可听频率下的声流控技术综述

Chuanyu Zhang, Philippe Brunet, Shuo Liu, Xiaofeng Guo, Laurent Royon, Xianming Qin, Xueyong Wei

工程(英文) ›› 2025, Vol. 44 ›› Issue (1) : 51-72.

PDF(8111 KB)
PDF(8111 KB)
工程(英文) ›› 2025, Vol. 44 ›› Issue (1) : 51-72. DOI: 10.1016/j.eng.2024.03.020
研究论文
Review

可听频率下的声流控技术综述

作者信息 +

Acoustofluidics at Audible Frequencies—A Review

Author information +
History +

Abstract

Acoustofluidics is a term describing the class of phenomena in which mechanical or acoustic vibrations induce a deformation or a flow in a fluid. Many deficiencies in our understanding of these phenomena remain to be addressed, with respect to the fundamental theoretical framework as well as in numerous applications. In this regard, the frequency of external forcing is a key parameter. Owing to the low cost, substantial magnitude, and versatility associated with acoustofluidic phenomena at audible frequencies, studies of these phenomena in the audible range have emerged with increasing amount in recent years and have attracted considerable attention. However, compared with studies focusing on the ultrasonic frequency domain, critical features and information specific to audible acoustofluidics remain dispersed across many independent publications, and a systematic integration of the literature on this topic is necessary. Accordingly, this review summarizes the basic theory and methods for generating vibrations in the audible range, presents various applications thereof in biology, chemistry, and other fields, and provides a high-level overview of the current status of the topic to motivate developing interesting proposals for further research in this field of study.

Keywords

Acoustofluidics / Audible frequency / Vibration generation / Biological detection / Particle manipulation / Mixing / Chemical reaction / Micropumping / Heat transfer

引用本文

导出引用
Chuanyu Zhang, Philippe Brunet, Shuo Liu. 可听频率下的声流控技术综述. Engineering. 2025, 44(1): 51-72 https://doi.org/10.1016/j.eng.2024.03.020

