[1] |
D. Sen, W. Gilbert. Formation of parallel four-stranded complexes by guanine-rich motifs in DNA and its implications for meiosis. Nature, 334 (6180) (1988), pp. 364-366
|
[2] |
L.H. Hurley. DNA and associated targets for drug design. J Med Chem, 32 (9) (1989), pp. 2027-2033
|
[3] |
M. Gellert, M.N. Lipsett, D.R. Davies. Helix formation by guanylic acid. Proc Natl Acad Sci USA, 48 (12) (1962), pp. 2013-2018
|
[4] |
W.I. Sundquist, A. Klug. Telomeric DNA dimerizes by formation of guanine tetrads between hairpin loops. Nature, 342 (6251) (1989), pp. 825-829
|
[5] |
A.M. Zahler, J.R. Williamson, T.R. Cech, D.M. Prescott. Inhibition of telomerase by G-quartet DNA structures. Nature, 350 (6320) (1991), pp. 718-720
|
[6] |
D. Sun, B. Thompson, B.E. Cathers, M. Salazar, S.M. Kerwin, J.O. Trent, et al. Inhibition of human telomerase by a G-quadruplex-interactive compound. J Med Chem, 40 (14) (1997), pp. 2113-2116
|
[7] |
A. Siddiqui-Jain, C.L. Grand, D.J. Bearss, L.H. Hurley. Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription. Proc Natl Acad Sci USA, 99 (18) (2002), pp. 11593-11598
|
[8] |
S. Neidle. Quadruplex nucleic acids as novel therapeutic targets. J Med Chem, 59 (13) (2016), pp. 5987-6011
|
[9] |
S. Cogoi, M. Paramasivam, B. Spolaore, L.E. Xodo. Structural polymorphism within a regulatory element of the human KRAS promoter: formation of G4-DNA recognized by nuclear proteins. Nucleic Acids Res, 36 (11) (2008), pp. 3765-3780
|
[10] |
Y. Qin, J.S. Fortin, D. Tye, M. Gleason-Guzman, T.A. Brooks, L.H. Hurley. Molecular cloning of the human platelet-derived growth factor receptor β (PDGFR-β) promoter and drug targeting of the G-quadruplex-forming region to repress PDGFR-β expression. Biochemistry, 49 (19) (2010), pp. 4208-4219
|
[11] |
Y. Chen, P. Agrawal, R.V. Brown, E. Hatzakis, L. Hurley, D. Yang. The major G-quadruplex formed in the human platelet-derived growth factor receptor β promoter adopts a novel broken-strand structure in K+ solution. J Am Chem Soc, 134 (32) (2012), pp. 13220-13223
|
[12] |
J. Dai, T.S. Dexheimer, D. Chen, M. Carver, A. Ambrus, R.A. Jones, et al. An intramolecular G-quadruplex structure with mixed parallel/antiparallel G-strands formed in the human BCL-2 promoter region in solution. J Am Chem Soc, 128 (4) (2006), pp. 1096-1098
|
[13] |
S. Rankin, A.P. Reszka, J. Huppert, M. Zloh, G.N. Parkinson, A.K. Todd, et al. Putative DNA quadruplex formation within the human c-kit oncogene. J Am Chem Soc, 127 (30) (2005), pp. 10584-10589
|
[14] |
P. Agrawal, E. Hatzakis, K. Guo, M. Carver, D. Yang. Solution structure of the major G-quadruplex formed in the human VEGF promoter in K+: insights into loop interactions of the parallel G-quadruplexes. Nucleic Acids Res, 41 (22) (2013), pp. 10584-10592
|
[15] |
Y. Liu, J. Li, Y. Zhang, Y. Wang, J. Chen, Y. Bian, et al. Structure of the major G-quadruplex in the human EGFR oncogene promoter adopts a unique folding topology with a distinctive snap-back loop. J Am Chem Soc, 145 (29) (2023), pp. 16228-16237
|
[16] |
S.M. Mirkin. Expandable DNA repeats and human disease. Nature, 447 (7147) (2007), pp. 932-940
|
[17] |
N. Maizels. G4-associated human diseases. EMBO Rep, 16 (8) (2015), pp. 910-922
|
[18] |
S. Amrane, A. Kerkour, A. Bedrat, B. Vialet, M.L. Andreola, J.L. Mergny. Topology of a DNA G-quadruplex structure formed in the HIV-1 promoter: a potential target for anti-HIV drug development. J Am Chem Soc, 136 (14) (2014), pp. 5249-5252
|
[19] |
E. Belmonte-Reche, M. Martínez-García, A. Guédin, M. Zuffo, M. Arévalo-Ruiz, F. Doria, et al. G-quadruplex identification in the genome of protozoan parasites points to naphthalene diimide ligands as new antiparasitic agents. J Med Chem, 61 (3) (2018), pp. 1231-1240
|
[20] |
S. Muller, R. Rodriguez. G-quadruplex interacting small molecules and drugs: from bench toward bedside. Expert Rev Clin Pharmacol, 7 (5) (2014), pp. 663-679
|
[21] |
A. Lorenzatti, E.J. Piga, M. Gismondi, A. Binolfi, E. Margarit, N.B. Calcaterra, et al. Genetic variations in G-quadruplex forming sequences affect the transcription of human disease-related genes. Nucleic Acids Res, 51 (22) (2023), pp. 12124-12139
|
[22] |
S. Balasubramanian, L.H. Hurley, S. Neidle. Targeting G-quadruplexes in gene promoters: a novel anticancer strategy?. Nat Rev Drug Discov, 10 (4) (2011), pp. 261-275
|
[23] |
J. Spiegel, S. Adhikari, S. Balasubramanian. The structure and function of DNA G-quadruplexes. Trends Chem, 2 (2) (2020), pp. 123-136
|
[24] |
L. Chen, J. Dickerhoff, S. Sakai, D. Yang. DNA G-quadruplex in human telomeres and oncogene promoters: structures, functions, and small molecule targeting. Acc Chem Res, 55 (18) (2022), pp. 2628-2646
|
[25] |
