斑马鱼模型筛选揭示高效天然霉菌毒素解毒剂——缓解玉米赤霉烯酮诱导的毒性

张鸿运, 姜维丹, 吴培, 刘杨, 任红梅, 金小婉, 周小秋, 冯琳

工程(英文) ›› 2024, Vol. 42 ›› Issue (11) : 196-212.

PDF(7458 KB)
PDF(7458 KB)
工程(英文) ›› 2024, Vol. 42 ›› Issue (11) : 196-212. DOI: 10.1016/j.eng.2024.03.016
研究论文
Article

斑马鱼模型筛选揭示高效天然霉菌毒素解毒剂——缓解玉米赤霉烯酮诱导的毒性

作者信息 +

Revealing High-Efficiency Natural Mycotoxin Antidotes in Zebrafish Model Screening Against Zearalenone-Induced Toxicity

Author information +
History +

摘要

玉米赤霉烯酮(ZEA)是一种霉菌毒素,对全球人类和动物的健康构成了严重的危害。天然产物(NPs)由于其多样化的生物活性而被认为可以缓解ZEA的不利影响。然而,目前的挑战在于缺乏一种有效的策略来系统地筛选和鉴定能够有效缓解ZEA诱导毒性的NPs。本研究构建了一种基于表型的筛选策略,用于筛选NPs文库,并发现更有效的化合物来减轻或抵消ZEA在动物体内暴露后的不良后果。利用这一策略,初步鉴定了96种NPs,并基于胚胎表型和运动活性,使用评分系统和TCMacro方法评估了两种有效的候选化合物——秦皮素和羟基酪醇的效价和功效。此外,本研究进行了转录组和蛋白质-蛋白质相互作用(PPI)网络分析,提取了两组mRNA标签,以查询连接图谱数据库(CMap)并预测NPs。预测的NPs显示出了能逆转与ZEA毒性相关的基因表达谱的潜力。因此,使用斑马鱼模型进一步筛选这些化合物,结果表明牛奶树碱、瑞香素和核黄素在斑马鱼中表现出良好的体内功效。值得注意的是,在整个研究过程中,秦皮素一直表现出较好的效果。生物学途径分析和功能验证表明,极低剂量的秦皮素完全逆转了ZEA的毒性作用。这是通过修复受损细胞凋亡、改变细胞周期通路和防止衰老诱导来实现的,具有良好的应用潜力。总的来说,本研究证明了这种整合策略可以成功地应用于开发潜在的解毒剂。

Abstract

Zearalenone (ZEA), a mycotoxin, poses a significant global hazard to human and animal health. Natural products (NPs) have shown promise for mitigating the adverse effects of ZEA owing to their diverse functional activities. However, the current challenge lies in the absence of an efficient strategy for systematic screening and identification of NPs that can effectively protect against ZEA-induced toxicity. This study describes a phenotype-based screening strategy for screening NP libraries and discovering more effective compounds to mitigate or counteract the adverse consequences of ZEA exposure in animals. Using this strategy, we initially identified 96 NPs and evaluated the potency and efficacy of two effective candidate compounds, fraxetin, and hydroxytyrosol, based on embryonic phenotype and locomotor activity using a scoring system and the TCMacro method. Furthermore, we performed transcriptome and protein−protein interaction (PPI) network analyses to extract two mRNA signatures to query the Connectivity Map (CMap) database and predict NPs. The predicted NPs showed the potential to reverse the gene expression profiles associated with ZEA toxicity. Consequently, we further screened these compounds using our model, which indicated that hispidin, daphnetin, and riboflavin exhibit promising in vivo efficacy in zebrafish. Notably, throughout the process, fraxetin consistently stood out as the most promising NP. Biological pathway analysis and functional verification revealed that fraxetin completely reversed the toxic effects of ZEA at very low doses. This was achieved by repairing damaged cell apoptosis, modifying the cell cycle pathway, and preventing senescence induction, indicating good application potential. Overall, we demonstrated that this integration strategy can be successfully applied to effectively discover potential antidotes.

