[1] |
Kundt A. Ueber eine neue art akustischer staubfiguren und über die anwendung derselben zur bestimmung der schallgeschwindigkeit in festen körpern und gasen. Ann Phys 1866; 203(4):497-523.
|
[2] |
Yasuda K, Umemura SI, Takeda K. Concentration and fractionation of small particles in liquid by ultrasound. Jpn J Appl Phys 1995; 34(5S):2715-2720.
|
[3] |
Faraday MXVII. On a peculiar class of acoustical figures; and on certain forms assumed by groups of particles upon vibrating elastic surfaces. Phil Trans R Soc 1831; 121:299-340.
|
[4] |
Nyborg WL. Acoustic streaming due to attenuated plane waves. J Acoust Soc Am 1953; 25(1):68-75.
|
[5] |
Nyborg WL. Acoustic streaming near a boundary. J Acoust Soc Am 1958; 30(4):329-339.
|
[6] |
Lighthill J. Acoustic streaming. J Sound Vibrat 1978; 61(3):391-418.
|
[7] |
Trinh EH, Gopinath A. Acoustic streaming and heat and mass transfer enhancement. In: Proceedings of the Third Microgravity Fluid Physics Conference; 1996 Jul 13–15; Cleveland, OH, USA. Washington, DC: NASA; 1996. p. 791–6.
|
[8] |
Johnson DA, Feke DL. Methodology for fractionating suspended particles using ultrasonic standing wave and divided flow fields. Sep Technol 1995; 5(4):251-258.
|
[9] |
Rousseaux G, Yoshikawa H, Stegner A, Wesfreid JE. Dynamics of transient eddy above rolling-grain ripples. Phys Fluids 2004; 16(4):1049-1058.
|
[10] |
Bahrani SA, P Nérinet, Costalonga M, Royon L, Brunet P. Vortex elongation in outer streaming flows. Exp Fluids 2020; 61:91.
|
[11] |
Data Physicalization. List of physical visualizations/Kundts-tube. Report. Dagstuhl: Data Physicalization; 2012.
|
[12] |
Data Physicalization. List of physical visualizations/Chladni plates. Report. Dagstuhl: Data Physicalization; 2012.
|
[13] |
Vukasinovic B, Smith MK, Glezer A. Dynamics of a sessile drop in forced vibration. J Fluid Mech 2007; 587:395-423.
|
[14] |
Zhang C, Guo X, Brunet P, Costalonga M, Royon L. Acoustic streaming near a sharp structure and its mixing performance characterization. Microfluid Nanofluid 2019; 23:104.
|
[15] |
Wang C, Jalikop SV, Hilgenfeldt S. Efficient manipulation of microparticles in bubble streaming flows. Biomicrofluidics 2012; 6(1):012801.
|
[16] |
Dong Z, Yao C, Zhang X, Xu J, Chen G, Zhao Y, et al. A high-power ultrasonic microreactor and its application in gas–liquid mass transfer intensification. Lab Chip 2015; 15(4):1145-1152.
|
[17] |
Bahrani SA, Herbaut R, Royon L, Azzouz K, Bontemps A. Experimental investigation of thermal and flow mixing enhancement induced by Rayleigh-like streaming in a milli-mixer. Therm Sci Eng Prog 2019; 14:100434.
|
[18] |
Bruus H. Acoustofluidics 2: perturbation theory and ultrasound resonance modes. Lab Chip 2012; 12:20-28.
|
[19] |
Xie Y, Mao Z, Bachman H, Li P, Zhang P, Ren L, et al. Acoustic cell separation based on density and mechanical properties. J Biomech Eng 2020; 142(3):031005.
|
[20] |
Qin X, Wei X, Li L, Wang H, Jiang Z, Sun D. Acoustic valves in microfluidic channels for droplet manipulation. Lab Chip 2021; 21(16):3165-3173.
|
[21] |
He S, Wang Z, Pang W, Liu C, Zhang M, Yang Y, et al. Ultra-rapid modulation of neurite outgrowth in a gigahertz acoustic streaming system. Lab Chip 2021; 21(10):1948-1955.