S.L. Palumbo, S.W. Ebbinghaus, L.H. Hurley. Formation of a unique end-to-end stacked pair of G-quadruplexes in the hTERT core promoter with implications for inhibition of telomerase by G-quadruplex-interactive ligands. J Am Chem Soc, 131 (31) (2009), pp. 10878-10891
|
[26] |
J. Robinson, F. Raguseo, S.P. Nuccio, D. Liano, M. Di Antonio. DNA G-quadruplex structures: more than simple roadblocks to transcription?. Nucleic Acids Res, 49 (15) (2021), pp. 8419-8431
|
[27] |
R. Hansel-Hertsch, M. Di Antonio, S. Balasubramanian. DNA G-quadruplexes in the human genome: detection, functions and therapeutic potential. Nat Rev Mol Cell Biol, 18 (5) (2017), pp. 279-284
|
[28] |
G. Biffi, D. Tannahill, J. McCafferty, S. Balasubramanian. Quantitative visualization of DNA G-quadruplex structures in human cells. Nat Chem, 5 (3) (2013), pp. 182-186
|
[29] |
M. Di Antonio, A. Ponjavic, A. Radzevičius, R.T. Ranasinghe, M. Catalano, X. Zhang, et al. Single-molecule visualization of DNA G-quadruplex formation in live cells. Nat Chem, 12 (9) (2020), pp. 832-887
|
[30] |
R. Hansel-Hertsch, D. Beraldi, S.V. Lensing, G. Marsico, K. Zyner, A. Parry, et al. G-quadruplex structures mark human regulatory chromatin. Nat Genet, 48 (10) (2016), pp. 1267-1272
|
[31] |
K.W. Zheng, J. Zhang, Y. He, J. Gong, C. Wen, J. Chen, et al. Detection of genomic G-quadruplexes in living cells using a small artificial protein. Nucleic Acids Res, 48 (20) (2020), pp. 11706-11720
|
[32] |
V.S. Chambers, G. Marsico, J.M. Boutell, M. Di Antonio, G.P. Smith, S. Balasubramanian. High-throughput sequencing of DNA G-quadruplex structures in the human genome. Nat Biotechnol, 33 (8) (2015), pp. 877-881
|
[33] |
A.M. Fleming, C.J. Burrows. Interplay of guanine oxidation and G-quadruplex folding in gene promoters. J Am Chem Soc, 142 (3) (2020), pp. 1115-1136
|
[34] |
E. Wang, R. Thombre, Y. Shah, R. Latanich, J. Wang. G-quadruplexes as pathogenic drivers in neurodegenerative disorders. Nucleic Acids Res, 49 (9) (2021), pp. 4816-4830
|
[35] |
R. Hänsel-Hertsch, A. Simeone, A. Shea, W.W.I. Hui, K.G. Zyner, G. Marsico, et al. Landscape of G-quadruplex DNA structural regions in breast cancer. Nat Genet, 52 (9) (2020), pp. 878-883
|
[36] |
K.B. Wang, M.S.A. Elsayed, G. Wu, N. Deng, M. Cushman, D. Yang. Indenoisoquinoline topoisomerase inhibitors strongly bind and stabilize the MYC promoter G-quadruplex and downregulate MYC. J Am Chem Soc, 141 (28) (2019), pp. 11059-11070
|
[37] |
K.B. Wang, Y. Liu, J. Li, C. Xiao, Y. Wang, W. Gu, et al. Structural insight into the bulge-containing KRAS oncogene promoter G-quadruplex bound to berberine and coptisine. Nat Commun, 13 (1) (2022), p. 6016
|
[38] |
A.G. Atanasov, S.B. Zotchev, V.M. Dirsch, C.T. Supuran. Natural products in drug discovery: advances and opportunities. Nat Rev Drug Discov, 20 (3) (2021), pp. 200-216
|
[39] |
D.J. Newman, G.M. Cragg. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod, 83 (3) (2020), pp. 770-803
|
[40] |
Y. Gao, H. Peng, L. Li, F. Wang, J. Meng, H. Huang, et al. Screening of high-efficiency and low-toxicity antitumor active components in Macleaya cordata seeds based on the competitive effect of drugs on double targets by a new laminar flow chip. Analyst, 146 (15) (2021), pp. 4934-4944
|
[41] |
J.L. Zhou, Y.J. Lu, T.M. Ou, J.M. Zhou, Z.S. Huang, X.F. Zhu, et al. Synthesis and evaluation of quindoline derivatives as G-quadruplex inducing and stabilizing ligands and potential inhibitors of telomerase. J Med Chem, 48 (23) (2005), pp. 7315-7321
|
[42] |
M.Y. Kim, H. Vankayalapati, K. Shin-ya, K. Wierzba, L.H. Hurley. Telomestatin, a potent telomerase inhibitor that interacts quite specifically with the human telomeric intramolecular G-quadruplex. J Am Chem Soc, 124 (10) (2002), pp. 2098-2099
|
[43] |
L. Zhang, H. Liu, Y. Shao, C. Lin, H. Jia, G. Chen, et al. Selective lighting up of epiberberine alkaloid fluorescence by fluorophore-switching aptamer and stoichiometric targeting of human telomeric DNA G-quadruplex multimer. Anal Chem, 87 (1) (2015), pp. 730-737
|
[44] |
L. Liu, J. Li, Y. He. Multifunctional epiberberine mediates multi-therapeutic effects. Fitoterapia, 147 (2020), Article 104771
|
[45] |
V.L. Makarov, Y. Hirose, J.P. Langmore. Long G tails at both ends of human chromosomes suggest a C strand degradation mechanism for telomere shortening. Cell, 88 (5) (1997), pp. 657-666
|
[46] |
J. Nandakumar, T.R. Cech. Finding the end: recruitment of telomerase to telomeres. Nat Rev Mol Cell Biol, 14 (2) (2013), pp. 69-82
|
[47] |
E.H. Blackburn. Telomere states and cell fates. Nature, 408 (6808) (2000), pp. 53-56
|
[48] |
J.A. Hackett, D.M. Feldser, C.W. Greider. Telomere dysfunction increases mutation rate and genomic instability. Cell, 106 (3) (2001), pp. 275-286
|
[49] |
E.H. Blackburn. Telomeres and telomerase: the means to the end (Nobel lecture). Angew Chem Int Ed Engl, 49 (41) (2010), pp. 7405-7421