参考文献

[1]
Kundt A. Ueber eine neue art akustischer staubfiguren und über die anwendung derselben zur bestimmung der schallgeschwindigkeit in festen körpern und gasen. Ann Phys 1866; 203(4):497-523.
[2]
Yasuda K, Umemura SI, Takeda K. Concentration and fractionation of small particles in liquid by ultrasound. Jpn J Appl Phys 1995; 34(5S):2715-2720.
[3]
Faraday MXVII. On a peculiar class of acoustical figures; and on certain forms assumed by groups of particles upon vibrating elastic surfaces. Phil Trans R Soc 1831; 121:299-340.
[4]
Nyborg WL. Acoustic streaming due to attenuated plane waves. J Acoust Soc Am 1953; 25(1):68-75.
[5]
Nyborg WL. Acoustic streaming near a boundary. J Acoust Soc Am 1958; 30(4):329-339.
[6]
Lighthill J. Acoustic streaming. J Sound Vibrat 1978; 61(3):391-418.
[7]
Trinh EH, Gopinath A. Acoustic streaming and heat and mass transfer enhancement. In: Proceedings of the Third Microgravity Fluid Physics Conference; 1996 Jul 13–15; Cleveland, OH, USA. Washington, DC: NASA; 1996. p. 791–6.
[8]
Johnson DA, Feke DL. Methodology for fractionating suspended particles using ultrasonic standing wave and divided flow fields. Sep Technol 1995; 5(4):251-258.
[9]
Rousseaux G, Yoshikawa H, Stegner A, Wesfreid JE. Dynamics of transient eddy above rolling-grain ripples. Phys Fluids 2004; 16(4):1049-1058.
[10]
Bahrani SA, P Nérinet, Costalonga M, Royon L, Brunet P. Vortex elongation in outer streaming flows. Exp Fluids 2020; 61:91.
[11]
Data Physicalization. List of physical visualizations/Kundts-tube. Report. Dagstuhl: Data Physicalization; 2012.
[12]
Data Physicalization. List of physical visualizations/Chladni plates. Report. Dagstuhl: Data Physicalization; 2012.
[13]
Vukasinovic B, Smith MK, Glezer A. Dynamics of a sessile drop in forced vibration. J Fluid Mech 2007; 587:395-423.
[14]
Zhang C, Guo X, Brunet P, Costalonga M, Royon L. Acoustic streaming near a sharp structure and its mixing performance characterization. Microfluid Nanofluid 2019; 23:104.
[15]
Wang C, Jalikop SV, Hilgenfeldt S. Efficient manipulation of microparticles in bubble streaming flows. Biomicrofluidics 2012; 6(1):012801.
[16]
Dong Z, Yao C, Zhang X, Xu J, Chen G, Zhao Y, et al. A high-power ultrasonic microreactor and its application in gas–liquid mass transfer intensification. Lab Chip 2015; 15(4):1145-1152.
[17]
Bahrani SA, Herbaut R, Royon L, Azzouz K, Bontemps A. Experimental investigation of thermal and flow mixing enhancement induced by Rayleigh-like streaming in a milli-mixer. Therm Sci Eng Prog 2019; 14:100434.
[18]
Bruus H. Acoustofluidics 2: perturbation theory and ultrasound resonance modes. Lab Chip 2012; 12:20-28.
[19]
Xie Y, Mao Z, Bachman H, Li P, Zhang P, Ren L, et al. Acoustic cell separation based on density and mechanical properties. J Biomech Eng 2020; 142(3):031005.
[20]
Qin X, Wei X, Li L, Wang H, Jiang Z, Sun D. Acoustic valves in microfluidic channels for droplet manipulation. Lab Chip 2021; 21(16):3165-3173.
[21]
He S, Wang Z, Pang W, Liu C, Zhang M, Yang Y, et al. Ultra-rapid modulation of neurite outgrowth in a gigahertz acoustic streaming system. Lab Chip 2021; 21(10):1948-1955.
[22]
Blondeaux P. Sand ripples under sea waves. Part 1. Ripple formation. J Fluid Mech 1990; 218:1-17.
[23]
Yang Y, Zhang L, Jin K, He M, Wei W, Chen X, et al. Self-adaptive virtual microchannel for continuous enrichment and separation of nanoparticles. Sci Adv 2022; 8(30):eabn8440.
[24]
Dvo Vřák. Ueber die entstehungsweise der kundt’schen staubfiguren. Ann Phys 1874; 227(4):634-639.
[25]
Andrade ENC, Filon LNG. On the circulations caused by the vibration of air in a tube. Proc R Soc A 1931; 134(824):445-470.