|
[22] |
Blondeaux P. Sand ripples under sea waves. Part 1. Ripple formation. J Fluid Mech 1990; 218:1-17.
|
[23] |
Yang Y, Zhang L, Jin K, He M, Wei W, Chen X, et al. Self-adaptive virtual microchannel for continuous enrichment and separation of nanoparticles. Sci Adv 2022; 8(30):eabn8440.
|
[24] |
Dvo Vřák. Ueber die entstehungsweise der kundt’schen staubfiguren. Ann Phys 1874; 227(4):634-639.
|
[25] |
Andrade ENC, Filon LNG. On the circulations caused by the vibration of air in a tube. Proc R Soc A 1931; 134(824):445-470.
|
[26] |
Holtsmark J, Johnsen I, Sikkeland T, Skavlem S. Boundary layer flow near a cylindrical obstacle in an oscillating, incompressible fluid. J Acoust Soc Am 1954; 26(1):26-39.
|
[27] |
Wang CY. On high-frequency oscillatory viscous flows. J Fluid Mech 1968; 32(1):55-68.
|
[28] |
Stuart JT. Double boundary layers in oscillatory viscous flow. J Fluid Mech 1966; 24(4):673-687.
|
[29] |
Tatsuno M. Circulatory streaming around an oscillating circular cylinder at low Reynolds numbers. J Phys Soc Jpn 1973; 35(3):915-920.
|
[30] |
Tatsuno M, Bearman PW. A visual study of the flow around an oscillating circular cylinder at low Keulegan–Carpenter numbers and low Stokes numbers. J Fluid Mech 1990; 211:157-182.
|
[31] |
Riley N. Oscillating viscous flows. Mathematika 1965; 12(2):161-175.
|
[32] |
Riley N. Steady streaming. Annu Rev Fluid Mech 2001; 33:43-65.
|
[33] |
Boluriaan S, Morris PJ. Acoustic streaming: from Rayleigh to today. Int J Aeroacoust 2003; 2(3):255-292.
|
[34] |
Costalonga M, Brunet P, Peerhossaini H. Low frequency vibration induced streaming in a Hele–Shaw cell. Phys Fluids 2015; 27(1):013101.
|
[35] |
Xu R, Akay H, Kim SG. Buckled MEMS beams for energy harvesting from low frequency vibrations. Research 2019; 2019:1087946.
|
[36] |
Ing Uård, Labate S. Acoustic circulation effects and the nonlinear impedance of orifices. J Acoust Soc Am 1950; 22(2):211-218.
|
[37] |
Lebedeva IV. Experimental study of acoustic streaming in the vicinity of orifices. Sov Phys Acoust 1980; 26:331-333.
|
[38] |
James RD, Jacobs JW, Glezer A. A round turbulent jet produced by an oscillating diaphragm. Phys Fluids 1996; 8(9):2484-2495.
|
[39] |
Gimeno L, Talbi A, Viard R, Merlen A, Pernod P, Preobrazhensky V. Synthetic jets based on micro magneto mechanical systems for aerodynamic flow control. J Micromech Microeng 2010; 20(7):075004.
|
[40] |
Longuet-Higgins MS. Mass transport in water waves. Philos Trans R Soc A 1953; 245(903):535-581.
|
[41] |
Cinbis C, Mansour NN, Khuri-Yakub BT. Effect of surface tension on the acoustic radiation pressure-induced motion of the water–air interface. J Acoust Soc Am 1993; 94(4):2365-2372.
|
[42] |
Simon JC, Sapozhnikov OA, Khokhlova VA, Crum LA, Bailey MR. Ultrasonic atomization of liquids in drop-chain acoustic fountains. J Fluid Mech 2015; 766:129-146.
|
[43] |
Brunet P, Eggers J, Deegan RD. Vibration-induced climbing of drops. Phys Rev Lett 2007; 99(14):144501.
|
[44] |
Costalonga M, Brunet P. Directional motion of vibrated sessile drops: a quantitative study. Phys Rev Fluids 2020; 5(2):023601.