关键词

玉米赤霉烯酮 / 天然产物 / 表型筛选 / 转录组分析 / 秦皮素

Keywords

Zearalenone / Natural products / Phenotype-based screening / Transcriptome analysis / Fraxetin

引用本文

导出引用
张鸿运, 姜维丹, 吴培. 斑马鱼模型筛选揭示高效天然霉菌毒素解毒剂——缓解玉米赤霉烯酮诱导的毒性. Engineering. 2024, 42(11): 196-212 https://doi.org/10.1016/j.eng.2024.03.016

参考文献

[1]
L. Claeys, C. Romano, K. De Ruyck, H. Wilson, B. Fervers, M. Korenjak, et al. Mycotoxin exposure and human cancer risk: a systematic review of epidemiological studies. Compr Rev Food Sci Food Saf, 19 (4) (2020), pp. 1449-1464
[2]
W.L. Bryden. Mycotoxin contamination of the feed supply chain: implications for animal productivity and feed security. Anim Feed Sci Technol, 173 (1-2) (2012), pp. 134-158
[3]
K. Gromadzka, A. Waskiewicz, J. Chelkowski, P. Golinski. Zearalenone and its metabolites: occurrence, detection, toxicity and guidelines. World Mycotoxin J, 1 (2) (2008), pp. 209-220
[4]
M.C. Smith, S. Madec, E. Coton, N. Hymery. Natural co-occurrence of mycotoxins in foods and feeds and their in vitro combined toxicological effects. Toxins, 8 (4) (2016), p. 94
[5]
A. Zinedine, J.M. Soriano, J.C. Moltó, J. Mañes. Review on the toxicity, occurrence, metabolism, detoxification, regulations and intake of zearalenone: an oestrogenic mycotoxin. Food Chem Toxicol, 45 (1) (2007), pp. 1-18
[6]
K. Gromadzka, A. Waskiewicz, J. Swietlik, J. Bocianowski, P. Golinski. Possible way of zearalenone migration in the agricultural environment. Plant Soil Environ, 61 (8) (2015), pp. 358-363
[7]
K. Gromadzka, A. Waśkiewicz, P. Goliński, J. Swietlik. Occurrence of estrogenic mycotoxin—zearalenone in aqueous environmental samples with various NOM content. Water Res, 43 (4) (2009), pp. 1051-1059
[8]
X. Han, B. Huangfu, T. Xu, W. Xu, C. Asakiya, K. Huang, et al. Research progress of safety of zearalenone: a review. Toxins, 14 (6) (2022), p. 386
[9]
K. Maaroufi, L. Chekir, E.E. Creppy, F. Ellouz, H. Bacha. Zearalenone induces modifications of haematological and biochemical parameters in rats. Toxicon, 34 (5) (1996), pp. 535-540
[10]
I. Ben Salem, M. Boussabbeh, S. Helali, S. Abid-Essefi, H. Bacha. Protective effect of crocin against zearalenone-induced oxidative stress in liver and kidney of balb/c mice. Environ Sci Pollut Res Int, 22 (23) (2015), pp. 19069-19076
[11]
G. Cai, K. Sun, S. Xia, Z. Feng, H. Zou, J. Gu, et al. Decrease in immune function and the role of mitogen-activated protein kinase (MAPK) overactivation in apoptosis during T lymphocytes activation induced by zearalenone, deoxynivalenol, and their combinations. Chemosphere, 255 (2020), Article 126999
[12]
X. Wang, H. Yu, H. Fang, Y. Zhao, Y. Jin, J. Shen, et al. Transcriptional profiling of zearalenone-induced inhibition of IPEC-J 2 cell proliferation. Toxicon, 172 ( 2019), pp. 8-14
[13]
W. Zheng, B. Wang, L. Wang, Y. Shan, H. Zou, R. Song, et al. ROS-mediated cell cycle arrest and apoptosis induced by zearalenone in mouse sertoli cells via ER stress and the ATP/AMPK pathway. Toxins, 10 (1) (2018), p. 24
