[1] |
X.S. Guo, D.F. Hu, Y.P. Li, J.B. Duan, X.F. Zhang, X.J. Fan, et al. Theoretical progress and key technologies of onshore ultra-deep oil/gas exploration. Engineering, 5 (2019), pp. 458-470
|
[2] |
C.Z. Jia, X.Q. Pang. Research processes and main development directions of deep hydrocarbon geological theories. Acta Petrol Sin, 36 (2015), pp. 1457-1469
|
[3] |
C.N. Zou, Q. Zhao, L.Z. Cong, H.Y. Wang, Z.S. Shi, J. Wu, et al. Development progress, potential and prospect of shale gas in China. Nat Gas Ind, 41 (2021), pp. 1-14
|
[4] |
C.N. Zou, Z. Qiu, J.Q. Zhang, Z.Y. Li, H.Y. Wei, B. Liu, et al. Unconventional petroleum sedimentology: a key to understanding unconventional hydrocarbon accumulation. Engineering, 18 (2022), pp. 62-78
|
[5] |
X.H. Ma, X.W. Zhang, W. Xiong, Y.Y. Liu, J.L. Gao, R.Z. Yu, et al. Prospects and challenges of shale gas development in China. Pet Sci Bull, 4 (2023), pp. 491-501
|
[6] |
C.N. Zou, R.K. Zhu, Z.Q. Chen, J.G. Ogg, S.T. Wu, D.Z. Dong, et al. Organic-matter-rich shales of China. Earth Sci Rev, 189 (2019), pp. 51-78
|
[7] |
X.S. Guo, D.F. Hu, R.C. Huang, Z.H. Wei, J.B. Duan, X.F. Wei, et al. Deep and ultra-deep natural gas exploration in the Sichuan Basin: progress and prospect. Nat Gas Ind, 40 (2020), pp. 1-14
|
[8] |
C.N. Zou, J.H. Du, C.C. Xu, Z.C. Wang, B.M. Zhang, G.Q. Wei, et al. Formation, distribution, resource potential, and discovery of Sinian-Cambrian giant gas field, Sichuan Basin, SW China. Petrol Explor Dev, 41 (2014), pp. 306-325
|
[9] |
B. Horsfield, C.N. Zou, J. Li, S.Y. Yang, N. Mahlstedt, D. Misch, et al. Prediction of the gas-generating characteristics of the Qiongzhusi and Longmaxi Formations, Yangtze platform, southern China, using analogues. AAPG Bull, 105 (2021), pp. 945-985
|
[10] |
S.F. Wang, D.Z. Dong, Y.M. Wang, X.J. Li, J.L. Huang, Q.Z. Guan. A comparative study of the geological feature of marine shale gas between China and the United States. Nat Gas Geosci, 26 (2015), pp. 1666-1678
|
[11] |
C.J. Potter. Paleozoic shale gas resources in the Sichuan Basin, China. AAPG Bull, 102 (2018), pp. 987-1009
|
[12] |
W.Y. Wang, X.Q. Pang, Y.P. Wang, Z.X. Chen, C.R. Li, X.H. Ma. Hydrocarbon expulsion model and resource potential evaluation of high-maturity marine source rocks in deep basins: example from the Ediacaran microbial dolomite in the Sichuan Basin, China. Petroleum Sci, 19 (2022), pp. 2618-2630
|
[13] |
W.Y. Wang, X.Q. Pang, Z.X. Chen, D.X. Chen, T.Y. Zheng, B. Luo, et al. Quantitative prediction of oil and gas prospects of the Sinian—lower Paleozoic in the Sichuan Basin in central China. Energy, 174 (2019), pp. 861-872
|
[14] |
J.X. Dai, Y.Y. Ni, Q.Y. Liu, X.Q. Wu, D.Y. Gong, F. Hong, et al. Sichuan super gas basin in southwest China. Petrol Explor Dev, 48 (2021), pp. 1251-1259
|
[15] |
D.Z. Dong, S.K. Gao, J.L. Huang, Q.Z. Guan, S.F. Wang, Y.M. Wang. Discussion on the exploration & development prospect of shale gas in the Sichuan Basin. Nat Gas Ind B, 2 (2015), pp. 9-23