|
[50] |
A. Ambrus, D. Chen, J. Dai, T. Bialis, R.A. Jones, D. Yang. Human telomeric sequence forms a hybrid-type intramolecular G-quadruplex structure with mixed parallel/antiparallel strands in potassium solution. Nucleic Acids Res, 34 (9) (2006), pp. 2723-2735
|
[51] |
J. Dai, C. Punchihewa, A. Ambrus, D. Chen, R.A. Jones, D. Yang. Structure of the intramolecular human telomeric G-quadruplex in potassium solution: a novel adenine triple formation. Nucleic Acids Res, 35 (7) (2007), pp. 2440-2450
|
[52] |
T. Doi, K. Shibata, M. Yoshida, M. Takagi, M. Tera, K. Nagasawa, et al. (S)-stereoisomer of telomestatin as a potent G-quadruplex binder and telomerase inhibitor. Org Biomol Chem, 9 (2) (2011), pp. 387-393
|
[53] |
N. Deng, J. Xia, L. Wickstrom, C. Lin, K. Wang, P. He, et al. Ligand selectivity in the recognition of protoberberine alkaloids by hybrid-2 human telomeric G-quadruplex: binding free energy calculation, fluorescence binding, and NMR experiments. Molecules, 24 (8) (2019), p. 1574
|
[54] |
X. Ji, H. Sun, H. Zhou, J. Xiang, Y. Tang, C. Zhao. The interaction of telomeric DNA and C-MYC22 G-quadruplex with 11 natural alkaloids. Nucleic Acid Ther, 22 (2) (2012), pp. 127-136
|
[55] |
D. Gomez, M.F. O’Donohue, T. Wenner, C. Douarre, J. Macadré, P. Koebel, et al. The G-quadruplex ligand telomestatin inhibits POT1 binding to telomeric sequences in vitro and induces GFP-POT1 dissociation from telomeres in human cells. Cancer Res, 66 (14) (2006), pp. 6908-6912
|
[56] |
N. Binz, T. Shalaby, P. Rivera, K. Shin-ya, M.A. Grotzer. Telomerase inhibition, telomere shortening, cell growth suppression and induction of apoptosis by telomestatin in childhood neuroblastoma cells. Eur J Cancer, 41 (18) (2005), pp. 2873-2881
|
[57] |
M. Tera, H. Ishizuka, M. Takagi, M. Suganuma, K. Shin-ya, K. Nagasawa. Macrocyclic hexaoxazoles as sequence- and mode-selective G-quadruplex binders. Angew Chem Int Ed Engl, 47 (30) (2008), pp. 5557-5560
|
[58] |
J.H. Tan, T.M. Ou, J.Q. Hou, Y.J. Lu, S.L. Huang, H.B. Luo, et al. Isaindigotone derivatives: a new class of highly selective ligands for telomeric G-quadruplex DNA. J Med Chem, 52 (9) (2009), pp. 2825-2835
|
[59] |
K. Shin-ya, K. Wierzba, K. Matsuo, T. Ohtani, Y. Yamada, K. Furihata, et al. Telomestatin, a novel telomerase inhibitor from Streptomyces anulatus. J Am Chem Soc, 123 (6) (2001), pp. 1262-1263
|
[60] |
W.J. Chung, B. Heddi, M. Tera, K. Iida, K. Nagasawa, A.T. Phan. Solution structure of an intramolecular (3 + 1) human telomeric G-quadruplex bound to a telomestatin derivative. J Am Chem Soc, 135 (36) (2013), pp. 13495-13501
|
[61] |
J. Linder, T.P. Garner, H.E. Williams, M.S. Searle, C.J. Moody. Telomestatin: formal total synthesis and cation-mediated interaction of its seco-derivatives with G-quadruplexes. J Am Chem Soc, 133 (4) (2011), pp. 1044-1051
|
[62] |
T. Doi, M. Yoshida, K. Shin-ya, T. Takahashi. Total synthesis of (R)-telomestatin. Org Lett, 8 (18) (2006), pp. 4165-4167
|
[63] |
K. Iida, K. Nagasawa. Macrocyclic polyoxazoles as G-quadruplex ligands. Chem Rec, 13 (6) (2013), pp. 539-548
|
[64] |
M. Tera, K. Iida, H. Ishizuka, M. Takagi, M. Suganuma, T. Doi, et al. Synthesis of a potent G-quadruplex-binding macrocyclic heptaoxazole. ChemBioChem, 10 (3) (2009), pp. 431-435
|
[65] |
K. Iida, T. Nakamura, W. Yoshida, M. Tera, K. Nakabayashi, K. Hata, et al. Fluorescent-ligand-mediated screening of G-quadruplex structures using a DNA microarray. Angew Chem Int Ed Engl, 52 (46) (2013), pp. 12052-12055
|
[66] |
Y. Ma, K. Iida, S. Sasaki, T. Hirokawa, B. Heddi, A. Phan, et al. Synthesis and telomeric G-quadruplex-stabilizing ability of macrocyclic hexaoxazoles bearing three side chains. Molecules, 24 (2) (2019), p. 263
|
[67] |
J. Abraham Punnoose, Y. Ma, Y. Li, M. Sakuma, S. Mandal, K. Nagasawa, et al. Adaptive and specific recognition of telomeric G-quadruplexes via polyvalency induced unstacking of binding units. J Am Chem Soc, 139 (22) (2017), pp. 7476-7484
|
[68] |
K. Iida, S. Majima, T. Nakamura, H. Seimiya, K. Nagasawa. Evaluation of the interaction between long telomeric DNA and macrocyclic hexaoxazole (6OTD) dimer of a G-quadruplex ligand. Molecules, 18 (4) (2013), pp. 4328-4341
|
[69] |
S.G. Rzuczek, D.S. Pilch, A. Liu, L. Liu, E.J. LaVoie, J.E. Rice. Macrocyclic pyridyl polyoxazoles: selective RNA and DNA G-quadruplex ligands as antitumor agents. J Med Chem, 53 (9) (2010), pp. 3632-3644
|
[70] |
M. Sakuma, Y. Ma, Y. Tsushima, K. Iida, T. Hirokawa, K. Nagasawa. Design and synthesis of unsymmetric macrocyclic hexaoxazole compounds with an ability to induce distinct G-quadruplex topologies in telomeric DNA. Org Biomol Chem, 14 (22) (2016), pp. 5109-5116
|
[71] |
G.W. Slack, R.D. Gascoyne. MYC and aggressive B-cell lymphomas. Adv Anat Pathol, 18 (3) (2011), pp. 219-228
