水质系统信息学——环境工程的新兴交叉学科

刘鸿, 陈昭明, 王志伟, 徐明, 王玉涛, 耿金菊, 殷逢俊

工程(英文) ›› 2024, Vol. 43 ›› Issue (12) : 115-124.

PDF(2034 KB)
PDF(2034 KB)
工程(英文) ›› 2024, Vol. 43 ›› Issue (12) : 115-124. DOI: 10.1016/j.eng.2024.03.018
研究论文
Perspective

水质系统信息学——环境工程的新兴交叉学科

作者信息 +

Water Quality System Informatics: An Emerging Inter-Discipline of Environmental Engineering

Author information +
History +

Highlight

• The implications of WQSI are proposed.

• Water quality systems and their control and simulation technology are analyzed.

• Research content and methods of WQSI are discussed.

• The interdisciplinary characteristics of WQSI are pointed out.

摘要

水质系统信息学(WQSI)是以系统控制论为指导来收集与水质有关的数据并将其数字化的新兴交叉学科。它涉及监测影响水质的物理、化学和生物过程,及其在水质系统内的生态影响和相互联系。WQSI深度融合水质工程、信息工程和系统控制工程的理论与方法,以实现水质系统的智慧管控。这种整合以更高的精度和更高的分辨率彻底革新了我们对水质系统的理解和管理。WQSI是数字化时代推动环境工程学科发展的一个新阶段。本文探讨了WQSI的基本概念、研究内容与方法,以及它的学科特征和前景展望等。WQSI的创新和发展对于推动我国产业形态数字化与智能化转型,使我国在环境工程学科乃至生态环境研究领域走在世界前列,具有十分重要的战略意义。

Abstract

Water quality system informatics (WQSI) is an emerging field that employs cybernetics to collect and digitize data associated with water quality. It involves monitoring the physical, chemical, and biological processes that affect water quality and the ecological impacts and interconnections within water quality systems. WQSI integrates theories and methods from water quality engineering, information engineering, and system control theory, enabling the intelligent management and control of water quality. This integration revolutionizes the understanding and management of water quality systems with greater precision and higher resolution. WQSI is a new stage of development in environmental engineering that is driven by the digital age. This work explores the fundamental concepts, research topics, and methods of WQSI and its features and potential to promote disciplinary development. The innovation and development of WQSI are crucial for driving the digital and intelligent transformation of national industry patterns in China, positioning China at the forefront of environmental engineering and ecological environment research on a global scale.

关键词

水质系统 / 水质系统信息学 / 环境工程学科 / 新兴交叉学科 / 研究模式

Keywords

Water quality system / Water quality system informatics / Environmental engineering / Emerging interdisciplinary / Research pattern

引用本文

导出引用
刘鸿, 陈昭明, 王志伟. 水质系统信息学——环境工程的新兴交叉学科. Engineering. 2024, 43(12): 115-124 https://doi.org/10.1016/j.eng.2024.03.018