|
[16] |
M. Li, Y.L. Liu, D.J. Feng, B.J. Shen, W. Du, W.P. Wei. Potential and future exploration direction of marine shale gas resources in China. Petrol Geol Exp, 45 (2023), pp. 1097-1108
|
[17] |
X. Li, Z.X. Jiang, S. Jiang, S. Wang, Y.N. Miao, F. Wu, et al. Synergetic effects of matrix components and diagenetic processes on pore properties in the lower Cambrian shale in Sichuan Basin, south China. J Nat Gas Sci Eng, 94 (2021), Article 104072
|
[18] |
X. Li, Z.X. Jiang, P.F. Wang, Y. Song, Z. Li, X.L. Tang, et al. Porosity-preserving mechanisms of marine shale in lower Cambrian of Sichuan Basin, south China. J Nat Gas Sci Eng, 55 (2018), pp. 191-205
|
[19] |
J.Q. Tan, Z.H. Wang, W.H. Wang, J. Hilton, J.H. Guo, X.K. Wang. Depositional environment and hydrothermal controls on organic matter enrichment in the lower Cambrian Niutitang shale, southern China. AAPG Bulletin, 105 (2021), pp. 1329-1356
|
[20] |
T.L. Guo, X. Liang, S.J. Ye, X.X. Dong, L.M. Wei, Y.T. Yang. Theory and practice of unconventional gas exploration in carrier beds: insight from the breakthrough of new type of shale gas and tight gas in Sichuan Basin, SW China. Petrol Explor Dev, 50 (2023), pp. 27-42
|
[21] |
M.E. Curtis, B.J. Cardott, C.H. Sondergeld, C.S. Rai. Development of organic porosity in the Woodford shale with increasing thermal maturity. Int J Coal Geol, 103 (2012), pp. 26-31
|
[22] |
Z.B. Liu, B. Gao, Y.Y. Zhang, W. Du, D.J. Feng, H.K. Nie. Types and distribution of the shale sedimentary facies of the lower Cambrian in upper Yangtze area, south China. Petrol Explor Dev, 44 (2017), pp. 20-31
|
[23] |
S.Y. Luo, X.H. Chen, Y. Yue. Analysis of sedimentary-tectonic evolution characteristics and shale gas enrichment in Yichang area, middle Yangtz. Nat Gas Geosci, 31 (2020), pp. 1052-1068
|
[24] |
H. Li, A. Liu, S.Y. Luo, X.H. Chen, L. Chen. Characteristics of the Cambrian Shuijingtuo shale reservoir on Yichang slope, western Hubei Province: a case study of well EYY1. Petrol Geol Exp, 41 (2019), pp. 76-82
|
[25] |
F.R. Chen, Y. Zhang, Z.X. Xu, C. Tan, X.X. Zhou. Petroleum geological characteristics and main control factors of oil and gas accumulations in the global Precambrian-Cambrian petroliferous basin. J Jilin Uni B, 47 (2017), pp. 974-989
|
[26] |
Ahlbrandt TS.The Sirte Basin Province of Libya-Sirte-Zelten total petroleum system. US Geol Surv Bull 2002;2202-F.
|
[27] |
M.V.N. Chari, J.N. Sahu, B. Banerjee, P.L. Zutshi, K. Chandra. Evolution of the Cauvery basin, India from subsidence modelling. Mar Petrol Geol, 12 (1995), pp. 667-675
|
[28] |
A. Sircar. Hydrocarbon production from fractured basement formations. Curr Sci, 87 (2004), pp. 147-151
|
[29] |
Rodrigues S, Bluett J, Ferguson BR, Titus L, Golding SD.Maturation profile at the Glyde gas discovery in the southern McArthur Basin, Australia. In:Proceedings of International Conference & Exhibition; 2015 Sep 13-16; Melbourne, VIC, Australia. AAPG; 2015.