[26]
Holtsmark J, Johnsen I, Sikkeland T, Skavlem S. Boundary layer flow near a cylindrical obstacle in an oscillating, incompressible fluid. J Acoust Soc Am 1954; 26(1):26-39.
[27]
Wang CY. On high-frequency oscillatory viscous flows. J Fluid Mech 1968; 32(1):55-68.
[28]
Stuart JT. Double boundary layers in oscillatory viscous flow. J Fluid Mech 1966; 24(4):673-687.
[29]
Tatsuno M. Circulatory streaming around an oscillating circular cylinder at low Reynolds numbers. J Phys Soc Jpn 1973; 35(3):915-920.
[30]
Tatsuno M, Bearman PW. A visual study of the flow around an oscillating circular cylinder at low Keulegan–Carpenter numbers and low Stokes numbers. J Fluid Mech 1990; 211:157-182.
[31]
Riley N. Oscillating viscous flows. Mathematika 1965; 12(2):161-175.
[32]
Riley N. Steady streaming. Annu Rev Fluid Mech 2001; 33:43-65.
[33]
Boluriaan S, Morris PJ. Acoustic streaming: from Rayleigh to today. Int J Aeroacoust 2003; 2(3):255-292.
[34]
Costalonga M, Brunet P, Peerhossaini H. Low frequency vibration induced streaming in a Hele–Shaw cell. Phys Fluids 2015; 27(1):013101.
[35]
Xu R, Akay H, Kim SG. Buckled MEMS beams for energy harvesting from low frequency vibrations. Research 2019; 2019:1087946.
[36]
Ing Uård, Labate S. Acoustic circulation effects and the nonlinear impedance of orifices. J Acoust Soc Am 1950; 22(2):211-218.
[37]
Lebedeva IV. Experimental study of acoustic streaming in the vicinity of orifices. Sov Phys Acoust 1980; 26:331-333.
[38]
James RD, Jacobs JW, Glezer A. A round turbulent jet produced by an oscillating diaphragm. Phys Fluids 1996; 8(9):2484-2495.
[39]
Gimeno L, Talbi A, Viard R, Merlen A, Pernod P, Preobrazhensky V. Synthetic jets based on micro magneto mechanical systems for aerodynamic flow control. J Micromech Microeng 2010; 20(7):075004.
[40]
Longuet-Higgins MS. Mass transport in water waves. Philos Trans R Soc A 1953; 245(903):535-581.
[41]
Cinbis C, Mansour NN, Khuri-Yakub BT. Effect of surface tension on the acoustic radiation pressure-induced motion of the water–air interface. J Acoust Soc Am 1993; 94(4):2365-2372.
[42]
Simon JC, Sapozhnikov OA, Khokhlova VA, Crum LA, Bailey MR. Ultrasonic atomization of liquids in drop-chain acoustic fountains. J Fluid Mech 2015; 766:129-146.
[43]
Brunet P, Eggers J, Deegan RD. Vibration-induced climbing of drops. Phys Rev Lett 2007; 99(14):144501.
[44]
Costalonga M, Brunet P. Directional motion of vibrated sessile drops: a quantitative study. Phys Rev Fluids 2020; 5(2):023601.
[45]
Ovchinnikov M, Zhou J, Yalamanchili S. Acoustic streaming of a sharp edge. J Acoust Soc Am 2014; 136(1):22-29.
[46]
Huang PH, Xie Y, Ahmed D, Rufo J, Nama N, Chen Y, et al. An acoustofluidic micromixer based on oscillating sidewall sharp-edges. Lab Chip 2013; 13(19):3847-3852.
[47]
Zhang P, Bachman H, Ozcelik A, Huang TJ. Acoustic microfluidics. Annu Rev Anal Chem 2020; 13:17-43.
[48]
Wu M, Ozcelik A, Rufo J, Wang Z, Fang R, Huang TJ. Acoustofluidic separation of cells and particles. Microsyst Nanoeng 2019; 5:32.
[49]
Friend J, Yeo LY. Microscale acoustofluidics: microfluidics driven via acoustics and ultrasonics. Rev Mod Phys 2011; 83(2):647-704.
[50]
Chladni EFF. Entdeckungen über die theorie des klanges. Leipzig: Weidmanns Erben und Reich; 1787. German.
[51]
Bruus H. Acoustofluidics 1: governing equations in microfluidics. Lab Chip 2011; 11(22):3742-3751.
[52]
Ding X, Li P, Lin SCS, Stratton ZS, Nama N, Guo F, et al. Surface acoustic wave microfluidics. Lab Chip 2013; 13(18):3626-3649.
[53]
Ozcelik A, Rufo J, Guo F, Gu Y, Li P, Lata J, et al. Acoustic tweezers for the life sciences. Nat Methods 2018; 15(12):1021-1028.
