[1] |
Q. Lu, C. Li. Comprehensive utilization of Chinese medicine residues for industry and environment protection: turning waste into treasure. J Clean Prod, 279 (2021), Article 123856.
|
[2] |
H. Sheridan, B. Kopp, L. Krenn, D. Guo, J. Sendker. Traditional Chinese herbal medicine preparation: invoking the butterfly effect. Science, 350 (2015), pp. S64-S66.
|
[3] |
J. Hou, J. Zhang, C. Yao, R. Bauer, I.A. Khan, W. Wu, et al. Deeper chemical perceptions for better traditional Chinese medicine standards. Engineering, 5 (1) (2019), pp. 83-97.
|
[4] |
Z. Ma, B. Zhang, Y. Fan, M. Wang, D. Kebebe, J. Li, et al. Traditional Chinese medicine combined with hepatic targeted drug delivery systems: a new strategy for the treatment of liver diseases. Biomed Pharmacother, 117 (2019), Article 109128.
|
[5] |
W. Liu, W. Guan, N. Zhong. Strategies and advances in combating COVID-19 in China. Engineering, 6 (10) (2020), pp. 1076-1084.
|
[6] |
W. Feng, H. Ao, C. Peng, D. Yan. Gut microbiota, a new frontier to understand traditional Chinese medicines. Pharmacol Res, 142 (2019), pp. 176-191.
|
[7] |
X. Long, Y. Lu, H. Guo, Y. Tang. Recent advances in solid residues resource utilization in traditional Chinese medicine. ChemistrySelect, 8 (13) (2023), p. 202300383.
|
[8] |
K. Huang, P. Zhang, Z. Zhang, J.Y. Youn, C. Wang, H. Zhang, et al. Traditional Chinese medicine (TCM) in the treatment of COVID-19 and other viral infections: efficacies and mechanisms. Pharmacol Ther, 225 (2021), Article 107843.
|
[9] |
W. Zhu, L. Wang, L. Pan, Z. He, G. Yang. Analysis of the status quo and future prospects of Chinese medicinal resources sustainable development. World Chin Med, 13 (7) (2018), pp. 1752-1755Chinese.
|
[10] |
X.C. Meng. Problems and countermeasures in development of Chinese materia medica resource. Chin Tradit Herbal Drugs, 49 (16) (2018), pp. 3735-3741Chinese.
|
[11] |
W. Tao, J. Jin, Y. Zheng, S. Li. Current advances of resource utilization of herbal extraction residues in China. Waste Biomass Valoriz, 12 (11) (2021), pp. 5853-5868.
|
[12] |
M. Wang, Y. Liu, S. Wang, K. Wang, Y. Zhang. Development of a compound microbial agent beneficial to the composting of Chinese medicinal herbal residues. Bioresource Technol, 330 (2021), Article 124948.
|
[13] |
H. Zhan, X. Yin, Y. Huang, X. Zhang, H. Yuan, J. Xie, et al. Characteristics of NOx precursors and their formation mechanism during pyrolysis of herb residues. J Fuel Chem Technol, 45 (3) (2017), pp. 279-288.
|
[14] |
Q. He, Y. Bai, Y. Lu, B. Cui, Z. Huang, Q. Yang, et al. Isolation and characterization of cellulose nanocrystals from Chinese medicine residues. Biomass Convers Bior, 14 (2022), pp. 22745-22754.
|
[15] |
A.W. Carpenter, C. de Lannoy, M.R. Wiesner. Cellulose nanomaterials in water treatment technologies. Environ Sci Technol, 49 (9) (2015), pp. 5277-5287.
|
[16] |
M.A.S. Azizi Samir, F. Alloin, A. Dufresne. Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules, 6 (2) (2005), pp. 612-626.
|
[17] |
N. Johar, I. Ahmad, A. Dufresne. Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Ind Crops Prod, 37 (1) (2012), pp. 93-99.
|
[18] |
Q. Lin, Y. Huang, W. Yu. Effects of extraction methods on morphology, structure and properties of bamboo cellulose. Ind Crops Prod, 169 (2021), Article 113640.
|
[19] |
A.Q. Almashhadani, C.P. Leh, S. Chan, C.Y. Lee, C.F. Goh. Nanocrystalline cellulose isolation via acid hydrolysis from non-woody biomass: importance of hydrolysis parameters. Carbohydr Polym, 286 (2022), Article 119285.
|
[20] |
X. Chen, X. Deng, W. Shen, M. Jia. Preparation and characterization of the spherical nanosized cellulose by the enzymatic hydrolysis of pulp fibers. Carbohydr Polym, 181 (2018), pp. 879-884.