|
[30] |
M. Croon, J. Bluett, L. Titus, R. Johnson. Formation evaluation case study: Glyde unconventional middle proterozoic play in the McArthur Basin, northern Australia. APPEA J, 55 (2015), p. 429
|
[31] |
H. Zhou, W. Li, B.M. Zhang, J.J. Liu, S.H. Deng, S.B. Zhang, et al.. Formation and evolution of upper Sinian to lower Cambrian intraplate formal basin in Sichuan Basin. Acta Petrol Sin, 36 (2015), pp. 310-323
|
[32] |
K. Ma, L. Wen, B.J. Zhang, Y. Li, J.Y. Zhong, Y.L. Wang, et al. Segmented evolution of Deyang-Anyue erosion rift trough in Sichuan Basin and its significance for oil and gas exploration, SW China. Petrol Explor Dev, 49 (2022), pp. 313-326
|
[33] |
J.B. Duan, Q.H. Mei, B.S. Li, Z.R. Liang. Sinian-early Cambrian tectonic-sedimentary evolution in Sichuan Basin. Earth Sci, 44 (2019), pp. 738-755
|
[34] |
G.X. Zhou, G.Q. Wei, G.Y. Hu, S.J. Wu, Y.J. Tian, C.Y. Dong. The development setting and the organic matter enrichment of the lower Cambrian shales from the western rift trough in Sichuan Basin. Nat Gas Geosci, 31 (2020), pp. 498-506
|
[35] |
L.Y. Yang, J.J. Shen, K.Q. Chen, Y. Wang, Y.B. Ji, C.H. Wang, et al. Relationship between paleoenvironmental evolution and organic matter enrichment of shale of the lower Cambrian Qiongzhusi Formation in western Sichuan: evidence from mineral petrology and geochemistry. J Northeast Petrol Univ, 46 (2022), pp. 40-54
|
[36] |
Y. Ding, Z.W. Li, S.G. Liu, J.M. Song, X.Q. Zhou, W. Sun, et al. Sequence stratigraphy and tectono-depositional evolution of a late Ediacaran epeiric platform in the upper Yangtze area, south China. Precambrian Res, 354 (2021), Article 106077
|
[37] |
J.H. Du, Z.C. Wang, C.N. Zou, C.C. Xu, P. Shen, B.M. Zhang, et al. Discovery of intra-cratonic rift in the upper Yangtze and its control effect on the formation of Anyue giant gas field. Acta Petrol Sin, 37 (2016), pp. 1-16
|
[38] |
L.J. Feng, C. Li, J. Huang, H.J. Chang, X.L. Chu. A sulfate control on marine mid-depth euxinia on the early Cambrian (ca. 529-521Ma) Yangtze platform, south China. Precambrian Res, 246 (2014), pp. 123-133
|
[39] |
K. Jiu, W.L. Ding, W.H. Huang, J.C. Zhang, W.T. Zeng. Formation environment and controlling factors of organic-rich shale of lower Cambrian in upper Yangtze region. Geoscience, 26 (2012), pp. 547-554
|
[40] |
S.F. Wang, C.N. Zou, D.Z. Dong, Y.M. Wang, X.J. Li, J.L. Huang, et al. Multiple controls on the paleoenvironment of the early Cambrian marine black shales in the Sichuan Basin, SW China: geochemical and organic carbon isotopic evidence. Mar Petrol Geol, 66 (2015), pp. 660-672
|
[41] |
R. Yeasmin, D.Z. Chen, Y. Fu, J.G. Wang, Z.H. Guo, C. Guo. Climatic-oceanic forcing on the organic accumulation across the shelf during the early Cambrian (age 2 through 3) in the mid-upper Yangtze block, NE Guizhou, south China. J Asian Earth Sci, 134 ( 2017), pp. 365-386
|
[42] |
J.H. Zhao, Z.J. Jin, Q.H. Hu, K.Y. Liu, G.X. Liu, B. Gao, et al. Geological controls on the accumulation of shale gas: a case study of the early Cambrian shale in the upper Yangtze area. Mar Petrol Geol, 107 (2019), pp. 423-437
|
[43] |
P.F. Jiang, J.F. Wu, Y.Q. Zhu, D.K. Zhang, W. Wu, R. Zhang, et al. Enrichment conditions and favorable areas for exploration and development of marine shale gas in Sichuan Basin. Acta Petrol Sin, 44 (2023), pp. 91-109
|
[44] |