[54]
Hamilton MF, Ilinskii YA, Zabolotskaya EA. Thermal effects on acoustic streaming in standing waves. J Acoust Soc Am 2003; 114(6):3092-3101.
[55]
Zhong G, Liu Y, Guo X, Royon L, Brunet P. Vibration-induced streaming flow near a sharp edge: flow structure and instabilities in a large span of forcing amplitude. Phys Rev E 2023; 107(2):025102.
[56]
Tian C, Liu W, Zhao R, Li T, Xu J, Chen SW, et al. Acoustofluidics-based enzymatic constant determination by rapid and stable in situ mixing. Sens Actuators B Chem 2018; 272:494-501.
[57]
Wang S, Huang X, Yang C. Microfluidic bubble generation by acoustic field for mixing enhancement. J Heat Transfer 2012; 134(5):051014.
[58]
Marmottant P, Hilgenfedlt S. Controlled vesicle deformation and lysis by single oscillating bubbles. Nature 2003; 423(6936):153-156.
[59]
Hao N, Liu P, Bachman H, Pei Z, Zhang P, Rufo J, et al. Acoustofluidics-assisted engineering of multifunctional three-dimensional zinc oxide nanoarrays. ACS Nano 2020; 14(5):6150-6163.
[60]
Huang PH, Zhao S, Bachman H, Nama N, Li Z, Chen C, et al. Acoustofluidic synthesis of particulate nanomaterials. Adv Sci 2019; 6(19):1900913.
[61]
Liu RH, Yang J, Pindera MZ, Athavale M, Grodzinski P. Bubble-induced acoustic micromixing. Lab Chip 2002; 2(3):151-157.
[62]
Surendran V, Chiulli T, Manoharan S, Knisley S, Packirisamy M, Chandrasekaran A. Acoustofluidic micromixing enabled hybrid integrated colorimetric sensing, for rapid point-of-care measurement of salivary potassium. Biosensors 2019; 9(2):73.
[63]
Wu T, Ro PI. Heat transfer performance of a cooling system using vibrating piezoelectric beams. J Micromech Microeng 2005; 15(1):213-220.
[64]
Park JH, Bae KT, Kim KJ, Joh DW, Kim D, Myung J, et al. Ultra-fast fabrication of tape-cast anode supports for solid oxide fuel cells via resonant acoustic mixing technology. Ceram Int 2019; 45(9):12154-12161.
[65]
Chindam C, Nama N, Ian M Lapsley, Costanzo F, Jun HT. Theory and experiment on resonant frequencies of liquid–air interfaces trapped in microfluidic devices. J Appl Phys 2013; 114(19):194503.
[66]
Bachman H, Gu Y, Rufo J, Yang S, Tian Z, Huang PH, et al. Low-frequency flexural wave based microparticle manipulation. Lab Chip 2020; 20(7):1281-1289.
[67]
Liu X, Shi Q, Lin Y, Kojima M, Mae Y, Fukuda T, et al. Multifunctional noncontact micromanipulation using whirling flow generated by vibrating a single piezo actuator. Small 2019; 15(5):1804421.
[68]
Durrer J, Agrawal P, Ozgul A, Neuhauss SCF, Nama N, Ahmed D. A robot-assisted acoustofluidic end effector. Nat Commun 2022; 13:6370.
[69]
Marmottant P, Hilgenfeldt S. A bubble-driven microfluidic transport element for bioengineering. Proc Natl Acad Sci 2004; 101(26):9523-9527.
[70]
Ahmed D, Mao X, Shi J, Juluri BK, Huang TJ. A millisecond micromixer via single-bubble-based acoustic streaming. Lab Chip 2009; 9(18):2738-2741.
[71]
Ahmed D, Mao X, Juluri BK, Huang TJ. A fast microfluidic mixer based on acoustically driven sidewall-trapped microbubbles. Microfluid Nanofluid 2009; 7:727-731.
[72]
Kotas CW, Yoda M, Rogers PH. Visualization of steady streaming near oscillating spheroids. Exp Fluids 2007; 42:111-121.
[73]
Wiklund M, Green R, Ohlin M. Acoustofluidics 14: applications of acoustic streaming in microfluidic devices. Lab Chip 2012; 12(14):2438-2451.
[74]
Muller PB, Rossi M, ÁMarín G, Barnkob R, Augustsson P, Laurell T, et al. Ultrasound-induced acoustophoretic motion of microparticles in three dimensions. Phys Rev E 2013; 88(2):023006.
[75]
Nama N, Huang PH, Huang TJ, Costanzo F. Investigation of acoustic streaming patterns around oscillating sharp edges. Lab Chip 2014; 14(15):2824-2836.