|
[72] |
C.V. Dang. MYC on the path to cancer. Cell, 149 (1) (2012), pp. 22-35
|
[73] |
T.A. Brooks, L.H. Hurley. The role of supercoiling in transcriptional control of MYC and its importance in molecular therapeutics. Nat Rev Cancer, 9 (12) (2009), pp. 849-861
|
[74] |
C.V. Dang, E.P. Reddy, K.M. Shokat, L. Soucek. Drugging the ‘undruggable’ cancer targets. Nat Rev Cancer, 17 (8) (2017), pp. 502-508
|
[75] |
A. Ambrus, D. Chen, J. Dai, R.A. Jones, D. Yang. Solution structure of the biologically relevant G-quadruplex element in the human c-MYC promoter.Implications for G-quadruplex stabilization. Biochemistry, 44 (6) (2005), pp. 2048-2058
|
[76] |
J. Dai, M. Carver, L.H. Hurley, D. Yang. Solution structure of a 2:1 quindoline-c-MYC G-quadruplex: insights into G-quadruplex-interactive small molecule drug design. J Am Chem Soc, 133 (44) (2011), pp. 17673-17680
|
[77] |
A.N. Tackie, G.L. Boye, M.H.M. Sharaf, P.L. Schiff Jr, R.C. Crouch, T.D. Spitzer, et al. Cryptospirolepine, a unique spiro-nonacyclic alkaloid isolated from Cryptolepis sanguinolenta. J Nat Prod, 56 (5) (1993), pp. 653-670
|
[78] |
D.E. Bierer, D.M. Fort, C.D. Mendez, J. Luo, P.A. Imbach, L.G. Dubenko, et al. Ethnobotanical-directed discovery of the antihyperglycemic properties of cryptolepine: its isolation from Cryptolepis sanguinolenta, synthesis, and in vitro and in vivo activities. J Med Chem, 41 (6) (1998), pp. 894-901
|
[79] |
V. Caprio, B. Guyen, Y. Opoku-Boahen, J. Mann, S.M. Gowan, L.M. Kelland, et al. A novel inhibitor of human telomerase derived from 10H-indolo[3,2-b]-quinoline. Bioorg Med Chem Lett, 10 (18) (2000), pp. 2063-2066
|
[80] |
B. Guyen, C.M. Schultes, P. Hazel, J. Mann, S. Neidle. Synthesis and evaluation of analogues of 10H-indolo[3,2-b]quinoline as G-quadruplex stabilising ligands and potential inhibitors of the enzyme telomerase. Org Biomol Chem, 2 (7) (2004), pp. 981-988
|
[81] |
T.M. Ou, Y.J. Lu, C. Zhang, Z.S. Huang, X.D. Wang, J.H. Tan, et al. Stabilization of G-quadruplex DNA and down-regulation of oncogene c-myc by quindoline derivatives. J Med Chem, 50 (7) (2007), pp. 1465-1474
|
[82] |
A. Funke, J. Dickerhoff, K. Weisz. Towards the development of structure-selective G-quadruplex-binding indolo[3,2-b]quinolines. Chemistry, 22 (9) (2016), pp. 3170-3181
|
[83] |
Q. Zhai, C. Gao, J. Ding, Y. Zhang, B. Islam, W. Lan, et al. Selective recognition of c-MYC Pu 22 G-quadruplex by a fluorescent probe. Nucleic Acids Res, 47 (5) (2019), pp. 2190-2204
|
[84] |
K.B. Wang, D.H. Li, P. Hu, W.J. Wang, C. Lin, J. Wang, et al. A series of β-carboline alkaloids from the seeds of Peganum harmala show G-quadruplex interactions. Org Lett, 18 (14) (2016), pp. 3398-3401
|
[85] |
H.Y. Liu, A.C. Chen, Q.K. Yin, Z. Li, S.M. Huang, G. Du, et al. New disubstituted quindoline derivatives inhibiting burkitt’s lymphoma cell proliferation by impeding c-MYC transcription. J Med Chem, 60 (13) (2017), pp. 5438-5454
|
[86] |
J. Amato, R. Morigi, B. Pagano, A. Pagano, S. Ohnmacht, A. De Magis, et al. Toward the development of specific G-quadruplex binders: synthesis, biophysical, and biological studies of new hydrazone derivatives. J Med Chem, 59 (12) (2016), pp. 5706-5720
|
[87] |
M.L. Li, J.M. Yuan, H. Yuan, B.H. Wu, S.L. Huang, Q.J. Li, et al. Design, synthesis, and evaluation of new sugar-substituted imidazole derivatives as selective c-MYC transcription repressors targeting the promoter G-quadruplex. J Med Chem, 65 (19) (2022), pp. 12675-12700
|
[88] |
M.H. Hu, J.H. Lin. New dibenzoquinoxalines inhibit triple-negative breast cancer growth by dual targeting of topoisomerase 1 and the c-MYC G-quadruplex. J Med Chem, 64 (10) (2021), pp. 6720-6729
|
[89] |
S. Ray, D. Tillo, R.E. Boer, N. Assad, M. Barshai, G. Wu, et al. Custom DNA microarrays reveal diverse binding preferences of proteins and small molecules to thousands of G-quadruplexes. ACS Chem Biol, 15 (4) (2020), pp. 925-935
|
[90] |
S. Pelliccia, J. Amato, D. Capasso, S. Di Gaetano, A. Massarotti, M. Piccolo, et al. Bio-inspired dual-selective BCL-2/c-MYC G-quadruplex binders: design, synthesis, and anticancer activity of drug-like imidazo[2,1-i]purine derivatives. J Med Chem, 63 (5) (2020), pp. 2035-2050
|
[91] |
C. Zhang, J. Sheng, G. Li, L. Zhao, Y. Wang, W. Yang, et al. Effects of berberine and its derivatives on cancer: a systems pharmacology review. Front Pharmacol, 10 (2019), p. 1461
|
[92] |
M. Tillhon, L.M. Guamán Ortiz, P. Lombardi, A.I. Scovassi. Berberine: new perspectives for old remedies. Biochem Pharmacol, 84 (10) (2012), pp. 1260-1267
|
[93] |
K.B. Wang, J. Dickerhoff, D. Yang. Solution structure of ternary complex of berberine bound to a dGMP-fill-in vacancy G-quadruplex formed in the PDGFR-β promoter. J Am Chem Soc, 143 (40) (2021), pp. 16549-16555
|
[94] |