R.Y. Liu, W. Zhou, H. Xu, Q.M. Zhou, Q. Cao, W.L. Gao, et al. Control of the pattern of tectonic-depositional differentiation on shale gas reservoir characteristics within a sequence stratigraphic framework: a case study from the Qiongzhusi Formation in the southwestern Sichuan Basin. Acta Sedimentol Sin (2023), pp. 1-23
|
[45] |
P. Gao, S.J. Li, G.G. Lash, D.T. Yan, Q. Zhou, X.M. Xiao. Stratigraphic framework, redox history, and organic matter accumulation of an early Cambrian intraplatfrom basin on the Yangtze platform, south China. Mar Petrol Geol, 130 (2021), Article 105095
|
[46] |
R. Li, Y.X. Wang, Z.C. Wang, W.R. Xie, W.Z. Li, M.F. Gu, et al. Geological characteristics of the southern segment of the Late Sinian-early Cambrian Deyang-Anyue rift trough in Sichuan Basin, SW China. Petrol Explor Dev, 50 (2023), pp. 321-333
|
[47] |
S.B. Liu, S.D. Jin, Y. Liu, A.Q. Chen. Astronomical forced sequence infill of early Cambrian Qiongzhusi organic-rich shale of Sichuan Basin, south China. Sediment Geol, 440 (2022), Article 106261
|
[48] |
G.Y. Cao, Y. Liu, M.C. Hou, A.Q. Chen, S.L. Xu. Nitrogen cycle and paleoenvironmental implications in the Weiyuan area, southern Sichuan during the early Cambrian. Acta Sedimentol Sin (2023), pp. 1-15
|
[49] |
Q.Y. Zhang, E.T. Liu, S.Q. Pan, H. Wang, Z.H. Jing, Z.F. Zhao, et al. Multiple controls on organic matter accumulation in the intraplatform basin of the early Cambrian Yangtze platform, south China. J Mar Sci Eng, 11 (2023), p. 1907
|
[50] |
Taylor SR, McLennan SM.The continental crust: its composition and evolution. Oak Ridge: US Department of Energy; 1985.
|
[51] |
S.D. Schoepfer, J. Shen, H.Y. Wei, R.V. Tyson, E. Ingall, T.J. Algeo. Total organic carbon, organic phosphorus, and biogenic barium fluxes as proxies for paleomarine productivity. Earth Sci Rev, 149 (2015), pp. 23-52
|
[52] |
C.D. Lohr, P.C. Hackley. Relating Tmax and hydrogen index to vitrinite and solid bitumen reflectance in hydrous pyrolysis residues: comparisons to natural thermal indices. Int J Coal Geol, 242 (2021), Article 103768
|
[53] |
M.R. Stokes, B.J. Valentine, P.C. Hackley, A.M. Jubb. Relating systematic compositional variability to the textural occurrence of solid bitumen in shales. Int J Coal Geol, 261 (2022), Article 104068
|
[54] |
Forchheimer P.Wasserbewegung durch boden. 45th ed. Düsseldorf: Zeitschrift des Vereines Deutscher Ingenieure; 1901. German.
|
[55] |
L.J. Klinkenberge. The permeability of porous media to liquids and gases. Drilling Prod Prac (1941), pp. 200-213
|
[56] |
C.N. Zou, Z. Yang, S.S. Sun, Q. Zhao, W.H. Bai, H. Liu, et al. “Exploring petroleum inside source kitchen”: shale oil and gas in Sichuan Basin. Sci China Earth Sci, 63 (2020), pp. 934-953
|
[57] |
C.R. Marshall. Explaining the Cambrian “explosion” of animals. Annu Rev Earth Pl Sc, 34 (2006), pp. 355-384
|
[58] |
D.G. Shu, Y. Isozaki, X.L. Zhang, J. Han, S. Maruyama. Birth and early evolution of metazoans. Gondwana Res, 25 (2014), pp. 884-895
|
[59] |
M.Y. Zhu, A.H. Yang, J.L. Yuan, G.X. Li, J.M. Zhang, F.C. Zhao, et al. Cambrian integrative stratigraphy and timescale of China. Sci China Earth Sci, 62 (2019), pp. 25-60
|
[60] |
Z.F. Zhao, P. Ahlberg, N. Thibault, T.W. Dahl, N.H. Schovsbo, A.T. Nielsen. High-resolution carbon isotope chemostratigraphy of the middle Cambrian to lowermost Ordovician in southern Scandinavia: implications for global correlation. Global Planet Change, 209 (2022), Article 103751