[76]
Zhang C, Guo X, Royon L, Brunet P. Unveiling of the mechanisms of acoustic streaming induced by sharp edges. Phys Rev E 2020; 102(4):043110.
[77]
Zhang C, Guo X, Royon L, Brunet P. Acoustic streaming generated by sharp edges: the coupled influences of liquid viscosity and acoustic frequency. Micromachines 2020; 11(6):607.
[78]
Lieu VH, House TA, Schwartz DT. Hydrodynamic tweezers: impact of design geometry on flow and microparticle trapping. Anal Chem 2012; 84(4):1963-1968.
[79]
Lee CP, Wang TG. Near-boundary streaming around a small sphere due to two orthogonal standing waves. J Acoust Soc Am 1989; 85(3):1081-1088.
[80]
Lei J, Glynne-Jones P, Hill M. Comparing methods for the modelling of boundary-driven streaming in acoustofluidic devices. Microfluid Nanofluidics 2017; 21(2):23.
[81]
Orosco J, Friend J. Modeling fast acoustic streaming: steady-state and transient flow solutions. Phys Rev E 2022; 106(4):045101.
[82]
Makarov SN, Semenova NG, Smirnov VE. Acoustic streaming model for an intense sound beam in free space. Fluid Dyn 1989; 24(6):823-826.
[83]
Moudjed B, Botton V, Henry D, Ben H Hadid, Garandet JP. Scaling and dimensional analysis of acoustic streaming jets. Phys Fluids 2014; 26(9):093602.
[84]
Frenkel V, Gurka R, Liberzon A, Shavit U, Kimmel E. Preliminary investigations of ultrasound induced acoustic streaming using particle image velocimetry. Ultrasonics 2001; 39(3):153-156.
[85]
Mitome H. The mechanism of generation of acoustic streaming. Electron Commun Jpn Part III 1998; 81(10):1-8.
[86]
Kamakura T, Sudo T, Matsuda K, Kumamoto Y. Time evolution of acoustic streaming from a planar ultrasound source. J Acoust Soc Am 1996; 100(1):132-138.
[87]
Dentry MB, Yeo LY, Friend JR. Frequency effects on the scale and behavior of acoustic streaming. Phys Rev E 2014; 89(1):013203.
[88]
Huang PH, Nama N, Mao Z, Li P, Rufo J, Chen Y, et al. A reliable and programmable acoustofluidic pump powered by oscillating sharp-edge structures. Lab Chip 2014; 14(22):4319-4323.
[89]
Zhang C, Brunet P, Royon L, Guo X. Mixing intensification using sound-driven micromixer with sharp edges. Chem Eng J 2021; 410:128252.
[90]
Chen H, Chen C, Bai S, Gao Y, Metcalfe G, Cheng W, et al. Multiplexed detection of cancer biomarkers using a microfluidic platform integrating single bead trapping and acoustic mixing techniques. Nanoscale 2018; 10(43):20196-20206.
[91]
Chen H, Gao Y, Petkovic K, Yan S, Best M, Du Y, et al. Reproducible bubble-induced acoustic microstreaming for bead disaggregation and immunoassay in microfluidics. Microfluid Nanofluid 2017; 21:30.
[92]
Yang C, Yu Y, Zhao Y, Shang L. Bioinspired jellyfish microparticles from microfluidics. Research 2023; 6:0034.
[93]
Feng L, Song B, Chen Y, Liang S, Dai Y, Zhou Q, et al. On-chip rotational manipulation of microbeads and oocytes using acoustic microstreaming generated by oscillating asymmetrical microstructures. Biomicrofluidics 2019; 13(6):064103.
[94]
Feng L, Song B, Zhang D, Jiang Y, Arai F. On-chip tunable cell rotation using acoustically oscillating asymmetrical microstructures. Micromachines 2018; 9(11):596.
[95]
Bai X, Song B, Chen Z, Zhang W, Chen D, Dai Y, et al. Postoperative evaluation of tumours based on label-free acoustic separation of circulating tumour cells by microstreaming. Lab Chip 2021; 21(14):2721-2729.
[96]
Huang PH, Ren L, Nama N, Li S, Li P, Yao X, et al. An acoustofluidic sputum liquefier. Lab Chip 2015; 15(15):3125-3131.
[97]
Gao Y, Tran P, Petkovic-Duran K, Swallow T, Zhu Y. Acoustic micromixing increases antibody–antigen binding in immunoassays. Biomed Microdevices 2015; 17(4):79.
