[1] |
L. Claeys, C. Romano, K. De Ruyck, H. Wilson, B. Fervers, M. Korenjak, et al. Mycotoxin exposure and human cancer risk: a systematic review of epidemiological studies. Compr Rev Food Sci Food Saf, 19 (4) (2020), pp. 1449-1464
|
[2] |
W.L. Bryden. Mycotoxin contamination of the feed supply chain: implications for animal productivity and feed security. Anim Feed Sci Technol, 173 (1-2) (2012), pp. 134-158
|
[3] |
K. Gromadzka, A. Waskiewicz, J. Chelkowski, P. Golinski. Zearalenone and its metabolites: occurrence, detection, toxicity and guidelines. World Mycotoxin J, 1 (2) (2008), pp. 209-220
|
[4] |
M.C. Smith, S. Madec, E. Coton, N. Hymery. Natural co-occurrence of mycotoxins in foods and feeds and their in vitro combined toxicological effects. Toxins, 8 (4) (2016), p. 94
|
[5] |
A. Zinedine, J.M. Soriano, J.C. Moltó, J. Mañes. Review on the toxicity, occurrence, metabolism, detoxification, regulations and intake of zearalenone: an oestrogenic mycotoxin. Food Chem Toxicol, 45 (1) (2007), pp. 1-18
|
[6] |
K. Gromadzka, A. Waskiewicz, J. Swietlik, J. Bocianowski, P. Golinski. Possible way of zearalenone migration in the agricultural environment. Plant Soil Environ, 61 (8) (2015), pp. 358-363
|
[7] |
K. Gromadzka, A. Waśkiewicz, P. Goliński, J. Swietlik. Occurrence of estrogenic mycotoxin—zearalenone in aqueous environmental samples with various NOM content. Water Res, 43 (4) (2009), pp. 1051-1059
|
[8] |
X. Han, B. Huangfu, T. Xu, W. Xu, C. Asakiya, K. Huang, et al. Research progress of safety of zearalenone: a review. Toxins, 14 (6) (2022), p. 386
|
[9] |
K. Maaroufi, L. Chekir, E.E. Creppy, F. Ellouz, H. Bacha. Zearalenone induces modifications of haematological and biochemical parameters in rats. Toxicon, 34 (5) (1996), pp. 535-540
|
[10] |
I. Ben Salem, M. Boussabbeh, S. Helali, S. Abid-Essefi, H. Bacha. Protective effect of crocin against zearalenone-induced oxidative stress in liver and kidney of balb/c mice. Environ Sci Pollut Res Int, 22 (23) (2015), pp. 19069-19076
|
[11] |
G. Cai, K. Sun, S. Xia, Z. Feng, H. Zou, J. Gu, et al. Decrease in immune function and the role of mitogen-activated protein kinase (MAPK) overactivation in apoptosis during T lymphocytes activation induced by zearalenone, deoxynivalenol, and their combinations. Chemosphere, 255 (2020), Article 126999
|
[12] |
X. Wang, H. Yu, H. Fang, Y. Zhao, Y. Jin, J. Shen, et al. Transcriptional profiling of zearalenone-induced inhibition of IPEC-J 2 cell proliferation. Toxicon, 172 ( 2019), pp. 8-14
|
[13] |
W. Zheng, B. Wang, L. Wang, Y. Shan, H. Zou, R. Song, et al. ROS-mediated cell cycle arrest and apoptosis induced by zearalenone in mouse sertoli cells via ER stress and the ATP/AMPK pathway. Toxins, 10 (1) (2018), p. 24
|
[14] |
S. Jing, C. Liu, J. Zheng, Z. Dong, N. Guo. Toxicity of zearalenone and its nutritional intervention by natural products. Food Funct, 13 (20) (2022), pp. 10374-10400
|
[15] |
J.M. Spitsbergen, M.L. Kent. The state of the art of the zebrafish model for toxicology and toxicologic pathology research—advantages and current limitations. Toxicol Pathol, 31 (Suppl) ( 2003), pp. 62-87
|
[16] |
C.Y. Lin, C.Y. Chiang, H.J. Tsai. Zebrafish and Medaka: new model organisms for modern biomedical research. J Biomed Sci, 23 (2016), p. 19
|
[17] |
L.I. Zon, R.T. Peterson. In vivo drug discovery in the zebrafish. Nat Rev Drug Discov, 4 (1) (2005), pp. 35-44
|
[18] |
A.J. Rennekamp, R.T. Peterson. 15 years of zebrafish chemical screening. Curr Opin Chem Biol, 24 ( 2015), pp. 58-70
|
[19] |
T.C. Kwok, N. Ricker, R. Fraser, A.W. Chan, A. Burns, E.F. Stanley, et al. A small-molecule screen in C. elegans yields a new calcium channel antagonist. Nature, 441 (7089) (2006), pp. 91-95
|
[20] |
OECD Guidelines for the testing of chemicals-fish embryo acute toxicity FET test. Paris: OECD Publishing; 2013.