|
[61] |
L.A. Hinnov. Astronomical metronome of geological consequence. Proc Nati Acad Sci USA, 115 (2018), pp. 6104-6106
|
[62] |
Z.F. Zhao, N.R. Thibault, T.W. Dahl, N.H. Schovsbo, A.L. Sørensen, C.M. Rasmussen, et al. Synchronizing rock clocks in the late Cambrian. Nat Commun, 13 (2022), p. 1990
|
[63] |
B.P. Tissot, D.H. Welte. Petroleum formation and occurrence. Springer Verlag, Heidelberg (2013)
|
[64] |
K. Wang, L. Ma, K.G. Taylor. Nanoscale geochemical heterogeneity of organic matter in thermally-mature shales: an AFM-IR study. Fuel, 310 (2022), Article 122278
|
[65] |
G.Q. Wei, W. Yang, W.R. Xie, N. Su, Z.Y. Xie, F.Y. Zeng, et al. Formation mechanisms, potentials and exploration practices of large lithologic gas reservoirs in and around an intracratonic rift: taking the Sinian-Cambrian of Sichuan Basin as an example. Petrol Explor Dev, 49 (2022), pp. 530-545
|
[66] |
M.H. Yang, Y.H. Zuo, X.G. Duan, Z.Q. Li, J.Z. Zhang, L.R. Dang, et al. Hydrocarbon kitchen evolution of the lower Cambrian Qiongzhusi Formation in the Sichuan Basin and its enlightenment to hydrocarbon accumulation. Earth Science, 48 (2023), pp. 582-595
|
[67] |
M. Yuan, S.Q. Pan, Z.H. Jing, S. Poetz, Q. Shi, Y.J. Han, et al. Geochemical distortion on shale oil maturity caused by oil migration: insights from the non-hydrocarbons revealed by FT-ICR MS. Int J Coal Geol, 266 (2023), Article 104142
|
[68] |
Z.F. Zhao, X.Q. Pang, F.J. Jiang, K. Wang, L.L. Li, K. Zhang, et al. Hydrocarbon generation from confined pyrolysis of lower Permian Shanxi formation coal and coal measure mudstone in the Shenfu area, northeastern Ordos Basin, China. Mar Petrol Geol, 97 (2018), pp. 355-369
|
[69] |
S. Rao, Y.N. Yang, S.B. Hu, Q. Wang. Thermal evolution history and shale gas accumulation significance of lower Cambrian Qiongzhusi formation in southwest Sichuan Basin. Earth Sci, 47 (2022), pp. 4319-4335
|
[70] |
N.S. Qiu, W. Liu, X.D. Fu, W.Z. Li, Q.C. Xu, C.Q. Zhu. Maturity evolution of lower Cambrian Qiongzhusi formation shale of the Sichuan Basin. Mar Petrol Geol, 128 (2021), Article 105061
|
[71] |
C.R. Li, X.Q. Pang, X.H. Ma, E.Z. Wang, T. Hu, Z.Y. Wu. Hydrocarbon generation and expulsion characteristics of the Lower Cambrian Qiongzhusi shale in the Sichuan Basin, central China: implications for conventional and unconventional natural gas resource potential. J Petrol Sci Engi, 204 (2021), Article 108610
|
[72] |
S.I. Golyshev, N.A. Verkhovskaya, V.N. Burkova, E.Y. Matis. Stable carbon isotopes in source-bed organic matter of west and east Siberia. Org Geochem, 17 (1991), pp. 277-291
|
[73] |
J.L. Huang, C.N. Zou, J.Z. Li, D.Z. Dong, S. Wang, S.Q. Wang, et al. Shale gas generation and potential of the lower Cambrian Qiongzhusi formation in southern Sichuan Basin. China. Petrol Explor Dev, 39 (2012), pp. 75-81
|
[74] |
T.F. Pedersen, S.E. Calvert. Anoxia vs productivity: what controls the formation of organic-carbon-rich sediments and sedimentary rocks?. AAPG Bull, 74 (1990), pp. 454-466
|
[75] |
Tyson RV. The “productivity versus preservation” controversy: cause, flaws, and resolution. Deposition of organic-carbon-rich sediments: models mechanisms, and consequences. Maclean: SEPM Society for Sedimentary Geology; 2005.