[98]
Liu RH, Yang J, Lenigk R, Bonanno J, Grodzinski P. Self-contained, fully integrated biochip for sample preparation, polymerase chain reaction amplification, and DNA microarray detection. Anal Chem 2004; 76(7):1824-1831.
[99]
Liu RH, Lenigk R, Grodzinski PA. Acoustic micromixer for enhancement of DNA biochip systems. J Micro/Nanolith MEMS MOEMS 2003; 2(3):178-184.
[100]
Kardous F, Rouleau A, Simon B, Yahiaoui R, Manceau JF, Boireau W. Improving immunosensor performances using an acoustic mixer on droplet microarray. Biosens Bioelectron 2010; 26(4):1666-1671.
[101]
Wang Z, Huang PH, Chen C, Bachman H, Zhao S, Yang S, et al. Cell lysis via acoustically oscillating sharp edges. Lab Chip 2019; 19(24):4021-4032.
[102]
Zhao S, He W, Ma Z, Liu P, Huang PH, Bachman H, et al. On-chip stool liquefaction via acoustofluidics. Lab Chip 2019; 19(6):941-947.
[103]
Ahmed D, Ozcelik A, Bojanala N, Nama N, Upadhyay A, Chen Y, et al. Rotational manipulation of single cells and organisms using acoustic waves. Nat Commun 2016; 7:11085.
[104]
Läubli NF, Shamsudhin N, Vogler H, Munglani G, Grossniklaus U, Ahmed D, et al. 3D manipulation and imaging of plant cells using acoustically activated microbubbles. Small Methods 2019; 3(3):1800527.
[105]
Läubli NF, Gerlt MS, Wüthrich A, Lewis RTM, Shamsudhin N, Kutay U, et al. Embedded microbubbles for acoustic manipulation of single cells and microfluidic applications. Anal Chem 2021; 93(28):9760-9770.
[106]
Chung SK, Cho SK. On-chip manipulation of objects using mobile oscillating bubbles. J Micromech Microeng 2008; 18(12):125024.
[107]
Chung SK, Cho SK. 3-D manipulation of millimeter- and micro-sized objects using an acoustically excited oscillating bubble. Microfluid Nanofluid 2009; 6(2):261-265.
[108]
Liu X, Shi Q, Lin Y, Kojima M, Mae Y, Huang Q, et al. Hydrodynamic tweezers: trapping and transportation in microscale using vortex induced by oscillation of a single piezoelectric actuator. Sensors 2018; 18(7):2002.
[109]
Lutz BR, Chen J, Schwartz DT. Hydrodynamic tweezers: 1. noncontact trapping of single cells using steady streaming microeddies. Anal Chem 2006; 78(15):5429-5435.
[110]
Bai X, Bin S, Yuguo D, Wei Z, Yanmin F, Yuanyuan C, et al. Parallel trapping, patterning, separating and rotating of micro-objects with various sizes and shapes using acoustic microstreaming. Sens Actuators A Phys 2020; 315:112340.
[111]
Hayakawa T, Sakuma S, Arai F. On-chip 3D rotation of oocyte based on a vibration-induced local whirling flow. Microsyst Nanoeng 2015; 1:15001.
[112]
Hayaawa T, Sakuma S, Fukuhara T, Yokoyama Y, Arai F. A single cell extraction chip using vibration-induced whirling flow and a thermo-responsive gel pattern. Micromachines 2014; 5(3):681-696.
[113]
Hayakawa T, Arai F. On-chip micromanipulation method based on mode switching of vibration-induced asymmetric flow. In: Proceedings of the International Conference on Robotics and Automation (ICR A); 2017 May 29–Jun 3; Singapore. IEE E; 2017. p. 6631–6.
[114]
Moshksayan K, Kashaninejad N, Warkiani ME, Lock JG, Moghadas H, Firoozabadi B, et al. Spheroids-on-a-chip: recent advances and design considerations in microfluidic platforms for spheroid formation and culture. Sens Actuators B Chem 2018; 263:151-176.
[115]
Shao C, Chi J, Zhang H, Fan Q, Zhao Y, Ye F. Development of cell spheroids by advanced technologies. Adv Mater Technol 2020; 5(9):2000183.
[116]
Ozcelik A, Nama N, Huang PH, Kaynak M, McReynolds MR, Hanna-Rose W, et al. Acoustofluidic rotational manipulation of cells and organisms using oscillating solid structures. Small 2016; 12(37):5120-5125.