|
[21] |
R.X. Ribeiro, B.R. da Silva, A.C. Pereira, K.B.E.S. Monteiro, B.B. Gonçalves, T.L. Rocha. Ecotoxicological assessment of effluents from Brazilian wastewater treatment plants using zebrafish embryotoxicity test: a multi-biomarker approach. Sci Total Environ, 735 (2020), Article 139036
|
[22] |
S. Padilla, D.L. Hunter, B. Padnos, S. Frady, R.C. MacPhail. Assessing locomotor activity in larval zebrafish: influence of extrinsic and intrinsic variables. Neurotoxicol Teratol, 33 (6) (2011), pp. 624-630
|
[23] |
S. Padilla, D. Corum, B. Padnos, D.L. Hunter, A. Beam, K.A. Houck, et al. Zebrafish developmental screening of the ToxCast™ Phase I chemical library. Reprod Toxicol, 33 (2) (2012), pp. 174-187
|
[24] |
K.A. Kurnia, F. Santoso, B.P. Sampurna, G. Audira, J.C. Huang, K.H. Chen, et al. TCMacro: a simple and robust ImageJ-based method for automated measurement of tail coiling activity in zebrafish. Biomolecules, 11 (8) (2021), p. 1133
|
[25] |
H. Zhang, Y. Wang, X. Zhou, W. Jiang, P. Wu, Y. Liu, et al. Zearalenone induces immuno-compromised status via TOR/NF/κB pathway and aggravates the spread of Aeromonas hydrophila to grass carp gut (Ctenopharyngodon idella). Ecotoxicol Environ Saf, 225 (2021), Article 112786
|
[26] |
D. Verduzco, J.F. Amatruda. Analysis of cell proliferation, senescence, and cell death in zebrafish embryos. Methods in Cell Biology, 101 (2011), pp. 19-38
|
[27] |
L.L. Smith, A.H. Beggs, V.A. Gupta. Analysis of skeletal muscle defects in larval zebrafish by birefringence and touch-evoke escape response assays. J Vis Exp, 82 (2013), p. e50925
|
[28] |
J. Xu, S. Li, L. Jiang, X. Gao, W. Liu, X. Zhu, et al. Baicalin protects against zearalenone-induced chicks liver and kidney injury by inhibiting expression of oxidative stress, inflammatory cytokines and caspase signaling pathway. Int Immunopharmacol, 100 (2021), Article 108097
|
[29] |
X. Zhang, L. Jiang, C. Geng, J. Cao, L. Zhong.The role of oxidative stress in deoxynivalenol-induced DNA damage in HepG2 cells. Toxicon, 54 (4) (2009), pp. 513-518
|
[30] |
R. Crupi, E. Palma, R. Siracusa, R. Fusco, E. Gugliandolo, M. Cordaro, et al. Protective effect of hydroxytyrosol against oxidative stress induced by the ochratoxin in kidney cells: in vitro and in vivo study. Front Vet Sci, 7 (2020), p. 136
|
[31] |
K. Zhang, J. Liang, N.R. Brun, Y. Zhao, A.A. Werdich. Rapid zebrafish behavioral profiling assay accelerates the identification of environmental neurodevelopmental toxicants. Environ Sci Technol, 55 (3) (2021), pp. 1919-1929
|
[32] |
C. Bouaziz, C. Martel, O.S. el Dein, S. Abid-Essefi, C. Brenner, C. Lemaire, et al. Fusarial toxin-induced toxicity in cultured cells and in isolated mitochondria involves PTPC-dependent activation of the mitochondrial pathway of apoptosis. Toxicol Sci, 110 (2) (2009), pp. 363-375
|
[33] |
H.J. Lee, S.Y. Oh, I. Jo. Zearalenone induces endothelial cell apoptosis through activation of a cytosolic Ca2+/ERK1/2/p53/Caspase 3 signaling pathway. Toxins, 13 (3) (2021), p. 187
|
[34] |
H. Xie, J. Hu, C. Xiao, Y. Dai, X. Ding, Y. Xu. Exploration of ZEA cytotoxicity to mouse endometrial stromal cells and RNA-seq analysis. J Biochem Mol Toxicol, 31 (4) (2017), p. e21874
|
[35] |
Y. Ji, K. Zhang, Z. Pan, J. Ju, H. Zhang, J. Liu, et al. High-dose zearalenone exposure disturbs G2/M transition during mouse oocyte maturation. Reprod Toxicol, 110 (2022), pp. 172-179
|
[36] |
A. Subramanian, R. Narayan, S.M. Corsello, D.D. Peck, T.E. Natoli, X. Lu, et al. A next generation connectivity map: Ll 000 platform and the first 1 000 000 profiles. Cell, 171 (6) (2017), pp. 1437-1452.e17
|
[37] |
A.M. Brum, J. van de Peppel, C.S. van der Leije, M. Schreuders-Koedam, M. Eijken, B.C. van der Eerden, et al. Connectivity map-based discovery of parbendazole reveals targetable human osteogenic pathway. Proc Natl Acad Sci USA, 112 (41) (2015), pp. 12711-12716
