism and pathways. Water Res, 164 (2019), Article 114922.
[48]
K. Yin, L. Deng, J. Luo, J. Crittenden, C. Liu, Y. Wei, et al. Destruction of phenicol antibiotics using the UV/H2O2 process: kinetics, byproducts, toxicity evaluation and trichloromethane formation potential. Chem Eng J, 351 (2018), pp. 867-877.
[49]
K. Li, P. Zhang, L. Ge, H. Ren, C. Yu, X. Chen, et al. Concentration-dependent photodegradation kinetics and hydroxyl-radical oxidation of phenicol antibiotics. Chemosphere, 111 (2014), pp. 278-282.
[50]
Q. Sui, W. Gebhardt, H.F. Schröder, W. Zhao, S. Lu, G. Yu. Identification of new oxidation products of bezafibrate for better understanding of its toxicity evolution and oxidation mechanisms during ozonation. Environ Sci Technol, 51 (4) (2017), pp. 2262-2270.
[51]
United Nations. Globally harmonized system of classification and labelling of chemicals (GHS). 4th ed. New York City: United Nations Publications; 2011.
PDF(1754 KB)

Accesses

Citation

Detail

段落导航
相关文章

/