参考文献

[1]
J. Yang. The development of environmental engineering disciplinary in context of National Natural Science Foundation of China. Chin J Environ Eng, 16 (4) (2022), pp. 1055-1062.
[2]
H. Moser. Systems engineering, systems thinking, and learning: a case study in space industry. Springer, Berlin (2013).
[3]
M.A. Rodenas, M.C. Jackson. Lessons for systems engineering from the Segura River reclamation project: a critical systems thinking analysis. Syst Res Behav Sci, 38 (3) (2021), pp. 368-376.
[4]
N.C. Nguyen, O.J.H. Bosch. A systems thinking approach to identify leverage points for sustainability: a case study in the Cat Ba Biosphere Reserve, Vietnam. Syst Res Behav Sci, 30 (2) (2013), pp. 104-115.
[5]
J.P. Monat, T.F. Gannon. Applying systems thinking to engineering and design. Systems, 6 (3) (2018), p. 34.
[6]
U. Ewuzie, N.O. Aku, S.U. Nwankpa. An appraisal of data collection, analysis, and reporting adopted for water quality assessment: a case of Nigeria water quality research. Heliyon, 7 (9) (2021), p. e07950.
[7]
H.M. Campos Ribeiro, A.D.C. Almeida, B.R.P.D. Rocha, A.V. Krusche. Water quality monitoring in large reservoirs using remote sensing and neural networks. IEEE Lat Am T, 6 (5) (2008), pp. 419-423.
[8]
Q. Cao, G. Yu, Z. Qiao. Application and recent progress of inland water monitoring using remote sensing techniques. Environ Monit Assess, 195 (1) (2023), p. 125.
[9]
X. Zhu, H. Guo, J. Huang, S. Tian, W. Xu, Y. Mai. An ensemble machine learning model for water quality estimation in coastal area based on remote sensing imagery. J Environ Manage, 323 (2022), Article 116187.
[10]
L. Grbčić, S. Družeta, G. Mauša, T. Lipić, D. Vukić Lušić, M. Alvir, et al. Coastal water quality prediction based on machine learning with feature interpretation and spatio-temporal analysis. Environ Modell Softw, 155 (9) (2022), Article 105458.
[11]
H. Mohammed, H. Michel Tornyeviadzi, R. Seidu. Emulating process-based water quality modelling in water source reservoirs using machine learning. J Hydrol, 609 (2022), Article 127675.
[12]
Y. Liu, X. Liu, B. Duan, Z. Yu, T. Cheng, L. Yu, et al. Polymer-water interaction enabled intelligent moisture regulation in hydrogels. J Phys Chem Lett, 12 (10) (2021), pp. 2587-2592.
[13]
Y. Du, Z. Zhou, J. Zhao. Multiregional building energy efficiency intelligent regulation strategy based on multi-objective optimization and model predictive control. J Clean Prod, 349 (2022), Article 131264.
[14]
X.Y. Fan, H.Q. Li, P. Yang, B. Lai. Effect of C/N ratio and aeration rate on performance of internal cycle MBR with synthetic wastewater. Desalination Water Treat, 54 (3) (2015), pp. 573-580.
[15]
M. Bourgin, E. Borowska, J. Helbing, J. Hollender, H.P. Kaiser, C. Kienle, et al. Effect of operational and water quality parameters on conventional ozonation and the advanced oxidation process O3/H2O2: kinetics of micropollutant abatement, transformation product and bromate formation in a surface water. Water Res, 122 (1) (2017), pp. 234-245.
[16]
D. Sravani. Watershed modelling using SWAT for hydrology and water quality: a review. J Indian Water Works Ass, 53 (2) (2021), pp. 123-127.
[17]
H. Hu, C.X. Wang, N.F. Ren. Modern control system. Tsinghua University Press, Beijing (2014). Chinese.
[18]
S.S. Hu. Automatic control principles. (7th ed.), Science Press, Beijing (2022). Chinese.
[19]
Y.C. Fang, G.Z. Lu. Nonlinear system theory. (2nd ed.), Tsinghua University Press, Beijing (2022). Chinese.
[20]
G. Kerschen, K. Worden, A.F. Vakakis, J.C. Golinval. Past, present and future of nonlinear system identification in structural dynamics. Mech Syst Signal Process, 20 (3) (2006), pp. 505-592.
[21]
S.Y. Kim, J.H. Kim, T. Jeong, K.B. Kim, H.J. Kim, K.M. Nam, et al. Accelerated decomposition of Bi2S3 nanorods in water under an electron beam: a liquid phase transmission electron microscopy study. Nanotechnology, 32 (19) (2021), Article 195702.
[22]
W. Yang, J. Song, Y. Higano, J. Tang. Exploration and assessment of optimal policy combination for total water pollution control with a dynamic simulation model. J Clean Prod, 102 (2015), pp. 342-352.
[23]
M. Grieves, J. Vickers. Digital twin: mitigating unpredictable, undesirable emergent behavior in complex systems. Transdisciplinary perspectives on complex systems: new findings and approaches, Springer, Berlin (2017), pp. 85-113.
[24]
Z. Li, E. Yu, K. Zhang, W. Gong, Y. Xia, J. Tian, et al. Water treatment effect, microbial community structure, and metabolic characteristics in a field-scale aquaculture wastewater treatment system. Front Microbiol, 11 (2020), p. 930.
[25]
N.R. Blessing, S. Benedict. Computing principles in formulating water quality informatics and indexing methods: an ample review. J Comput Theor Nanosci, 14 (4) (2017), pp. 1671-1681.
PDF(2034 KB)

Accesses

Citation

Detail

段落导航
相关文章

/