|
[45] |
Ovchinnikov M, Zhou J, Yalamanchili S. Acoustic streaming of a sharp edge. J Acoust Soc Am 2014; 136(1):22-29.
|
[46] |
Huang PH, Xie Y, Ahmed D, Rufo J, Nama N, Chen Y, et al. An acoustofluidic micromixer based on oscillating sidewall sharp-edges. Lab Chip 2013; 13(19):3847-3852.
|
[47] |
Zhang P, Bachman H, Ozcelik A, Huang TJ. Acoustic microfluidics. Annu Rev Anal Chem 2020; 13:17-43.
|
[48] |
Wu M, Ozcelik A, Rufo J, Wang Z, Fang R, Huang TJ. Acoustofluidic separation of cells and particles. Microsyst Nanoeng 2019; 5:32.
|
[49] |
Friend J, Yeo LY. Microscale acoustofluidics: microfluidics driven via acoustics and ultrasonics. Rev Mod Phys 2011; 83(2):647-704.
|
[50] |
Chladni EFF. Entdeckungen über die theorie des klanges. Leipzig: Weidmanns Erben und Reich; 1787. German.
|
[51] |
Bruus H. Acoustofluidics 1: governing equations in microfluidics. Lab Chip 2011; 11(22):3742-3751.
|
[52] |
Ding X, Li P, Lin SCS, Stratton ZS, Nama N, Guo F, et al. Surface acoustic wave microfluidics. Lab Chip 2013; 13(18):3626-3649.
|
[53] |
Ozcelik A, Rufo J, Guo F, Gu Y, Li P, Lata J, et al. Acoustic tweezers for the life sciences. Nat Methods 2018; 15(12):1021-1028.
|
[54] |
Hamilton MF, Ilinskii YA, Zabolotskaya EA. Thermal effects on acoustic streaming in standing waves. J Acoust Soc Am 2003; 114(6):3092-3101.
|
[55] |
Zhong G, Liu Y, Guo X, Royon L, Brunet P. Vibration-induced streaming flow near a sharp edge: flow structure and instabilities in a large span of forcing amplitude. Phys Rev E 2023; 107(2):025102.
|
[56] |
Tian C, Liu W, Zhao R, Li T, Xu J, Chen SW, et al. Acoustofluidics-based enzymatic constant determination by rapid and stable in situ mixing. Sens Actuators B Chem 2018; 272:494-501.
|
[57] |
Wang S, Huang X, Yang C. Microfluidic bubble generation by acoustic field for mixing enhancement. J Heat Transfer 2012; 134(5):051014.
|
[58] |
Marmottant P, Hilgenfedlt S. Controlled vesicle deformation and lysis by single oscillating bubbles. Nature 2003; 423(6936):153-156.
|
[59] |
Hao N, Liu P, Bachman H, Pei Z, Zhang P, Rufo J, et al. Acoustofluidics-assisted engineering of multifunctional three-dimensional zinc oxide nanoarrays. ACS Nano 2020; 14(5):6150-6163.
|
[60] |
Huang PH, Zhao S, Bachman H, Nama N, Li Z, Chen C, et al. Acoustofluidic synthesis of particulate nanomaterials. Adv Sci 2019; 6(19):1900913.
|
[61] |
Liu RH, Yang J, Pindera MZ, Athavale M, Grodzinski P. Bubble-induced acoustic micromixing. Lab Chip 2002; 2(3):151-157.
|
[62] |
Surendran V, Chiulli T, Manoharan S, Knisley S, Packirisamy M, Chandrasekaran A. Acoustofluidic micromixing enabled hybrid integrated colorimetric sensing, for rapid point-of-care measurement of salivary potassium. Biosensors 2019; 9(2):73.
|
[63] |
Wu T, Ro PI. Heat transfer performance of a cooling system using vibrating piezoelectric beams. J Micromech Microeng 2005; 15(1):213-220.
|
[64] |
Park JH, Bae KT, Kim KJ, Joh DW, Kim D, Myung J, et al. Ultra-fast fabrication of tape-cast anode supports for solid oxide fuel cells via resonant acoustic mixing technology. Ceram Int 2019; 45(9):12154-12161.