C. Bazzicalupi, M. Ferraroni, A.R. Bilia, F. Scheggi, P. Gratteri. The crystal structure of human telomeric DNA complexed with berberine: an interesting case of stacked ligand to G-tetrad ratio higher than 1:1. Nucleic Acids Res, 41 (1) (2013), pp. 632-638
|
[95] |
C.Q. Zhou, J.W. Yang, C. Dong, Y.M. Wang, B. Sun, J.X. Chen, et al. Highly selective, sensitive and fluorescent sensing of dimeric G-quadruplexes by a dimeric berberine. Org Biomol Chem, 14 (1) (2016), pp. 191-197
|
[96] |
M. Ferraroni, C. Bazzicalupi, F. Papi, G. Fiorillo, L.M. Guamán-Ortiz, A. Nocentini, et al. Solution and solid-state analysis of binding of 13-substituted berberine analogues to human telomeric G-quadruplexes. Chem Asian J, 11 (7) (2016), pp. 1107-1115
|
[97] |
J. Dickerhoff, N. Brundridge, S.A. McLuckey, D. Yang. Berberine molecular recognition of the parallel MYC G-quadruplex in solution. J Med Chem, 64 (21) (2021), pp. 16205-16212
|
[98] |
A.R. Moore, S.C. Rosenberg, F. McCormick, S. Malek. RAS-targeted therapies: is the undruggable drugged?. Nat Rev Drug Discov, 19 (8) (2020), pp. 533-552
|
[99] |
X.M. Li, K. Zheng, J. Zhang, H. Liu, Y. He, B. Yuan, et al. Guanine-vacancy-bearing G-quadruplexes responsive to guanine derivatives. Proc Natl Acad Sci USA, 112 (47) (2015), pp. 14581-14586
|
[100] |
B. Heddi, N. Martín-Pintado, Z. Serimbetov, T.M. Kari, A.T. Phan. G-quadruplexes with (4n-1) guanines in the G-tetrad core: formation of a G-triad·water complex and implication for small-molecule binding. Nucleic Acids Res, 44 (2) (2016), pp. 910-916
|
[101] |
K.B. Wang, J. Dickerhoff, G. Wu, D. Yang. PDGFR-β promoter forms a vacancy G-quadruplex that can be filled in by dGMP: solution structure and molecular recognition of guanine metabolites and drugs. J Am Chem Soc, 142 (11) (2020), pp. 5204-5211
|
[102] |
K.B. Wang, Y. Liu, Y. Li, J. Dickerhoff, J. Li, M.H. Yang, et al. Oxidative damage induces a vacancy G-quadruplex that binds guanine metabolites: solution structure of a cGMP fill-in vacancy G-quadruplex in the oxidized BLM gene promoter. J Am Chem Soc, 144 (14) (2022), pp. 6361-6372
|
[103] |
F.R. Winnerdy, P. Das, B. Heddi, A.T. Phan. Solution structures of a G-quadruplex bound to linear- and cyclic-dinucleotides. J Am Chem Soc, 141 (45) (2019), pp. 18038-18047
|
[104] |
Y.D. He, K. Zheng, C. Wen, X. Li, J. Gong, Y. Hao, et al. Selective targeting of guanine-vacancy-bearing G-quadruplexes by G-quartet complementation and stabilization with a guanine-peptide conjugate. J Am Chem Soc, 142 (26) (2020), pp. 11394-11403
|
[105] |
J.N. Chen, Y. He, H. Liang, T. Cai, Q. Chen, K. Zheng. Regulation of PDGFR-β gene expression by targeting the G-vacancy bearing G-quadruplex in promoter. Nucleic Acids Res, 49 (22) (2021), pp. 12634-12643
|
[106] |
C. Lin, G. Wu, K. Wang, B. Onel, S. Sakai, Y. Shao, et al. Molecular recognition of the hybrid-2 human telomeric G-quadruplex by epiberberine: insights into conversion of telomeric G-quadruplex structures. Angew Chem Int Ed Engl, 57 (34) (2018), pp. 10888-10893
|
[107] |
L. Martino, A. Virno, B. Pagano, A. Virgilio, S. Di Micco, A. Galeone, et al. Structural and thermodynamic studies of the interaction of distamycin A with the parallel quadruplex structure [d(TGGGGT)]4. J Am Chem Soc, 129 (51) (2007), pp. 16048-16056
|
[108] |
W. Li, Y. Li, Z. Liu, B. Lin, H. Yi, F. Xu, et al. Insight into G-quadruplex-hemin DNAzyme/RNAzyme: adjacent adenine as the intramolecular species for remarkable enhancement of enzymatic activity. Nucleic Acids Res, 44 (15) (2016), pp. 7373-7384
|
[109] |
F. Wang, C. Wang, Y. Liu, W. Lan, H. Han, R. Wang, et al. Colchicine selective interaction with oncogene RET G-quadruplex revealed by NMR. Chem Commun, 56 (14) (2020), pp. 2099-2102
|
[110] |
A. Tawani, A. Amanullah, A. Mishra, A. Kumar. Evidences for Piperine inhibiting cancer by targeting human G-quadruplex DNA sequences. Sci Rep, 6 (1) (2016), p. 39239
|
[111] |
T. Han, X. Cao, J. Xu, H. Pei, H. Zhang, Y. Tang. Separation of the potential G-quadruplex ligands from the butanol extract of Zanthoxylum ailanthoides Sieb. & Zucc. by countercurrent chromatography and preparative high performance liquid chromatography. J Chromatogr A, 1507 (2017), pp. 104-114
|
[112] |
C. Qian, H. Fu, K.A. Kovalchik, H. Li, D.D.Y. Chen. Specific binding constant and stoichiometry determination in free solution by mass spectrometry and capillary electrophoresis frontal analysis. Anal Chem, 89 (17) (2017), pp. 9483-9490
|
[113] |
P. Yang, X. Wang, Z. Gu, H. Li, D.D.Y. Chen, X. Yang. Evaluation of the binding of natural products with thrombin binding aptamer G-quadruplex using electrospray ionization mass spectrometry and spectroscopic methods. Talanta, 200 (2019), pp. 424-431
|
[114] |
