GSeisRT——应用于广域实时地震监测的北斗/GNSS精密单点定位引擎

Jianghui Geng, Kunlun Zhang, Shaoming Xin, Jiang Guo, David Mencin, Tan Wang, Sebastian Riquelme, Elisabetta D'Anastasio, Muhammad Al Kautsar

工程(英文) ›› 2025, Vol. 47 ›› Issue (4) : 57-69.

PDF(3417 KB)
PDF(3417 KB)
工程(英文) ›› 2025, Vol. 47 ›› Issue (4) : 57-69. DOI: 10.1016/j.eng.2024.03.012
研究论文
Article

GSeisRT——应用于广域实时地震监测的北斗/GNSS精密单点定位引擎

作者信息 +

GSeisRT: A Continental BDS/GNSS Point Positioning Engine for Wide-Area Seismic Monitoring in Real Time

Author information +
History +

摘要

地震/海啸预警中的精确同震位移对于实时描述地震特征至关重要,以支持决策者发布公共安全警报。实时全球卫星导航系统(GNSSs)是一种可用于监测地震运动的有力工具,支持无偏的地面永久位移获取。作为提供给地震社区的宝贵工具,由武汉大学自主研发的GSeisRT软件平台支持多系统精密单点定位与模糊度固定(PPP-AR),实时定位精度可达厘米级至亚厘米级。目前全球范围精密单点定位(PPP)的稳定服务仍然具有挑战,而GSeisRT支持通过区域GNSS网络实时估计卫星钟差和相位偏差产品,这使得GSeisRT特别适用于专有GNSS网络的处理。并且更重要的是,可以支持实现尽可能高的定位精度和可靠性。美国NOTA网络的实时定位结果表明,24 h内动态PPP-AR在东、北和高程分量的平均均方根(RMS)误差分别只有1.2 cm、1.3 cm和3.0 cm。而在常见地震事件发生的几分钟之内,GSeisRT可以实现小于4 mm的水平位移监测精度。另外,通过GSeisRT实现的区域PPP/PPP-AR的定位精度相比全球PPP/PPP-AR改进约30%-40%。自2019年以来,GSeisRT已经成功实时捕获了2020年墨西哥瓦哈卡州7.4级地震、2020年美国加利福尼亚州5.8级地震和2021年中国青海7.3级地震事件中的静态、动态和峰值地面位移,结果表明GSeisRT实时估计的震级误差约为0.1。GSeisRT软件面向科学界开放,并已部署于中国地震台网中心、美国EarthScope联盟、智利国家地震中心、新西兰地质与核科学研究所以及印度尼西亚地理空间信息局。

Abstract

Precise coseismic displacements in earthquake/tsunamic early warning are necessary to characterize earthquakes in real time in order to enable decision-makers to issue alerts for public safety. Real-time global navigation satellite systems (GNSSs) have been a valuable tool in monitoring seismic motions, allowing permanent displacement computation to be unambiguously achieved. As a valuable tool presented to the seismic community, the GSeisRT software developed by Wuhan University (China) can realize multi-GNSS precise point positioning with ambiguity resolution (PPP-AR) and achieve centimeter-level to sub-centimeter-level precision in real time. While the stable maintenance of a global precise point positioning (PPP) service is challenging, this software is capable of estimating satellite clocks and phase biases in real time using a regional GNSS network. This capability makes GSeisRT especially suitable for proprietary GNSS networks and, more importantly, the highest possible positioning precision and reliability can be obtained. According to real-time results from the Network of the Americas, the mean root mean square (RMS) errors of kinematic PPP-AR over a 24 h span are as low as 1.2, 1.3, and 3.0 cm in the east, north, and up components, respectively. Within the few minutes that span a typical seismic event, a horizontal displacement precision of 4 mm can be achieved. The positioning precision of the GSeisRT regional PPP/PPP-AR is 30%–40% higher than that of the global PPP/PPP-AR. Since 2019, GSeisRT has successfully recorded the static, dynamic, and peak ground displacements for the 2020 Oaxaca, Mexico moment magnitude (Mw) 7.4 event; the 2020 Lone Pine, California Mw 5.8 event; and the 2021 Qinghai, China Mw 7.3 event in real time. The resulting immediate magnitude estimates have an error of around 0.1 only. The GSeisRT software is open to the scientific community and has been applied by the China Earthquake Networks Center, the EarthScope Consortium of the United States, the National Seismological Center of Chile, Institute of Geological and Nuclear Sciences Limited (GNS Science Te Pu¯ Ao) of New Zealand, and the Geospatial Information Agency of Indonesia.