|
[21] |
Y. Habibi. Key advances in the chemical modification of nanocelluloses. Chem Soc Rev, 43 (5) (2014), pp. 1519-1542.
|
[22] |
J. Wen, Y. Yin, X. Peng, S. Zhang. Using H2O2 to selectively oxidize recyclable cellulose yarn with high carboxyl content. Cellulose, 26 (4) (2019), pp. 2699-2713.
|
[23] |
Y. Liu, L. Liu, K. Wang, H. Zhang, Y. Yuan, H. Wei, et al. Modified ammonium persulfate oxidations for efficient preparation of carboxylated cellulose nanocrystals. Carbohydr Polym, 229 (2020), Article 115572.
|
[24] |
P.J. Van Soest, J.B. Robertson, B.A. Lewis. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci, 74 (10) (1991), pp. 3583-3597.
|
[25] |
M. Wang, J. Lu, X. Zhang, L. Li, H. Li, N. Luo, et al. Two-step, catalytic C-C bond oxidative cleavage process converts lignin models and extracts to aromatic acids. ACS Catal, 6 (9) (2016), pp. 6086-6090.
|
[26] |
M. Wang, X. Zhang, H. Li, J. Lu, M. Liu, F. Wang. Carbon modification of nickel catalyst for depolymerization of oxidized lignin to aromatics. ACS Catal, 8 (2) (2018), pp. 1614-1620.
|
[27] |
G. Dai, G. Wang, K. Wang, Z. Zhou, S. Wang. Mechanism study of hemicellulose pyrolysis by combining in situ DRIFT, TGA-PIMS and theoretical calculation. Proc Combust Inst, 38 (3) (2021), pp. 4241-4249.
|
[28] |
G. Dai, K. Wang, G. Wang, S. Wang. Initial pyrolysis mechanism of cellulose revealed by in situ DRIFT analysis and theoretical calculation. Combust Flame, 208 (2019), pp. 273-280.
|
[29] |
A.D. Becke. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A, 38 (6) (1988), pp. 3098-3100.
|
[30] |
C. Lee, W. Yang, R.G. Parr. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B Condens Matter, 37 (2) (1988), pp. 785-789.
|
[31] |
Y. Tan, H. Chen, J. Li, Q. Wu. Efficacy, chemical constituents, and pharmacological actions of Radix Paeoniae Rubra and Radix Paeoniae Alba. Front Pharmacol, 11 (2020), p. 1054.
|
[32] |
R. Deng, J. Gao, J. Yi, P. Liu. Peony seeds oil by-products: chemistry and bioactivity. Ind Crops Prod, 187 (2022), Article 115333.
|
[33] |
Y. Horikawa, S. Hirano, A. Mihashi, Y. Kobayashi, S. Zhai, J. Sugiyama. Prediction of lignin contents from infrared spectroscopy: chemical digestion and lignin/biomass ratios of Cryptomeria Japonica. Appl Biochem Biotechnol, 188 (4) (2019), pp. 1066-1076.
|
[34] |
M. Roman, W.T. Winter. Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules, 5 (5) (2004), pp. 1671-1677.
|
[35] |
A. Chaker, S. Alila, P. Mutje, M.R. Vilar, S. Boufi. Key role of the hemicellulose content and the cell morphology on the nanofibrillation effectiveness of cellulose pulps. Cellulose, 20 (6) (2013), pp. 2863-2875.
|
[36] |
W. Chen, H. Yu, Y. Liu, P. Chen, M. Zhang, Y. Hai. Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydr Polym, 83 (4) (2011), pp. 1804-1811.
|
[37] |
M.J. Han, D.K. Yoon. Advances in soft materials for sustainable electronics. Engineering, 7 (5) (2021), pp. 564-580.
|
[38] |
J. Gu, Y. Hsieh. Alkaline cellulose nanofibrils from streamlined alkali treated rice straw. ACS Sustain Chem Eng, 5 (2) (2017), pp. 1730-1737.
|
[39] |
M.G. Northolt, H. Boerstoel, H. Maatman, R. Huisman, J. Veurink, H. Elzerman. The structure and properties of cellulose fibres spun from an anisotropic phosphoric acid solution. Polymer, 42 (19) (2001), pp. 8249-8264.
|
[40] |
A.E. Oudiani, Y. Chaabouni, S. Msahli, F. Sakli. Crystal transition from cellulose I to cellulose II in NaOH treated Agave Americana L. fibre. Carbohydr Polym, 86 (3) (2011), pp. 1221-1229.
|
[41] |
A.P. Mangalam, J. Simonsen, A.S. Benight. Cellulose/DNA hybrid nanomaterials. Biomacromolecules, 10 (3) (2009), pp. 497-504.
|
[42] |
B. Deepa, E. Abraham, B.M. Cherian, A. Bismarck, J.J. Blaker, L.A. Pothan, et al. Structure, morphology and thermal characteristics of banana nano fibers obtained by steam explosion. Bioresource Technol, 102 (2) (2011), pp. 1988-1997.