X. Cui, S. Lin, G. Yuan. Spectroscopic probing of recognition of the G-quadruplex in c-kit promoter by small-molecule natural products. Int J Biol Macromol, 50 (4) (2012), pp. 996-1001
|
[115] |
S.K. Wang, Y. Wu, X.Q. Wang, G.T. Kuang, Q. Zhang, S.L. Lin, et al. Discovery of small molecules for repressing cap-independent translation of human vascular endothelial growth factor (hVEGF) as novel antitumor agents. J Med Chem, 60 (13) (2017), pp. 5306-5319
|
[116] |
T. Che, S.B. Chen, J.L. Tu, B. Wang, Y.Q. Wang, Y. Zhang, et al. Discovery of novel schizocommunin derivatives as telomeric G-quadruplex ligands that trigger telomere dysfunction and the deoxyribonucleic acid (DNA) damage response. J Med Chem, 61 (8) (2018), pp. 3436-3453
|
[117] |
J.C. Grigg, N. Shumayrikh, D. Sen. G-quadruplex structures formed by expanded hexanucleotide repeat RNA and DNA from the neurodegenerative disease-linked C9orf72 gene efficiently sequester and activate heme. PLoS One, 9 (9) (2014), p. e106449
|
[118] |
H. Yaku, T. Murashima, D. Miyoshi, N. Sugimoto. Specific binding of anionic porphyrin and phthalocyanine to the G-quadruplex with a variety of in vitro and in vivo applications. Molecules, 17 (9) (2012), pp. 10586-10613
|
[119] |
S.N. Georgiades, N.H. Abd Karim, K. Suntharalingam, R. Vilar. Interaction of metal complexes with G-quadruplex DNA. Angew Chem Int Ed, 49 (24) (2010), pp. 4020-4034
|
[120] |
I.M. Dixon, F. Lopez, A.M. Tejera, J.P. Estève, M.A. Blasco, G. Pratviel, et al. A G-quadruplex ligand with 10 000-fold selectivity over duplex DNA. J Am Chem Soc, 129 (6) (2007), pp. 1502-1503
|
[121] |
J. Alzeer, B.R. Vummidi, P.J. Roth, N.W. Luedtke. Guanidinium-modified phthalocyanines as high-affinity G-quadruplex fluorescent probes and transcriptional regulators. Angew Chem Int Ed Engl, 48 (49) (2009), pp. 9362-9365
|
[122] |
Q. Cao, Y. Li, E. Freisinger, P.Z. Qin, R.K.O. Sigel, Z.W. Mao. G-quadruplex DNA targeted metal complexes acting as potential anticancer drugs. Inorg Chem Front, 4 (1) (2017), pp. 10-32
|
[123] |
X.H. Zheng, Q. Cao, Y.L. Ding, Y.F. Zhong, G. Mu, P.Z. Qin, et al. Platinum(II) clovers targeting G-quadruplexes and their anticancer activities. Dalton Trans, 44 (1) (2015), pp. 50-53
|
[124] |
L.N. Wen, M.X. Xie. Spectroscopic investigation of the interaction between G-quadruplex of KRAS promoter sequence and three isoquinoline alkaloids. Spectrochim Acta A Mol Biomol Spectrosc, 171 (2017), pp. 287-296
|
[125] |
J. Jana, S. Mondal, P. Bhattacharjee, P. Sengupta, T. Roychowdhury, P. Saha, et al. Chelerythrine down regulates expression of VEGFA, BCL2 and KRAS by arresting G-quadruplex structures at their promoter regions. Sci Rep, 7 (1) (2017), p. 40706
|
[126] |
N. Singh, B. Sharma. Toxicological effects of berberine and sanguinarine. Front Mol Biosci, 5 (2018), p. 21
|
[127] |
Y. Shi, L. Li, C. Wang, J. Huang, L. Feng, X. Chen, et al. Developmental toxicity induced by chelerythrine in zebrafish embryos via activating oxidative stress and apoptosis pathways. Comp Biochem Physiol C Toxicol Pharmacol, 273 (2023), Article 109719
|
[128] |
Z. Li, J.H. Tan, J.H. He, Y. Long, T.M. Ou, D. Li, et al. Disubstituted quinazoline derivatives as a new type of highly selective ligands for telomeric G-quadruplex DNA. Eur J Med Chem, 47 (2012), pp. 299-311
|
[129] |
Y.J. Lu, T.M. Ou, J.H. Tan, J.Q. Hou, W.Y. Shao, D. Peng, et al. 5-N-methylated quindoline derivatives as telomeric G-quadruplex stabilizing ligands: effects of 5-N positive charge on quadruplex binding affinity and cell proliferation. J Med Chem, 51 (20) (2008), pp. 6381-6392
|
[130] |
G. Han, L. Chen, Q. Wang, M. Wu, Y. Liu, Q. Wang. Design, synthesis, and antitobacco mosaic virus activity of water-soluble chiral quaternary ammonium salts of phenanthroindolizidines alkaloids. J Agric Food Chem, 66 (4) (2018), pp. 780-788
|
[131] |
W. Peng, Z.Y. Sun, Q. Zhang, S.Q. Cheng, S.K. Wang, X.N. Wang, et al. Design, synthesis, and evaluation of novel p-(methylthio)styryl substituted quindoline derivatives as neuroblastoma RAS (NRAS) repressors via specific stabilizing the RNA G-quadruplex. J Med Chem, 61 (15) (2018), pp. 6629-6646
|
[132] |
C. Shan, J.W. Yan, Y.Q. Wang, T. Che, Z.L. Huang, A.C. Chen, et al. Design, synthesis, and evaluation of isaindigotone derivatives to downregulate c-myc transcription via disrupting the interaction of NM23-H 2 with G-quadruplex. J Med Chem, 60 (4) (2017), pp. 1292-1308
|
[133] |
M. Franceschin, L. Cianni, M. Pitorri, E. Micheli, S. Cacchione, C. Frezza, et al. Natural aromatic compounds as scaffolds to develop selective G-quadruplex ligands: from previously reported berberine derivatives to new palmatine analogues. Molecules, 23 (6) (2018), p. 1423
|
[134] |
M.P. Barrett, C.G. Gemmell, C.J. Suckling. Minor groove binders as anti-infective agents. Pharmacol Ther, 139 (1) (2013), pp. 12-23
|
[135] |