[14]
S. Jing, C. Liu, J. Zheng, Z. Dong, N. Guo. Toxicity of zearalenone and its nutritional intervention by natural products. Food Funct, 13 (20) (2022), pp. 10374-10400
[15]
J.M. Spitsbergen, M.L. Kent. The state of the art of the zebrafish model for toxicology and toxicologic pathology research—advantages and current limitations. Toxicol Pathol, 31 (Suppl) ( 2003), pp. 62-87
[16]
C.Y. Lin, C.Y. Chiang, H.J. Tsai. Zebrafish and Medaka: new model organisms for modern biomedical research. J Biomed Sci, 23 (2016), p. 19
[17]
L.I. Zon, R.T. Peterson. In vivo drug discovery in the zebrafish. Nat Rev Drug Discov, 4 (1) (2005), pp. 35-44
[18]
A.J. Rennekamp, R.T. Peterson. 15 years of zebrafish chemical screening. Curr Opin Chem Biol, 24 ( 2015), pp. 58-70
[19]
T.C. Kwok, N. Ricker, R. Fraser, A.W. Chan, A. Burns, E.F. Stanley, et al. A small-molecule screen in C. elegans yields a new calcium channel antagonist. Nature, 441 (7089) (2006), pp. 91-95
[20]
OECD Guidelines for the testing of chemicals-fish embryo acute toxicity FET test. Paris: OECD Publishing; 2013.
[21]
R.X. Ribeiro, B.R. da Silva, A.C. Pereira, K.B.E.S. Monteiro, B.B. Gonçalves, T.L. Rocha. Ecotoxicological assessment of effluents from Brazilian wastewater treatment plants using zebrafish embryotoxicity test: a multi-biomarker approach. Sci Total Environ, 735 (2020), Article 139036
[22]
S. Padilla, D.L. Hunter, B. Padnos, S. Frady, R.C. MacPhail. Assessing locomotor activity in larval zebrafish: influence of extrinsic and intrinsic variables. Neurotoxicol Teratol, 33 (6) (2011), pp. 624-630
[23]
S. Padilla, D. Corum, B. Padnos, D.L. Hunter, A. Beam, K.A. Houck, et al. Zebrafish developmental screening of the ToxCast™ Phase I chemical library. Reprod Toxicol, 33 (2) (2012), pp. 174-187
[24]
K.A. Kurnia, F. Santoso, B.P. Sampurna, G. Audira, J.C. Huang, K.H. Chen, et al. TCMacro: a simple and robust ImageJ-based method for automated measurement of tail coiling activity in zebrafish. Biomolecules, 11 (8) (2021), p. 1133
[25]
H. Zhang, Y. Wang, X. Zhou, W. Jiang, P. Wu, Y. Liu, et al. Zearalenone induces immuno-compromised status via TOR/NF/κB pathway and aggravates the spread of Aeromonas hydrophila to grass carp gut (Ctenopharyngodon idella). Ecotoxicol Environ Saf, 225 (2021), Article 112786
[26]
D. Verduzco, J.F. Amatruda. Analysis of cell proliferation, senescence, and cell death in zebrafish embryos. Methods in Cell Biology, 101 (2011), pp. 19-38
[27]
L.L. Smith, A.H. Beggs, V.A. Gupta. Analysis of skeletal muscle defects in larval zebrafish by birefringence and touch-evoke escape response assays. J Vis Exp, 82 (2013), p. e50925
[28]
J. Xu, S. Li, L. Jiang, X. Gao, W. Liu, X. Zhu, et al. Baicalin protects against zearalenone-induced chicks liver and kidney injury by inhibiting expression of oxidative stress, inflammatory cytokines and caspase signaling pathway. Int Immunopharmacol, 100 (2021), Article 108097