|
[76] |
Z.F. Zhao, X.Q. Pang, C.N. Zou, A.J. Dickson, A. Basu, Z.J. Guo, et al. Dynamic oceanic redox conditions across the late Cambrian SPICE event constrained by molybdenum and uranium isotopes. Earth Planet Sc Lett, 604 (2023), Article 118013
|
[77] |
B.B. Sageman, A.E. Murphy, J.P. Werne, C.A.E. Straeten, D.J. Hollander, T.W. Lyons. A tale of shales: the relative roles of production, decomposition, and dilution in the accumulation of organic-rich strata, middle-upper Devonian, Appalachian basin. Chem Geol, 195 (2003), pp. 229-273
|
[78] |
T.J. Algeo, J.B. Maynard. Trace-element behavior and redox facies in core shales of upper Pennsylvanian Kansas-type cyclothems. Chem Geol, 206 (2004), pp. 289-318
|
[79] |
Z.B. Liu, W. Du, B. Gao, Z.Q. Hu, Y.Y. Zhang, J. Wu, et al. Sedimentary model and distribution of organic-rich shale in the sequence stratigraphic framework: a case study of lower Cambrian in upper Yangtze region. J Jilin Uni B, 48 (2018), pp. 1-14
|
[80] |
B.U. Haq, S.R. Schutter. A chronology of paleozoic sea-level changes. Science, 322 (2008), pp. 64-68
|
[81] |
Cramer BD, Jarvis I. Carbon isotope stratigraphy. Geologic Time Scale 2020. Amsterdam: Elsevier; 2020.
|
[82] |
Z.H. Li, M. Zhang, Z.Q. Chen, T.J. Algeo, L.S. Zhao, F.F. Zhang. Early Cambrian oceanic oxygenation and evolution of early animals: a critical review from the south China Craton. Global Planet Change, 204 (2021), Article 103561
|
[83] |
M.Y. Zhu. The origin and Cambrian Explosion of animals: fossil evidences from China. Acta Palaeontol Sin, 49 (2010), pp. 269-287
|
[84] |
T.J. Algeo, N. Tribovillard. Environmental analysis of paleoceanographic systems based on molybdenum-uranium covariation. Chem Geol, 268 (2009), pp. 211-225
|
[85] |
S.W. Poulton, D.E. Canfield. Ferruginous conditions: a dominant feature of the ocean through Earth’s history. Elements, 7 (2011), pp. 107-112
|
[86] |
D.Z. Chen, J.G. Wang, H.R. Qing, D.T. Yan, R.W. Li. Hydrothermal venting activities in the early Cambrian, south China: petrological, geochronological and stable isotopic constraints. Chem Geol, 258 (2009), pp. 168-181
|
[87] |
P. Gao, He Zi, G.G.L. Lash,Q. Zhou. Xiao XM. Controls on silica enrichment of lower Cambrian organic-rich shale deposits. Mar Petrol Geol, 130 (2021), Article 105126
|
[88] |
M. Adachi, K. Yamamoto, R. Sugisaki. Hydrothermal chert and associated siliceous rocks from the northern Pacific their geological significance as indication od ocean ridge activity. Sediment Geol, 47 (1986), pp. 125-148
|
[89] |
T.J. Algeo, T.W. Lyons. Mo-total organic carbon covariation in modern anoxic marine environments: implications for analysis of paleoredox and paleohydrographic conditions. Paleoceanography, 21 (2006), p. PA1016
|
[90] |
P. Gao, Z.L. He, S.J. Li, G.G. Lash, B.Y. Li, B.Y. Huang, et al. Volcanic and hydrothermal activities recorded in phosphate nodules from the lower Cambrian Niutitang Formation black shales in south China. Palaeogeogr Palaeocl, 505 (2018), pp. 381-397
|
[91] |
X. Chen, H.F. Ling, D. Vance, G.A. Shields-Zhou, M. Zhu, S.W. Poulton, et al. Rise to modern levels of ocean oxygenation coincided with the Cambrian radiation of animals. Nat Commun, 6 (2015), p. 7142
|
[92] |
M. Fakhraee, N.J. Planavsky, C.T. Reinhard. The role of environmental factors in the long-term evolution of the marine biological pump. Nat Geosci, 13 (2020), pp. 812-816
|
[93] |
T.M. Lenton, S.J. Daines. The effects of marine eukaryote evolution on phosphorus, carbon and oxygen cycling across the Proterozoic-Phanerozoic transition. Emerg Top Life Sci, 2 (2018), pp. 267-278