|
[65] |
Chindam C, Nama N, Ian M Lapsley, Costanzo F, Jun HT. Theory and experiment on resonant frequencies of liquid–air interfaces trapped in microfluidic devices. J Appl Phys 2013; 114(19):194503.
|
[66] |
Bachman H, Gu Y, Rufo J, Yang S, Tian Z, Huang PH, et al. Low-frequency flexural wave based microparticle manipulation. Lab Chip 2020; 20(7):1281-1289.
|
[67] |
Liu X, Shi Q, Lin Y, Kojima M, Mae Y, Fukuda T, et al. Multifunctional noncontact micromanipulation using whirling flow generated by vibrating a single piezo actuator. Small 2019; 15(5):1804421.
|
[68] |
Durrer J, Agrawal P, Ozgul A, Neuhauss SCF, Nama N, Ahmed D. A robot-assisted acoustofluidic end effector. Nat Commun 2022; 13:6370.
|
[69] |
Marmottant P, Hilgenfeldt S. A bubble-driven microfluidic transport element for bioengineering. Proc Natl Acad Sci 2004; 101(26):9523-9527.
|
[70] |
Ahmed D, Mao X, Shi J, Juluri BK, Huang TJ. A millisecond micromixer via single-bubble-based acoustic streaming. Lab Chip 2009; 9(18):2738-2741.
|
[71] |
Ahmed D, Mao X, Juluri BK, Huang TJ. A fast microfluidic mixer based on acoustically driven sidewall-trapped microbubbles. Microfluid Nanofluid 2009; 7:727-731.
|
[72] |
Kotas CW, Yoda M, Rogers PH. Visualization of steady streaming near oscillating spheroids. Exp Fluids 2007; 42:111-121.
|
[73] |
Wiklund M, Green R, Ohlin M. Acoustofluidics 14: applications of acoustic streaming in microfluidic devices. Lab Chip 2012; 12(14):2438-2451.
|
[74] |
Muller PB, Rossi M, ÁMarín G, Barnkob R, Augustsson P, Laurell T, et al. Ultrasound-induced acoustophoretic motion of microparticles in three dimensions. Phys Rev E 2013; 88(2):023006.
|
[75] |
Nama N, Huang PH, Huang TJ, Costanzo F. Investigation of acoustic streaming patterns around oscillating sharp edges. Lab Chip 2014; 14(15):2824-2836.
|
[76] |
Zhang C, Guo X, Royon L, Brunet P. Unveiling of the mechanisms of acoustic streaming induced by sharp edges. Phys Rev E 2020; 102(4):043110.
|
[77] |
Zhang C, Guo X, Royon L, Brunet P. Acoustic streaming generated by sharp edges: the coupled influences of liquid viscosity and acoustic frequency. Micromachines 2020; 11(6):607.
|
[78] |
Lieu VH, House TA, Schwartz DT. Hydrodynamic tweezers: impact of design geometry on flow and microparticle trapping. Anal Chem 2012; 84(4):1963-1968.
|
[79] |
Lee CP, Wang TG. Near-boundary streaming around a small sphere due to two orthogonal standing waves. J Acoust Soc Am 1989; 85(3):1081-1088.
|
[80] |
Lei J, Glynne-Jones P, Hill M. Comparing methods for the modelling of boundary-driven streaming in acoustofluidic devices. Microfluid Nanofluidics 2017; 21(2):23.
|
[81] |
Orosco J, Friend J. Modeling fast acoustic streaming: steady-state and transient flow solutions. Phys Rev E 2022; 106(4):045101.
|
[82] |
Makarov SN, Semenova NG, Smirnov VE. Acoustic streaming model for an intense sound beam in free space. Fluid Dyn 1989; 24(6):823-826.
|
[83] |
Moudjed B, Botton V, Henry D, Ben H Hadid, Garandet JP. Scaling and dimensional analysis of acoustic streaming jets. Phys Fluids 2014; 26(9):093602.