[29]
X. Zhang, L. Jiang, C. Geng, J. Cao, L. Zhong.The role of oxidative stress in deoxynivalenol-induced DNA damage in HepG2 cells. Toxicon, 54 (4) (2009), pp. 513-518
[30]
R. Crupi, E. Palma, R. Siracusa, R. Fusco, E. Gugliandolo, M. Cordaro, et al. Protective effect of hydroxytyrosol against oxidative stress induced by the ochratoxin in kidney cells: in vitro and in vivo study. Front Vet Sci, 7 (2020), p. 136
[31]
K. Zhang, J. Liang, N.R. Brun, Y. Zhao, A.A. Werdich. Rapid zebrafish behavioral profiling assay accelerates the identification of environmental neurodevelopmental toxicants. Environ Sci Technol, 55 (3) (2021), pp. 1919-1929
[32]
C. Bouaziz, C. Martel, O.S. el Dein, S. Abid-Essefi, C. Brenner, C. Lemaire, et al. Fusarial toxin-induced toxicity in cultured cells and in isolated mitochondria involves PTPC-dependent activation of the mitochondrial pathway of apoptosis. Toxicol Sci, 110 (2) (2009), pp. 363-375
[33]
H.J. Lee, S.Y. Oh, I. Jo. Zearalenone induces endothelial cell apoptosis through activation of a cytosolic Ca2+/ERK1/2/p53/Caspase 3 signaling pathway. Toxins, 13 (3) (2021), p. 187
[34]
H. Xie, J. Hu, C. Xiao, Y. Dai, X. Ding, Y. Xu. Exploration of ZEA cytotoxicity to mouse endometrial stromal cells and RNA-seq analysis. J Biochem Mol Toxicol, 31 (4) (2017), p. e21874
[35]
Y. Ji, K. Zhang, Z. Pan, J. Ju, H. Zhang, J. Liu, et al. High-dose zearalenone exposure disturbs G2/M transition during mouse oocyte maturation. Reprod Toxicol, 110 (2022), pp. 172-179
[36]
A. Subramanian, R. Narayan, S.M. Corsello, D.D. Peck, T.E. Natoli, X. Lu, et al. A next generation connectivity map: Ll 000 platform and the first 1 000 000 profiles. Cell, 171 (6) (2017), pp. 1437-1452.e17
[37]
A.M. Brum, J. van de Peppel, C.S. van der Leije, M. Schreuders-Koedam, M. Eijken, B.C. van der Eerden, et al. Connectivity map-based discovery of parbendazole reveals targetable human osteogenic pathway. Proc Natl Acad Sci USA, 112 (41) (2015), pp. 12711-12716
[38]
F. Gao, L.P. Jiang, M. Chen, C.Y. Geng, G. Yang, F. Ji, et al. Genotoxic effects induced by zearalenone in a human embryonic kidney cell line. Mutat Res, 755 (1) (2013), pp. 6-10
[39]
W. Zhu, M. Ge, X. Li, J. Wang, P. Wang, T. Tai, et al. Hyperoside Attenuates Zearalenone-induced spleen injury by suppressing oxidative stress and inhibiting apoptosis in mice. Int Immunopharmacol, 102 (2022), Article 108408
[40]
G. Aichinger, J. Beisl, D. Marko. The hop polyphenols xanthohumol and 8-prenyl-naringenin antagonize the estrogenic effects of Fusarium mycotoxins in human endometrial cancer cells. Front Nutr, 5 (2018), p. 85
[41]
K. Bakos, R. Kovács, Á. Staszny, D.K. Sipos, B. Urbányi, F. Müller, et al. Developmental toxicity and estrogenic potency of zearalenone in zebrafish (Danio rerio). Aquat Toxicol, 136 (2013), pp. 13-21
[42]