|
[94] |
T.W. Lyons, C.T. Reinhard, N.J. Planavsky. The rise of oxygen in Earth’s early ocean and atmosphere. Nature, 506 (2014), pp. 307-315
|
[95] |
N.J. Butterfield. Oxygen, animals and aquatic bioturbation: an updated account. Geobiology, 16 (2018), pp. 3-16
|
[96] |
T.M. Lenton, R.A. Boyle, S.W. Poulton, G.A. Shields-Zhou, N.J. Butterfield. Co-evolution of eukaryotes and ocean oxygenation in the Neoproterozoic era. Nat Geosci, 7 (2014), pp. 257-265
|
[97] |
Y.S. Li, G.D. Liu, Z.Z. Song, B.J. Zhang, M.L. Sun, X.W. Tian, et al. Organic matter enrichment due to high primary productivity in the deep-water shelf: insights from the lower Cambrian Qiongzhusi shales of the central Sichuan Basin, SW China. J Asian Earth Sci, 239 (2022), Article 105417
|
[98] |
M. Mastalerz, A. Schimmelmann, A. Drobniak, Y.Y. Chen. Porosity of Devonian and Mississippian New Albany shale across a maturation gradient: insights from organic petrology, gas adsorption, and mercury intrusion. AAPG Bull, 97 (2013), pp. 1621-1643
|
[99] |
J.B. Curtis. Fractured shale gas systems. AAPG Bull, 86 (2002), pp. 1921-1938
|
[100] |
B. Gao, Z.B. Liu, Z.G. Shu, H.T. Liu, R.Y. Wang, Z.G. Jin, et al. Reservoir characteristics and exploration of the lower Cambrian shale gas in the middle-upper Yangtze area. Oil Gas Geol, 41 (2020), pp. 284-294
|
[101] |
G.R. Chalmers, R.M. Bustin. Lower Cretaceous gas shales in northeastern British Columbia, part II: evaluation of regional potential gas resources. B Can Petrol Geol, 56 (2008), pp. 22-61
|
[102] |
A. Adeyilola, S. Nordeng, C. Onwumelu, F. Nwachukwu, T. Gentzis. Geochemical, petrographic and petrophysical characterization of the lower bakken shale, divide county, north Dakota. Inr J Coal Geol, 224 (2020), Article 103477
|
[103] |
K.L. Milliken, M. Rudnicki, D.N. Awwiller, T.W. Zhang. Organic matter-hosted pore system, Marcellus Formation (Devonian), Pennsylvania. AAPG Bull, 97 (2013), pp. 177-200
|
[104] |
K. Wang, M. Chandler, J. Wang, P. Dowey, M. Storm, K.G. Taylor, et al. Time-lapse nanometre-scale 3D synchrotron imaging and image-based modelling of the response of shales to heating. Int J Coal Geol, 244 (2021), Article 103816
|
[105] |
J. Klaver, G. Desbois, J.L. Urai, R. Littke. BIB-SEM study of the pore space morphology in early mature Posidonia shale from the Hils area, Germany. Inr J Coal Geol, 103 (2012), pp. 12-25
|
[106] |
D.Z. Dong, Y.M. Wang, X.N. Huang, C.C. Zhang, Q.Z. Guan, J.L. Huang, et al. Discussion about geological characteristics, resource evaluation methods and its key parameters of shale gas in China. Nat Gas Geosci, 27 (2016), pp. 1583-1601
|
[107] |
D.J. Soeder. The successful development of gas and oil resources from shales in north America. J Petrol Sci Engi, 163 (2018), pp. 399-420
|
[108] |
M.P. Mudoi, S. Sinha, V. Parthasarthy.A review of gas adsorption on shale and the influencing factors of CH4 and CO2 adsorption. J Petrol Sci Engi, 217 (2022), Article 119937
|
[109] |
U. Kuila, D.K. McCarty, A. Derkowski, T.B. Fischer, T. Topór, M. Prasad. Nano-scale texture and porosity of organic matter and clay minerals in organic-rich mudrocks. Fuel, 135 (2014), pp. 359-373
|
[110] |
F. Liang, W. Jiang, Y. Dai, Y. Chen, C. Luo, Q. Zhang, et al. Enrichment law and resource potential of shale gas of Qiongzhusi Formation in Weiyuan-Ziyang areas, Sichuan Basin. Nat Gas Geosci, 33 (2022), pp. 755-763
|
[111] |