|
[84] |
Frenkel V, Gurka R, Liberzon A, Shavit U, Kimmel E. Preliminary investigations of ultrasound induced acoustic streaming using particle image velocimetry. Ultrasonics 2001; 39(3):153-156.
|
[85] |
Mitome H. The mechanism of generation of acoustic streaming. Electron Commun Jpn Part III 1998; 81(10):1-8.
|
[86] |
Kamakura T, Sudo T, Matsuda K, Kumamoto Y. Time evolution of acoustic streaming from a planar ultrasound source. J Acoust Soc Am 1996; 100(1):132-138.
|
[87] |
Dentry MB, Yeo LY, Friend JR. Frequency effects on the scale and behavior of acoustic streaming. Phys Rev E 2014; 89(1):013203.
|
[88] |
Huang PH, Nama N, Mao Z, Li P, Rufo J, Chen Y, et al. A reliable and programmable acoustofluidic pump powered by oscillating sharp-edge structures. Lab Chip 2014; 14(22):4319-4323.
|
[89] |
Zhang C, Brunet P, Royon L, Guo X. Mixing intensification using sound-driven micromixer with sharp edges. Chem Eng J 2021; 410:128252.
|
[90] |
Chen H, Chen C, Bai S, Gao Y, Metcalfe G, Cheng W, et al. Multiplexed detection of cancer biomarkers using a microfluidic platform integrating single bead trapping and acoustic mixing techniques. Nanoscale 2018; 10(43):20196-20206.
|
[91] |
Chen H, Gao Y, Petkovic K, Yan S, Best M, Du Y, et al. Reproducible bubble-induced acoustic microstreaming for bead disaggregation and immunoassay in microfluidics. Microfluid Nanofluid 2017; 21:30.
|
[92] |
Yang C, Yu Y, Zhao Y, Shang L. Bioinspired jellyfish microparticles from microfluidics. Research 2023; 6:0034.
|
[93] |
Feng L, Song B, Chen Y, Liang S, Dai Y, Zhou Q, et al. On-chip rotational manipulation of microbeads and oocytes using acoustic microstreaming generated by oscillating asymmetrical microstructures. Biomicrofluidics 2019; 13(6):064103.
|
[94] |
Feng L, Song B, Zhang D, Jiang Y, Arai F. On-chip tunable cell rotation using acoustically oscillating asymmetrical microstructures. Micromachines 2018; 9(11):596.
|
[95] |
Bai X, Song B, Chen Z, Zhang W, Chen D, Dai Y, et al. Postoperative evaluation of tumours based on label-free acoustic separation of circulating tumour cells by microstreaming. Lab Chip 2021; 21(14):2721-2729.
|
[96] |
Huang PH, Ren L, Nama N, Li S, Li P, Yao X, et al. An acoustofluidic sputum liquefier. Lab Chip 2015; 15(15):3125-3131.
|
[97] |
Gao Y, Tran P, Petkovic-Duran K, Swallow T, Zhu Y. Acoustic micromixing increases antibody–antigen binding in immunoassays. Biomed Microdevices 2015; 17(4):79.
|
[98] |
Liu RH, Yang J, Lenigk R, Bonanno J, Grodzinski P. Self-contained, fully integrated biochip for sample preparation, polymerase chain reaction amplification, and DNA microarray detection. Anal Chem 2004; 76(7):1824-1831.
|
[99] |
Liu RH, Lenigk R, Grodzinski PA. Acoustic micromixer for enhancement of DNA biochip systems. J Micro/Nanolith MEMS MOEMS 2003; 2(3):178-184.
|
[100] |
Kardous F, Rouleau A, Simon B, Yahiaoui R, Manceau JF, Boireau W. Improving immunosensor performances using an acoustic mixer on droplet microarray. Biosens Bioelectron 2010; 26(4):1666-1671.
|
[101] |
Wang Z, Huang PH, Chen C, Bachman H, Zhao S, Yang S, et al. Cell lysis via acoustically oscillating sharp edges. Lab Chip 2019; 19(24):4021-4032.