P.G. Baraldi, A. Bovero, F. Fruttarolo, D. Preti, M.A. Tabrizi, M.G. Pavani, et al. DNA minor groove binders as potential antitumor and antimicrobial agents. Med Res Rev, 24 (4) (2004), pp. 475-528
|
[136] |
X. Cai, P.J. Gray Jr, D.D. Von Hoff. DNA minor groove binders: back in the groove. Cancer Treat Rev, 35 (5) (2009), pp. 437-450
|
[137] |
H.Y. Alniss. Thermodynamics of DNA minor groove binders. J Med Chem, 62 (2) (2019), pp. 385-402
|
[138] |
T.Q. Ngoc Nguyen, K.W. Lim, A.T. Phan. Duplex formation in a G-quadruplex bulge. Nucleic Acids Res, 48 (18) (2020), pp. 10567-10575
|
[139] |
J. Jana, S. Mohr, Y.M. Vianney, K. Weisz. Structural motifs and intramolecular interactions in non-canonical G-quadruplexes. RSC Chem Biol, 2 (2) (2021), pp. 338-353
|
[140] |
Y.M. Vianney, K. Weisz. Indoloquinoline ligands favor intercalation at quadruplex-duplex interfaces. Chemistry, 28 (7) (2022), p. e202103718
|
[141] |
T.Q.N. Nguyen, K.W. Lim, A.T. Phan. A dual-specific targeting approach based on the simultaneous recognition of duplex and quadruplex motifs. Sci Rep, 7 (1) (2017), p. 11969
|
[142] |
S. Asamitsu, S. Obata, A.T. Phan, K. Hashiya, T. Bando, H. Sugiyama. Simultaneous binding of hybrid molecules constructed with dual DNA-binding components to a G-quadruplex and its proximal duplex. Chemistry, 24 (17) (2018), pp. 4428-4435
|
[143] |
S. Bazzi, J. Novotny, Y.P. Yurenko, R. Marek. Designing a new class of bases for nucleic acid quadruplexes and quadruplex-active ligands. Chemistry, 21 (26) (2015), pp. 9414-9425
|
[144] |
M. Tassinari, M. Zuffo, M. Nadai, V. Pirota, A.C. Sevilla Montalvo, F. Doria, et al. Selective targeting of mutually exclusive DNA G-quadruplexes: HIV-1 LTR as paradigmatic model. Nucleic Acids Res, 48 (9) (2020), pp. 4627-4642
|
[145] |
S.B. Chen, M.H. Hu, G.C. Liu, J. Wang, T.M. Ou, L.Q. Gu, et al. Visualization of RNA G-quadruplex structures in cells with an engineered fluorogenic hybridization probe. J Am Chem Soc, 138 (33) (2016), pp. 10382-10385
|
[146] |
L.Y. Liu, T.Z. Ma, Y.L. Zeng, W. Liu, H. Zhang, Z.W. Mao. Organic-platinum hybrids for covalent binding of G-quadruplexes: structural basis and application to cancer immunotherapy. Angew Chem Int Ed Engl, 62 (36) (2023), p. e202305645
|
[147] |
J.F. Betzer, F. Nuter, M. Chtchigrovsky, F. Hamon, G. Kellermann, S. Ali, et al. Linking of antitumor trans NHC-Pt(II) complexes to G-quadruplex DNA ligand for telomeric targeting. Bioconjug Chem, 27 (6) (2016), pp. 1456-1470
|
[148] |
V. Sanchez-Martin, A.S. David, O.G. Matilde, S.L. Ana, L.R. Angel, P.C. Virginia, et al. Targeting ribosomal G-quadruplexes with naphthalene-diimides as RNA polymerase I inhibitors for colorectal cancer treatment. Cell Chem Biol, 28 (12) (2021), p. 1807
|
[149] |
S. Muller, D.A. Sanders, M. Di Antonio, S. Matsis, J.F. Riou, R. Rodriguez, et al. Pyridostatin analogues promote telomere dysfunction and long-term growth inhibition in human cancer cells. Org Biomol Chem, 10 (32) (2012), pp. 6537-6546
|
[150] |
K. Shinohara, Y. Sannohe, S. Kaieda, K. Tanaka, H. Osuga, H. Tahara, et al. A chiral wedge molecule inhibits telomerase activity. J Am Chem Soc, 132 (11) (2010), pp. 3778-3782
|
[151] |
C. Zhao, H. Song, P. Scott, A. Zhao, H. Tateishi-Karimata, N. Sugimoto, et al. Mirror-image dependence: targeting enantiomeric G-quadruplex DNA using triplex metallohelices. Angew Chem Int Ed Engl, 57 (48) (2018), pp. 15723-15727
|
[152] |
K. Xiong, C. Ouyang, J. Liu, J. Karges, X. Lin, X. Chen, et al. Chiral Ru(II)-Pt(II) complexes inducing telomere dysfunction against cisplatin-resistant cancer cells. Angew Chem Int Ed Engl, 61 (33) (2022), p. e202204866
|
[153] |
H. Yu, X. Wang, M. Fu, J. Ren, X. Qu. Chiral metallo-supramolecular complexes selectively recognize human telomeric G-quadruplex DNA. Nucleic Acids Res, 36 (17) (2008), pp. 5695-5703
|
[154] |
A. Zhao, S.E. Howson, C. Zhao, J. Ren, P. Scott, C. Wang, et al. Chiral metallohelices enantioselectively target hybrid human telomeric G-quadruplex DNA. Nucleic Acids Res, 45 (9) (2017), pp. 5026-5035
|
[155] |
J. Wang, Y. Chen, J. Ren, C. Zhao, X. Qu. G-quadruplex binding enantiomers show chiral selective interactions with human telomere. Nucleic Acids Res, 42 (6) (2014), pp. 3792-3802
|
[156] |
S. Bhambhani, K.R. Kondhare, A.P. Giri. Diversity in chemical structures and biological properties of plant alkaloids. Molecules, 26 (11) (2021), p. 3374
|
[157] |
S.K. Daley, G.A. Cordell. Biologically significant and recently isolated alkaloids from endophytic fungi. J Nat Prod, 84 (3) (2021), pp. 871-897
|
[158] |
E. Plazas, M.M. Avila, D.R. Munoz, S.L. Cuca. Natural isoquinoline alkaloids: pharmacological features and multi-target potential for complex diseases. Pharmacol Res, 177 (2022), Article 106126
|
[159] |