S. Muthulakshmi, K. Maharajan, H.R. Habibi, K. Kadirvelu, M. Venkataramana. Zearalenone induced embryo and neurotoxicity in zebrafish model (Danio rerio): role of oxidative stress revealed by a multi biomarker study. Chemosphere, 198 (2018), pp. 111-121
[43]
B. Wang, W. Zheng, N. Feng, T. Wang, H. Zou, J. Gu, et al. The effects of autophagy and PI3K/AKT/m-TOR signaling pathway on the cell-cycle arrest of rats primary sertoli cells induced by zearalenone. Toxins, 10 (10) (2018), p. 398
[44]
M. Lee, C. Yang, S. Park, G. Song, W. Lim. Fraxetin induces cell death in colon cancer cells via mitochondria dysfunction and enhances therapeutic effects in 5-fluorouracil resistant cells. J Cell Biochem, 123 (2) (2022), pp. 469-480
[45]
J. Song, J. Ham, T. Hong, G. Song, W. Lim. Fraxetin suppresses cell proliferation and induces apoptosis through mitochondria dysfunction in human hepatocellular carcinoma cell lines huh7 and hep3b. Pharmaceutics, 13 (1) (2021), p. 112
[46]
J.A. Ewald, J.A. Desotelle, G. Wilding, D.F. Jarrard. Therapy-induced senescence in cancer. J Natl Cancer Inst, 102 (20) (2010), pp. 1536-1546
[47]
K. Wang, M. Zhou, Y. Du, P. Li, Z. Huang. Zearalenone induces the senescence of cardiovascular cells in vitro and in vivo. Environ Sci Pollut Res Int, 30 (19) (2023), pp. 56037-56053
[48]
D. Moujalled, A. Strasser, J.R. Liddell. Molecular mechanisms of cell death in neurological diseases. Cell Death Differ, 28 (7) (2021), pp. 2029-2044
[49]
X.W. Wang, Q. Zhan, J.D. Coursen, M.A. Khan, H.U. Kontny, L. Yu, et al. GADD 45 induction of a G2/M cell cycle checkpoint. Proc Natl Acad Sci USA, 96 (7) (1999), pp. 3706-3711
[50]
A.E. Schade, M. Fischer, J.A.R.B. DeCaprio. RB, p130 and p107 differentially repress G1/S and G2/M genes after p53 activation. Nucleic Acids Res, 47 (21) (2019), pp. 11197-11208
[51]
T.H. Cheung, N.L. Quach, G.W. Charville, L. Liu, L. Park, A. Edalati, et al. Maintenance of muscle stem-cell quiescence by microRNA-489. Nature, 482 (7386) (2012), pp. 524-528
[52]
N. Danilova, K.M. Sakamoto, S. Lin. Role of p53 family in birth defects: lessons from zebrafish. Birth Defects Res C Embryo Today, 84 (3) (2008), pp. 215-227
[53]
A. Brunet, A. Bonni, M.J. Zigmond, M.Z. Lin, P. Juo, L.S. Hu, et al. Akt promotes cell survival by phosphorylating and inhibiting a forkhead transcription factor. Cell, 96 (6) (1999), pp. 857-868
[54]
M.C. Motta, N. Divecha, M. Lemieux, C. Kamel, D. Chen, W. Gu, et al. Mammalian SIRT 1 represses forkhead transcription factors. Cell, 116 (4) (2004), pp. 551-563
[55]
L. Fang, G. Li, G. Liu, S.W. Lee, S.A. Aaronson. p53 induction of heparin-binding EGF-like growth factor counteracts p53 growth suppression through activation of MAPK and PI3K/Akt signaling cascades. EMBO J, 20 (8) (2001), pp. 1931-2199
[56]
M. Zylicz, F.W. King, A. Wawrzynow. Hsp 70 interactions with the p53 tumour suppressor protein. EMBO J, 20 (17) (2001), pp. 4634-4638
PDF(7458 KB)

Accesses

Citation

Detail

段落导航
相关文章

/