关键词

实时 / 精密单点定位 / 多系统 / 地震监测 / 快速地震响应

Keywords

Real-time / Precise point positioning / Multi global navigation satellite system / Seismic monitoring / Rapid earthquake response

引用本文

导出引用
Jianghui Geng, Kunlun Zhang, Shaoming Xin. GSeisRT——应用于广域实时地震监测的北斗/GNSS精密单点定位引擎. Engineering. 2025, 47(4): 57-69 https://doi.org/10.1016/j.eng.2024.03.012

参考文献

[1]
Zumberge JF, Heflin MB, Jefferson DC, Watkins MM, Webb FH.Precise point positioning for the efficient and robust analysis of GPS data from large networks.J Geophys Res Solid Earth 1997; 102(B3):5005-5017.
[2]
Larson KM, Bodin P, Gomberg J.Using 1-Hz GPS data to measure deformations caused by the denali fault earthquake.Science 2003; 300(5624):1421-1424.
[3]
Blewitt G, Kreemer C, Hammond WC, Plag HP, Stein S, Okal E.Rapid determination of earthquake magnitude using GPS for tsunami warning systems.Geophys Res Lett 2006; 33(11):L11309.
[4]
Crowell BW, Melgar D, Bock Y, Haase JS, Geng J.Earthquake magnitude scaling using seismogeodetic data.Geophys Res Lett 2013; 40(23):6089-6094.
[5]
Ruhl CJ, Melgar D, Chung AI, Grapenthin R, Allen RM.Quantifying the value of real-time geodetic constraints for earthquake early warning using a global seismic and geodetic data set.J Geophys Res Solid Earth 2019; 124(4):3819-3837.
[6]
Colosimo G, Crespi M, Mazzoni A.Real-time GPS seismology with a stand-alone receiver: a preliminary feasibility demonstration.J Geophys Res Solid Earth, 116 (B11) (2011), p. 302
[7]
Riquelme S, Bravo F, Melgar D, Benavente R, Geng J, Barrientos S, et al.W phase source inversion using high-rate regional GPS data for large earthquakes.Geophys Res Lett 2016; 43(7):3178-3185.
[8]
Goldberg DE, Koch P, Melgar D, Riquelme S, Yeck WL.Beyond the teleseism: introducing regional seismic and geodetic data into routine usgs finite-fault modeling.Seismol Res Lett 2022; 93(6):3308-3323.
[9]
Geng J, Jiang P, Liu J.Integrating GPS with GLONASS for high-rate seismogeodesy.Geophys Res Lett 2017; 44(7):3139-3146.
[10]
Paziewski J, Kurpinski G, Wielgosz P, Stolecki L, Sieradzki R, Seta M, et al.Towards Galileo + GPS seismology: validation of high-rate GNSS-based system for seismic events characterisation.Measurement 2020; 166:108236.
[11]
Zheng K, Liu K, Zhang X, Wen G, Chen M, Zeng X, et al.First results using high-rate BDS-3 observations: retrospective real-time analysis of 2021 Mw 7.4 Madoi (Xizang) earthquake.J Geod 2022; 96(8):51.
[12]
Xu P, Shi C, Fang R, Liu J, Niu X, Zhang Q, et al.High-rate precise point positioning (PPP) to measure seismic wave motions: an experimental comparison of GPS PPP with inertial measurement units.J Geod 2013; 87(4):361-372.
[13]
Hohensinn R, Häberling S, Geiger A.Dynamic displacements from high-rate GNSS: error modeling and vibration detection.Measurement 2020; 157:107655.
[14]
Geng J, Xin S, Williams SDP, Wei N.Detecting millimeter-level subdaily loading deformation using multi-GNSS data and advanced IGS products: a case study for the December 5, 2013 storm surge event around the southern North Sea.Proceedings of the Abstracts of the 51st American Geophysical Union (AGU) Fall Meeting 2018; 2018 Dec 10–14; Washington, DC, USA, American Geophysical Union, Washington, DC (2018)
[15]
Geng J, Wen Q, Zhang Q, Li G, Zhang K.GNSS observable-specific phase biases for all-frequency PPP ambiguity resolution.J Geod 2022; 96(2):11.
[16]
Geng J, Zhang Q, Li G, Liu J, Liu D.Observable-specific phase biases of Wuhan multi-GNSS experiment analysis center’s rapid satellite products.Satell Navig 2022; 3(1):23.