J. Zhang, S.L. Morris-Natschke, D. Ma, X.F. Shang, C.J. Yang, Y.Q. Liu, et al. Biologically active indolizidine alkaloids. Med Res Rev, 41 (2) (2021), pp. 928-960
|
[160] |
J. Chen, S. Lv, J. Liu, Y. Yu, H. Wang, H. Zhang. An overview of bioactive 1,3-oxazole-containing alkaloids from marine organisms. Pharmaceuticals, 14 (12) (2021), p. 1274
|
[161] |
M.C. Almeida, D. Resende, P.M. da Costa, M.M.M. Pinto, E. Sousa. Tryptophan derived natural marine alkaloids and synthetic derivatives as promising antimicrobial agents. Eur J Med Chem, 209 (2021), Article 112945
|
[162] |
A. Thawabteh, S. Juma, M. Bader, D. Karaman, L. Scrano, S. Bufo, et al. The biological activity of natural alkaloids against herbivores, cancerous cells and pathogens. Toxins, 11 (11) (2019), p. 656
|
[163] |
Y.M. Ma, X.A. Liang, Y. Kong, B. Jia. Structural diversity and biological activities of indole diketopiperazine alkaloids from fungi. J Agric Food Chem, 64 (35) (2016), pp. 6659-6671
|
[164] |
Y. Hu, S. Chen, F. Yang, S. Dong. Marine indole alkaloids-isolation, structure and bioactivities. Mar Drugs, 19 (12) (2021), p. 658
|
[165] |
N. Netz, T. Opatz. Marine indole alkaloids. Mar Drugs, 13 (8) (2015), pp. 4814-4914
|
[166] |
K. Xu, X.L. Yuan, C. Li, A.X. Li. Recent discovery of heterocyclic alkaloids from marine-derived aspergillus species. Mar Drugs, 18 (1) (2020), p. 54
|
[167] |
N. Tajuddeen, G. Bringmann. N,C-coupled naphthylisoquinoline alkaloids: a versatile new class of axially chiral natural products. Nat Prod Rep, 38 (12) (2021), pp. 2154-2186
|
[168] |
S.A. Ohnmacht, S. Neidle. Small-molecule quadruplex-targeted drug discovery. Bioorg Med Chem Lett, 24 (12) (2014), pp. 2602-2612
|
[169] |
H. Xu, M. Di Antonio, S. McKinney, V. Mathew, B. Ho, N.J. O’Neil, et al. CX-5461 is a DNA G-quadruplex stabilizer with selective lethality in BRCA1/ 2 deficient tumours. Nat Commun, 8 (1) (2017), p. 14432
|
[170] |
C. Marchetti, K.G. Zyner, S.A. Ohnmacht, M. Robson, S.M. Haider, J.P. Morton, et al. Targeting multiple effector pathways in pancreatic ductal adenocarcinoma with a G-quadruplex-binding small molecule. J Med Chem, 61 (6) (2018), pp. 2500-2517
|
[171] |
F. Martinez-Jimenez, F. Muiños, I. Sentís, J. Deu-Pons, I. Reyes-Salazar, C. Arnedo-Pac, et al. A compendium of mutational cancer driver genes. Nat Rev Cancer, 20 (10) (2020), pp. 555-572
|
[172] |
W.IB. Cancer. Addiction to oncogenes—the Achilles heal of cancer. Science, 297 (5578) (2002), pp. 63-64
|
[173] |
I.B. Weinstein, A.K. Joe. Mechanisms of disease: oncogene addiction—a rationale for molecular targeting in cancer therapy. Nat Clin Pract Oncol, 3 (8) (2006), pp. 448-457
|
[174] |
D. Varshney, J. Spiegel, K. Zyner, D. Tannahill, S. Balasubramanian. The regulation and functions of DNA and RNA G-quadruplexes. Nat Rev Mol Cell Biol, 21 (8) (2020), pp. 459-474
|
[175] |
B. Lemmens, R. van Schendel, M. Tijsterman. Mutagenic consequences of a single G-quadruplex demonstrate mitotic inheritance of DNA replication fork barriers. Nat Commun, 6 (1) (2015), p. 8909
|
[176] |
P. Wulfridge, Q. Yan, N. Rell, J. Doherty, S. Jacobson, S. Offley, et al. G-quadruplexes associated with R-loops promote CTCF binding. Mol Cell, 83 (17) (2023), pp. 3064-3079.e5
|
[177] |
Y. Hou, F. Li, R. Zhang, S. Li, H. Liu, Z.S. Qin, et al. Integrative characterization of G-quadruplexes in the three-dimensional chromatin structure. Epigenetics, 14 (9) (2019), pp. 894-911
|
[178] |
J.D. Williams, D. Houserova, B.R. Johnson, B. Dyniewski, A. Berroyer, H. French, et al. Characterization of long G4-rich enhancer-associated genomic regions engaging in a novel loop:loop ‘G 4 Kissing’ interaction. Nucleic Acids Res, 48 (11) (2020), pp. 5907-5925
|
[179] |
H. Hegyi. Enhancer-promoter interaction facilitated by transiently forming G-quadruplexes. Sci Rep, 5 (1) (2015), p. 9165
|
[180] |
D. Liano, S. Chowdhury, M. Di Antonio. Cockayne syndrome B protein selectively resolves and interact with intermolecular DNA G-quadruplex structures. J Am Chem Soc, 143 (49) (2021), pp. 20988-21002
|
[181] |
C.Y. Lee, C. McNerney, K. Ma, W. Zhao, A. Wang, S. Myong. R-loop induced G-quadruplex in non-template promotes transcription by successive R-loop formation. Nat Commun, 11 (1) (2020), p. 3392
|
[182] |
W. Wu, N. Rokutanda, J. Takeuchi, Y. Lai, R. Maruyama, Y. Togashi, et al. HERC2 facilitates BLM and WRN helicase complex interaction with RPA to suppress G-quadruplex DNA. Cancer Res, 78 (22) (2018), pp. 6371-6385
|
[183] |
M.J. Law, K.M. Lower, H.P.J. Voon, J.R. Hughes, D. Garrick, V. Viprakasit, et al. ATR-X syndrome protein targets tandem repeats and influences allele-specific expression in a size-dependent manner. Cell, 143 (3) (2010), pp. 367-378
|
[184] |
A.L. Valton, M.N. Prioleau. G-quadruplexes in DNA replication: a problem or a necessity?. Trends Genet, 32 (11) (2016), pp. 697-706
|