|
[38] |
F. Gao, L.P. Jiang, M. Chen, C.Y. Geng, G. Yang, F. Ji, et al. Genotoxic effects induced by zearalenone in a human embryonic kidney cell line. Mutat Res, 755 (1) (2013), pp. 6-10
|
[39] |
W. Zhu, M. Ge, X. Li, J. Wang, P. Wang, T. Tai, et al. Hyperoside Attenuates Zearalenone-induced spleen injury by suppressing oxidative stress and inhibiting apoptosis in mice. Int Immunopharmacol, 102 (2022), Article 108408
|
[40] |
G. Aichinger, J. Beisl, D. Marko. The hop polyphenols xanthohumol and 8-prenyl-naringenin antagonize the estrogenic effects of Fusarium mycotoxins in human endometrial cancer cells. Front Nutr, 5 (2018), p. 85
|
[41] |
K. Bakos, R. Kovács, Á. Staszny, D.K. Sipos, B. Urbányi, F. Müller, et al. Developmental toxicity and estrogenic potency of zearalenone in zebrafish (Danio rerio). Aquat Toxicol, 136 (2013), pp. 13-21
|
[42] |
S. Muthulakshmi, K. Maharajan, H.R. Habibi, K. Kadirvelu, M. Venkataramana. Zearalenone induced embryo and neurotoxicity in zebrafish model (Danio rerio): role of oxidative stress revealed by a multi biomarker study. Chemosphere, 198 (2018), pp. 111-121
|
[43] |
B. Wang, W. Zheng, N. Feng, T. Wang, H. Zou, J. Gu, et al. The effects of autophagy and PI3K/AKT/m-TOR signaling pathway on the cell-cycle arrest of rats primary sertoli cells induced by zearalenone. Toxins, 10 (10) (2018), p. 398
|
[44] |
M. Lee, C. Yang, S. Park, G. Song, W. Lim. Fraxetin induces cell death in colon cancer cells via mitochondria dysfunction and enhances therapeutic effects in 5-fluorouracil resistant cells. J Cell Biochem, 123 (2) (2022), pp. 469-480
|
[45] |
J. Song, J. Ham, T. Hong, G. Song, W. Lim. Fraxetin suppresses cell proliferation and induces apoptosis through mitochondria dysfunction in human hepatocellular carcinoma cell lines huh7 and hep3b. Pharmaceutics, 13 (1) (2021), p. 112
|
[46] |
J.A. Ewald, J.A. Desotelle, G. Wilding, D.F. Jarrard. Therapy-induced senescence in cancer. J Natl Cancer Inst, 102 (20) (2010), pp. 1536-1546
|
[47] |
K. Wang, M. Zhou, Y. Du, P. Li, Z. Huang. Zearalenone induces the senescence of cardiovascular cells in vitro and in vivo. Environ Sci Pollut Res Int, 30 (19) (2023), pp. 56037-56053
|
[48] |
D. Moujalled, A. Strasser, J.R. Liddell. Molecular mechanisms of cell death in neurological diseases. Cell Death Differ, 28 (7) (2021), pp. 2029-2044
|
[49] |
X.W. Wang, Q. Zhan, J.D. Coursen, M.A. Khan, H.U. Kontny, L. Yu, et al. GADD 45 induction of a G2/M cell cycle checkpoint. Proc Natl Acad Sci USA, 96 (7) (1999), pp. 3706-3711
|
[50] |
A.E. Schade, M. Fischer, J.A.R.B. DeCaprio. RB, p130 and p107 differentially repress G1/S and G2/M genes after p53 activation. Nucleic Acids Res, 47 (21) (2019), pp. 11197-11208
|
[51] |
T.H. Cheung, N.L. Quach, G.W. Charville, L. Liu, L. Park, A. Edalati, et al. Maintenance of muscle stem-cell quiescence by microRNA-489. Nature, 482 (7386) (2012), pp. 524-528
|
[52] |
N. Danilova, K.M. Sakamoto, S. Lin. Role of p53 family in birth defects: lessons from zebrafish. Birth Defects Res C Embryo Today, 84 (3) (2008), pp. 215-227
|
[53] |
A. Brunet, A. Bonni, M.J. Zigmond, M.Z. Lin, P. Juo, L.S. Hu, et al. Akt promotes cell survival by phosphorylating and inhibiting a forkhead transcription factor. Cell, 96 (6) (1999), pp. 857-868
|
[54] |
M.C. Motta, N. Divecha, M. Lemieux, C. Kamel, D. Chen, W. Gu, et al. Mammalian SIRT 1 represses forkhead transcription factors. Cell, 116 (4) (2004), pp. 551-563
|
[55] |
L. Fang, G. Li, G. Liu, S.W. Lee, S.A. Aaronson. p53 induction of heparin-binding EGF-like growth factor counteracts p53 growth suppression through activation of MAPK and PI3K/Akt signaling cascades. EMBO J, 20 (8) (2001), pp. 1931-2199
|
[56] |
M. Zylicz, F.W. King, A. Wawrzynow. Hsp 70 interactions with the p53 tumour suppressor protein. EMBO J, 20 (17) (2001), pp. 4634-4638
|