[17]
Yigit CO, El-Mowafy A, Anil A Dindar, Bezcioglu M, Tiryakioglu I.Investigating performance of high-rate GNSS-PPP and PPP-AR for structural health monitoring: dynamic tests on shake table.J Surv Eng 2021; 147(1):05020011.
[18]
Michel C, Kelevitz K, Houli Né, Edwards B, Psimoulis P, Su Z, et al.The potential of high-rate GPS for strong ground motion assessment.Bull Seismol Soc Am 2017; 107(4):1849-1859.
[19]
Eberhart-Phillips D, Haeussler PJ, Freymueller JT, Frankel AD, Rubin CM, Craw P, et al.The 2002 Denali fault earthquake, Alaska: a large magnitude, slip-partitioned event.Science 2003; 300(5622):1113-1118.
[20]
Li B, Ge H, Bu Y, Zheng Y, Yuan L.Comprehensive assessment of real-time precise products from IGS analysis centers.Sat Nav 2022; 3(1):12.
[21]
Melgar D, Crowell BW, Melbourne TI, Szeliga W, Santillan M, Scrivner C.Noise characteristics of operational real-time high-rate GNSS positions in a large aperture Network.J Geophys Res Solid Earth 2020; 125(7):e2019JB019197.
[22]
Zhang Q, Zeng R, Xin S, Zhou X.Analysis of real-time multi-GNSS satellite products of Wuhan University for rapid response of precise positioning.J Glob Position Syst 2021; 17(2):189-207.
[23]
Geng J, Pan Y, Li X, Guo J, Liu J, Chen X, et al.Noise characteristics of high-rate multi-GNSS for subdaily crustal deformation monitoring.J Geophys Res Solid Earth 2018; 123(2):1987-2002.
[24]
Weber G, Mervart L, Stuerze A, Rülke A, Stöcker D.BKG Ntrip Client (BNC) Version 2.12. Frankfurt am Main: Federal Agency for Cartography and Geodesy; 2016.
[25]
Bertiger W, Bar-Sever Y, Dorsey A, Haines B, Harvey N, Hemberger D, et al.GipsyX/RTGx, a new tool set for space geodetic operations and research.Adv Space Res 2020; 66(3):469-489.
[26]
Johnston G, Riddell A, Hausler G.The international GNSS service.P.J.G. Teunissen, O. Montenbruck (Eds.), Springer handbook of global navigation satellite systems, Springer International Publishing, Cham 2017; 967-982.
[27]
Lutz S, Beutler G, Schaer S, Dach R, Jäggi A.CODE’s new ultra-rapid orbit and ERP products for the IGS.GPS Solut 2016; 20(2):239-250.
[28]
Ge M, Chen J, Dou Jša, Gendt G, Wickert J.A computationally efficient approach for estimating high-rate satellite clock corrections in realtime.GPS Solut 2012; 16(1):9-17.
[29]
Geng J, Chen X, Pan Y, Zhao Q.A modified phase clock/bias model to improve PPP ambiguity resolution at Wuhan University.J Geod 2019; 93(10):2053-2067.
[30]
Melbourne WG.The case for ranging in GPS-based geodetic systems.In: Proceedings of the 1st International Symposium on Precise Positioning with the Global Positioning System; 1985 Apr 15–19; Rockville, M D, US A. Washington, D C: US Department of Commerce; 1985. p. 373–86.
[31]
Wubbena G.Software developments for geodetic positioning with GPS using TI 4100 code and carrier measurements.In: Proceedings of the 1st International Symposium on Precise Positioning with the Global Positioning System; 1985 Apr 15–19; Rockville, M D, US A. Washington, D C: US Department of Commerce; 1985. p. 403–12.
[32]
Schaer S, Villiger A, Arnold D, Dach R, Prange L, Jäggi A.The CODE ambiguity-fixed clock and phase bias analysis products: generation, properties, and performance.J Geod 2021; 95(7):81.
[33]
Ge M, Gendt G, Rothacher M, Shi C, Liu J.Resolution of GPS carrier-phase ambiguities in Precise Point Positioning (PPP) with daily observations.J Geod 2008; 82(7):389-399.
[34]