[117]
Rasouli R, Tabrizian M. Rapid formation of multicellular spheroids in boundary-driven acoustic microstreams. Small 2021; 17(39):2101931.
[118]
Gao Y, Wu M, Luan Q, Papautsky I, Xu J. Acoustic bubble for spheroid trapping, rotation, and culture: a tumor-on-a-chip platform (ABSTRACT platform). Lab Chip 2022; 22(4):805-813.
[119]
Wang S, Huang X, Yang C. Mixing enhancement for high viscous fluids in a microfluidic chamber. Lab Chip 2011; 11(12):2081-2087.
[120]
Nama N, Huang PH, Huang TJ, Costanzo F. Investigation of micromixing by acoustically oscillated sharp-edges. Biomicrofluidics 2016; 10(2):024124.
[121]
Hao N, Pei Z, Liu P, Bachman H, Naquin TD, Zhang P, et al. Acoustofluidics-assisted fluorescence-SERS bimodal biosensors. Small 2020; 16(48):2005179.
[122]
Zhao X, Chen H, Xiao Y, Zhang J, Qiu Y, Wei J, et al. Rational design of robust flower-like sharp-edge acoustic micromixers towards efficient engineering of functional 3D ZnO nanorod array. Chem Eng J 2022; 447:137547.
[123]
Chen Z, Pei Z, Zhao X, Zhang J, Wei J, Hao N. Acoustic microreactors for chemical engineering. Chem Eng J, 433 (Pt 2) (2022), Article 133258.
[124]
Tang SY, Ayan B, Nama N, Bian Y, Lata JP, Guo X, et al. On-chip production of size-controllable liquid metal microdroplets using acoustic waves. Small 2016; 12(28):3861-3869.
[125]
Ahmed D, Muddana HS, Lu M, French JB, Ozcelik A, Fang Y, et al. Acoustofluidic chemical waveform generator and switch. Anal Chem 2014; 86(23):11803-11810.
[126]
Xie Y, Chindam C, Nama N, Yang S, Lu M, Zhao Y, et al. Exploring bubble oscillation and mass transfer enhancement in acoustic-assisted liquid–liquid extraction with a microfluidic device. Sci Rep 2015; 5:12572.
[127]
Fung K, Li Y, Fan S, Fajrial AK, Ding Y, Ding X. Acoustically excited microstructure for on-demand fouling mitigation in a microfluidic membrane filtration device. J Membr Sci Lett 2022; 2(1):100012.
[128]
Dijkink RJ, Van JP Der Dennen, Ohl CD, Prosperetti A. The ‘acoustic scallop’: a bubble-powered actuator. J Micromech Microeng 2006; 16(8):1653-1659.
[129]
Feng J, Yuan J, Cho SK. Micropropulsion by an acoustic bubble for navigating microfluidic spaces. Lab Chip 2015; 15(6):1554-1562.
[130]
Ryu K, Chung SK, Cho SK. Micropumping by an acoustically excited oscillating bubble for automated implantable microfluidic devices. J Assoc Lab Autom 2010; 15(3):163-171.
[131]
Ryu K, Zueger J, Chung SK, Cho SK. Underwater propulsion using AC-electrowetting-actuated oscillating bubbles for swimming robots. In: Proceedings of the 23rd International Conference on Micro Electro Mechanical Systems (MEMS); 2010 Jan 24–28; Hong Kong, China. Piscataway: IEEE; 2010. p. 160–3.
[132]
Tovar AR, Patel MV, Lee AP. Lateral air cavities for microfluidic pumping with the use of acoustic energy. Microfluid Nanofluid 2011; 10(6):1269-1278.
[133]
Tovar AR, Lee AP. Lateral cavity acoustic transducer. Lab Chip 2009; 9(1):41-43.
[134]
Hamilton MF, Ilinskii YA, Zabolotskaya EA. Acoustic streaming generated by standing waves in two-dimensional channels of arbitrary width. J Acoust Soc Am 2003; 113(1):153-160.
[135]
Mozurkewich G. Heat transfer from a cylinder in an acoustic standing wave. J Acoust Soc Am 1995; 98(4):2209-2216.
[136]
Mozurkewich G. Heat transfer from transverse tubes adjacent to a thermoacoustic stack. J Acoust Soc Am 2001; 110(2):841-847.
[137]
Mozurkewich G. Heat transport by acoustic streaming within a cylindrical resonator. Appl Acoust 2002; 63(7):713-735.
[138]
Gopinath A. Convective heat transfer in acoustic streaming flows [dissertation]. Los Angeles: University of California at Los Angeles; 1992.