|
[43] |
Y. Yang, G. Banerjee, G.W. Brudvig, J. Kim, J.J. Pignatello. Oxidation of organic compounds in water by unactivated peroxymonosulfate. Environ Sci Technol, 52 (10) (2018), pp. 5911-5919.
|
[44] |
Q. Wu, Z. Yang, Z. Wang, W. Wang. Oxygen doping of cobalt-single-atom coordination enhances peroxymonosulfate activation and high-valent cobalt-oxo species formation. Proc Natl Acad Sci, 120 (16) (2023) e2219923120.
|
[45] |
A.C.W. Leung, S. Hrapovic, E. Lam, Y. Liu, K.B. Male, K.A. Mahmoud, et al. Characteristics and properties of carboxylated cellulose nanocrystals prepared from a novel one-step procedure. Small, 7 (3) (2011), pp. 302-305.
|
[46] |
Y. Zhou, J. Jiang, Y. Gao, J. Ma, S. Pang, J. Li, et al. Activation of peroxymonosulfate by benzoquinone: a novel nonradical oxidation process. Environ Sci Technol, 49 (21) (2015), pp. 12941-12950.
|
[47] |
S. Kutti Rani, S. Nirmal Kumar, C.Y. Wilson, A. Gopi, D. Easwaramoorthy. Oxidation of vanillin by peroxomonosulphate-thermodynamic and kinetic investigation. J Ind Eng Chem, 15 (6) (2009), pp. 898-901.
|
[48] |
J. Kim, C. Huang. Reactivity of peracetic acid with organic compounds: a critical review. ACS EST Water, 1 (1) (2021), pp. 15-33.
|
[49] |
L. Wu, Z. Sun, Y. Zhen, S. Zhu, C. Yang, J. Lu, et al. Oxygen vacancy-induced nonradical degradation of organics: critical trigger of oxygen (O2) in the Fe-Co LDH/peroxymonosulfate system. Environ Sci Technol, 55 (22) (2021), pp. 15400-15411.
|
[50] |
Y. Jiang, Z. Xiong, J. Huang, F. Yan, G. Yao, B. Lai. Effective E. coli inactivation of core-shell ZnO@ZIF-8 photocatalysis under visible light synergize with peroxymonosulfate: efficiency and mechanism. Chin Chem Lett, 33 (1) (2022), pp. 415-423.
|
[51] |
J. Hu, X. Zeng, G. Wang, B. Qian, Y. Liu, X. Hu, et al. Modulating mesoporous Co3O4 hollow nanospheres with oxygen vacancies for highly efficient peroxymonosulfate activation. Chem Eng J, 400 (2020), Article 125869.
|
[52] |
L. Lai, H. Zhou, Y. Hong, M. Luo, Y. Shi, H. Zhang, et al. Activation of peroxymonosulfate by FeVO3-x for the degradation of carbamazepine: vanadium mediated electron shuttle and oxygen vacancy modulated interface chemistry. Chin Chem Lett, 35 (1) (2024), Article 108580.
|
[53] |
G. Siqueira, A. Várnai, A. Ferraz, A.M.F. Milagres. Enhancement of cellulose hydrolysis in sugarcane bagasse by the selective removal of lignin with sodium chlorite. Appl Energy, 102 (2013), pp. 399-402.
|
[54] |
H. Zhang, C. Xie, L. Chen, J. Duan, F. Li, W. Liu. Different reaction mechanisms of SO4 center dot-and center dot OH with organic compound interpreted at molecular orbital level in Co(II)/peroxymonosulfate catalytic activation system. Water Res, 229 (2023), Article 119392.
|
[55] |
M. Li, Q. Mei, D. Han, B. Wei, Z. An, H. Cao, et al. The roles of HO center dot, ClO center dot and BrO center dot radicals in caffeine degradation: a theoretical study. Sci Total Environ, 768 (2021), Article 144763.
|
[56] |
Z. Qiu, K. Fu, D. Yu, J. Luo, J. Shang, S. Luo, et al. Radix Astragali residue-derived porous amino-laced double-network hydrogel for efficient Pb (II) removal: performance and modeling. J Hazard Mater, 438 (2022), Article 129418.
|
[57] |
A.A. Houfani, N. Anders, A.C. Spiess, P. Baldrian, S. Benallaoua. Insights from enzymatic degradation of cellulose and hemicellulose to fermentable sugars—a review. Biomass Bioenergy, 134 (2020), Article 105481.
|
[58] |
H. Dong, L. Zheng, P. Yu, Q. Jiang, Y. Wu, C. Huang, et al. Characterization and application of lignin-carbohydrate complexes from lignocellulosic materials as antioxidants for scavenging in vitro and in vivo reactive oxygen species. ACS Sustainable Chem Eng, 8 (1) (2020), pp. 256-266.
|