Teunissen PJG, de PJ Jonge, Tiberius CCJM.The least-squares ambiguity decorrelation adjustment: its performance on short GPS baselines and short observation spans.J Geod 1997; 71(10):589-602.
[35]
Teunissen PJG.Theory of integer equivariant estimation with application to GNSS.J Geod 2003; 77(7):402-410.
[36]
Odolinski R, Teunissen PJG.Best integer equivariant estimation: performance analysis using real data collected by low-cost, single- and dual-frequency, multi-GNSS receivers for short- to long-baseline RTK positioning.J Geod 2020; 94(9):91.
[37]
Weber G, Dettmering D, Gebhard H.Networked transport of RTCM via Internet Protocol (Ntrip).Washington, D C: RTCM-Radio Technical Commission for Maritime Services; 2005. p. 60–4.
[38]
Luzum B, Petit G.The IERS Conventions (2010): reference systems and new models.Proc Int Astron Union 2012; 10(H16):227-228.
[39]
Saastamoinen J.Contributions to the theory of atmospheric refraction.Bull Géodésique (1946–1975) 1972; 105(1):279-298.
[40]
Boehm J, Niell A, Tregoning P, Schuh H.Global Mapping Function (GMF): a new empirical mapping function based on numerical weather model data.Geophys Res Lett 2006; 33(7):L07304.
[41]
Lou Y, Shi C, Zhou X, Ye S.Realization and analysis of GPS precise clock products.Geomat Inf Sci Wuhan Univ 2009; 34(1):88-91.
[42]
Geng J, Zhao Q, Shi C, Liu J.A review on the inter-frequency biases of GLONASS carrier-phase data.J Geod 2017; 91(3):329-340.
[43]
Geng J, Teferle FN, Meng X, Dodson AH.Towards PPP-RTK: ambiguity resolution in real-time precise point positioning.Adv Space Res 2011; 47(10):1664-1673.
[44]
Piñón DA, Gómez DD, Smalley R Jr, Cimbaro SR, Lauría EA, Bevis MG.The history, state, and future of the argentine continuous satellite monitoring network and its contributions to geodesy in Latin America.Seismol Res Lett 2018; 89(2A):475-482.
[45]
Langbein J.Computer algorithm for analyzing and processing borehole strainmeter data.Comput Geosci 2010; 36(5):611-619.
[46]
Geng J, Xin S, Williams SD, Jiang W.Comparing non-tidal ocean loading around the southern North Sea with subdaily GPS/GLONASS data.J Geophys Res Solid Earth 2021; 126(3):e2020JB020685.
[47]
Liu K, Geng J, Wen Y, Ortega-Culaciati F, Comte D.Very early postseismic deformation following the 2015 Mw 8.3 Illapel Earthquake, Chile Revealed from Kinematic GPS.Geophys Res Lett 2022; 49(11):e2022GL098526.
[48]
Melgar D, Crowell BW, Geng J, Allen RM, Bock Y, Riquelme S, et al.Earthquake magnitude calculation without saturation from the scaling of peak ground displacement.Geophys Res Lett 2015; 42(13):5197-5205.
[49]
Guo J, Geng J, Zeng J, Song X, Defraigne P.All-frequency GPS/Galileo/BDS phase bias stream for real-time PPP ambiguity resolution at Wuhan IGS analysis center.GPS Solut 2024; 28(2):67.
[50]
Laurichesse D, Privat A.An open-source PPP client implementation for the CNES PPP-WIZARD demonstrator.ION GNSS+ 2015. Tampa: the Institute of Navigation; 2015. p. 2780–9.
[51]
Geng J, Bock Y, Melgar D, Crowell BW, Haase JS.A new seismogeodetic approach applied to GPS and accelerometer observations of the 2012 Brawley seismic swarm: implications for earthquake early warning.Geochem Geophys Geosystems 2013; 14(7):2124-2142.
[52]
Xin S, Geng J, Zeng R, Zhang Q, Ortega-Culaciati F, Wang T.In-situ real-time seismogeodesy by integrating multi-GNSS and accelerometers.Measurement 2021; 179:109453.
[53]
Bock Y, Melgar D, Crowell BW.Real-time strong-motion broadband displacements from collocated GPS and accelerometers.Bull Seismol Soc Am 2011; 101(6):2904-2925.
PDF(3417 KB)

Accesses

Citation

Detail

段落导航
相关文章

/