[139]
Gopinath A, Mills AF. Convective heat transfer due to acoustic streaming across the ends of a Kundt tube. J Heat Transfer 1994; 116(1):47-53.
[140]
Gopinath A, Harder DR. An experimental study of heat transfer from a cylinder in low-amplitude zero-mean oscillatory flows. Int J Heat Mass Transfer 2000; 43(4):505-520.
[141]
Gopinath A, Mills AF. Convective heat transfer from a sphere due to acoustic streaming. J Heat Transfer 1993; 115(2):332-341.
[142]
Kamotani Y, Prasad A, Ostrach S. Thermal convection in an enclosure due to vibrations aboard spacecraft. AIAA J 1981; 19(4):511-516.
[143]
Farooq A, Homsy GM. Streaming flows due to g-jitter-induced natural convection. J Fluid Mech 1994; 271(2):351-378.
[144]
Hirata K, Tatsumoto K, Nobuhara M, Tanigawa H. On g-jitter effects on three-dimensional laminar thermal convection in low gravity. Mech Eng J 2015; 2(5):15-00268.
[145]
Hirata K, Nobuhara M, Kodama M, Tanigawa H, Noguchi T. Three-pronged convection in a cubic cavity under modulating gravity. Int J Heat Mass Transfer 2019; 135:1073-1081.
[146]
Tatsumoto K, Nobuhara M, Tanigawa H, Hirata K. Thermal convection inside an oscillating cube analysed with proper orthogonal decomposition. Mech Eng J 2015;2(2):15-00018.
[147]
Dyko MP, Vafai K. Effects of gravity modulation on convection in a horizontal annulus. Int J Heat Mass Transfer 2007; 50(1–2):348-360.
[148]
Lappa M. On the variety of particle accumulation structures under the effect of g-jitters. J Fluid Mech 2013; 726:160-195.
[149]
Lambert AA, Cuevas S, del JA Río. Enhanced heat transfer using oscillatory flows in solar collectors. Sol Energy 2006; 80(10):1296-1302.
[150]
Michel G, Gissinger C. Cooling by baroclinic acoustic streaming. Phys Rev Appl 2021; 16(5):L051003.
[151]
Joergensen JH, Qiu W, Bruus H. Transition from boundary-driven to bulk-driven acoustic streaming due to nonlinear thermoviscous effects at high acoustic energy densities. Phys Rev Lett 2023; 130(4):044001.
[152]
Coenen W. Steady streaming around a cylinder pair. Proc R Soc A 2016; 472(2195):20160522.
[153]
Alaminos-Quesada J, Lawrence JJ, Coenen W, Sánchez AL. Oscillating viscous flow past a streamwise linear array of circular cylinders. J Fluid Mech 2023; 959:A39.
[154]
Boughzala M, Stephan O, Bossy E, Dollet B, Marmottant P. Polyhedral bubble vibrations. Phys Rev Lett 2021; 126(5):054502.
[155]
Zhou Y, Wang H, Ma Z, Yang JKW, Ai Y. Acoustic vibration-induced actuation of multiple microrotors in microfluidics. Adv Mater Technol 2020; 5(9):2000323.
[156]
Joseph DD. Fluid dynamics of viscoelastic liquids. Springer, Berlin (1990).
[157]
Böhme G. On steady streaming in viscoelastic liquids. J Non-Newt Fluid Mech 1992; 44:149-170.
[158]
Chang CF, Schowalter W. Secondary flow in the neighborhood of a cylinder oscillating in a viscoelastic fluid. J Non-Newt Fluid Mech 1979; 6(1):47-67.
[159]
Vishwanathan G, Juarez G. Steady streaming flows in viscoelastic liquids. J Non-Newt Fluid Mech 2019; 271:104143.
[160]
Benmouffok-Benbelkacem G, Caton F, Baravian C, Skali-Lami S. Non-linear viscoelasticity and temporal behavior of typical yield stress fluids: carbopol, xanthan and ketchup. Rheol Acta 2010; 49(3):305-314.
[161]
Varchanis S, Haward SJ, Hopkins CC, Syrakos A, Shen AQ, Dimakopoulos Y, et al. Transition between solid and liquid state of yield-stress fluids under purely extensional deformations. Proc Natl Acad Sci USA 2020; 117(23):12611-12617.
[162]
Tatsuno M. Secondary flow induced by a circular cylinder performing unharmonic oscillations. J Phys Soc Jpn 1981; 50(1):330-337.
PDF(8111 KB)

Accesses

Citation

Detail

段落导航
相关文章

/