T.L. Guo. Key geological issues and main controls on accumulation and enrichment of Chinese shale gas. Petrol Explor Dev, 43 (2016), pp. 349-359
|
[112] |
X.S. Guo, D.F. Hu, Y.P. Li, Z.H. Wei, X.F. Wei, Z.J. Liu. Geological factors controlling shale gas enrichment and high production in Fuling shale gas field. Petrol Explor Dev, 44 (2017), pp. 513-523
|
[113] |
Z.X. Jiang, Y. Song, X.L. Tang, Z. Li, X.M. Wang, G.Z. Wang, et al. Controlling factors of marine shale gas differential enrichment in southern China. Petrol Explor Dev, 47 (2020), pp. 661-673
|
[114] |
X.F. Wei, Y.P. Li, Z.H. Wei, R.B. Liu, G.C. Yu, Q.B. Wang. Effects of preservation conditions on enrichment and high yield of shale gas in Sichuan Basin and its periphery. Petrol Geol Exp, 39 (2017), pp. 147-153
|
[115] |
L. Tang, Y. Song, S. Jiang, L.X. Li, Z. Li, Q.W. Li, et al. Sealing mechanism of the roof and floor for the Wufeng-Longmaxi shale gas in the southern Sichuan Basin. Energy Fuels, 34 (2020), pp. 6999-7018
|
[116] |
K. Zhang, C.Z. Jia, Y. Song, S. Jiang, Z.X. Jiang, M. Wen, et al. Analysis of lower Cambrian shale gas composition, source and accumulation pattern in different tectonic backgrounds: a case study of Weiyuan Block in the upper Yangtze region and Xiuwu Basin in the lower Yangtze region. Fuel, 263 (2020), Article 115978
|
[117] |
C.H. Fan, C. Zhong, Y. Zhang, Q.R. Qin, S. He. Geological factors controlling the accumulation and high yield of marine-facies shale gas: case study of the Wufeng-Longmaxi Formation in the Dingshan area of southeast Sichuan. China. Acta Geol Sin, 93 (2019), pp. 536-560
|
[118] |
G.C. Yu, X.F. Wei, F. Li, Z.J. Liu. Disruptive effects of faulting on shale gas preservation in upper Yangtze region. Petrol Geol Exp, 42 (2020), pp. 355-362
|
[119] |
H.W. Cao, H.G. Zhu, J. Liu, J. Liang, X.Y. Shu, C.H. Fan. Preservation conditions of Sinian-Cambrian oil and gas in complex structural area of southwest Sichuan. Petrol Geol Eng, 36 (2022), pp. 46-51
|
[120] |
H.K. Nie, Z.L. He, R.Y. Wang, G.R. Zhang, Q. Chen, D.H. Li, et al. Temperature and origin of fluid inclusions in shale veins of Wufeng-Longmaxi Formations, Sichuan Basin, south China: implications for shale gas preservation and enrichment. J Petrol Sci Engi, 193 (2020), Article 107329
|
[121] |
L.Q. Chen, J. Wu, Y.F. He, Q.Q. Jiang, W. Wu, C. Luo, et al. Fracture vein characteristics and paleofluid activities in the lower Cambrian Qiongzhusi shale in the central portion of the Mianyang-Changning intracratonic Sag, Sichuan Basin. Bull Geol Sci Technol, 42 (2023), pp. 142-152
|
[122] |
T.L. Guo, X.P. He, P. Zeng, Y.Q. Gao, P.X. Zhang, G.S. He. Geological characteristics and beneficial development scheme of shale gas reservoirs in complex tectonic regions: a case study of Wufeng-Longmaxi Formations in Sichuan Basin and its periphery. Acta Petrol Sin, 41 (2020), pp. 1490-1500
|
[123] |
J. Yin, L. Wei, S.S. Sun, Z.S. Shi, D.Z. Dong, Z.Y. Gao. Overpressure generation and evolution in deep Longmaxi Formation shale reservoir in southern Sichuan Basin: influences on pore development. Energies, 16 (2023), p. 2533
|
[124] |
X.S. Guo. Rules of two-factor enrichment for marine shale gas in southern China: understanding from the Longmaxi Formation shale gas in Sichuan Basin and its surrounding area. Acta Geol Sin, 88 (2014), pp. 1209-1218
|
[125] |
H.Q. Pang, L. Xiong, L.M. Wei, H.L. Shi, X.X. Dong, T.C. Zhang, et al. Analysis of main geological factors for high yield and enrichment of deep shale gas in southern Sichuan: a case study of WeiRong shale gas field. Nat Gas Ind, 39 (2019), pp. 78-84
|