|
[102] |
Zhao S, He W, Ma Z, Liu P, Huang PH, Bachman H, et al. On-chip stool liquefaction via acoustofluidics. Lab Chip 2019; 19(6):941-947.
|
[103] |
Ahmed D, Ozcelik A, Bojanala N, Nama N, Upadhyay A, Chen Y, et al. Rotational manipulation of single cells and organisms using acoustic waves. Nat Commun 2016; 7:11085.
|
[104] |
Läubli NF, Shamsudhin N, Vogler H, Munglani G, Grossniklaus U, Ahmed D, et al. 3D manipulation and imaging of plant cells using acoustically activated microbubbles. Small Methods 2019; 3(3):1800527.
|
[105] |
Läubli NF, Gerlt MS, Wüthrich A, Lewis RTM, Shamsudhin N, Kutay U, et al. Embedded microbubbles for acoustic manipulation of single cells and microfluidic applications. Anal Chem 2021; 93(28):9760-9770.
|
[106] |
Chung SK, Cho SK. On-chip manipulation of objects using mobile oscillating bubbles. J Micromech Microeng 2008; 18(12):125024.
|
[107] |
Chung SK, Cho SK. 3-D manipulation of millimeter- and micro-sized objects using an acoustically excited oscillating bubble. Microfluid Nanofluid 2009; 6(2):261-265.
|
[108] |
Liu X, Shi Q, Lin Y, Kojima M, Mae Y, Huang Q, et al. Hydrodynamic tweezers: trapping and transportation in microscale using vortex induced by oscillation of a single piezoelectric actuator. Sensors 2018; 18(7):2002.
|
[109] |
Lutz BR, Chen J, Schwartz DT. Hydrodynamic tweezers: 1. noncontact trapping of single cells using steady streaming microeddies. Anal Chem 2006; 78(15):5429-5435.
|
[110] |
Bai X, Bin S, Yuguo D, Wei Z, Yanmin F, Yuanyuan C, et al. Parallel trapping, patterning, separating and rotating of micro-objects with various sizes and shapes using acoustic microstreaming. Sens Actuators A Phys 2020; 315:112340.
|
[111] |
Hayakawa T, Sakuma S, Arai F. On-chip 3D rotation of oocyte based on a vibration-induced local whirling flow. Microsyst Nanoeng 2015; 1:15001.
|
[112] |
Hayaawa T, Sakuma S, Fukuhara T, Yokoyama Y, Arai F. A single cell extraction chip using vibration-induced whirling flow and a thermo-responsive gel pattern. Micromachines 2014; 5(3):681-696.
|
[113] |
Hayakawa T, Arai F. On-chip micromanipulation method based on mode switching of vibration-induced asymmetric flow. In: Proceedings of the International Conference on Robotics and Automation (ICR A); 2017 May 29–Jun 3; Singapore. IEE E; 2017. p. 6631–6.
|
[114] |
Moshksayan K, Kashaninejad N, Warkiani ME, Lock JG, Moghadas H, Firoozabadi B, et al. Spheroids-on-a-chip: recent advances and design considerations in microfluidic platforms for spheroid formation and culture. Sens Actuators B Chem 2018; 263:151-176.
|
[115] |
Shao C, Chi J, Zhang H, Fan Q, Zhao Y, Ye F. Development of cell spheroids by advanced technologies. Adv Mater Technol 2020; 5(9):2000183.
|
[116] |
Ozcelik A, Nama N, Huang PH, Kaynak M, McReynolds MR, Hanna-Rose W, et al. Acoustofluidic rotational manipulation of cells and organisms using oscillating solid structures. Small 2016; 12(37):5120-5125.
|
[117] |
Rasouli R, Tabrizian M. Rapid formation of multicellular spheroids in boundary-driven acoustic microstreams. Small 2021; 17(39):2101931.
|
[118] |
Gao Y, Wu M, Luan Q, Papautsky I, Xu J. Acoustic bubble for spheroid trapping, rotation, and culture: a tumor-on-a-chip platform (ABSTRACT platform). Lab Chip 2022; 22(4):805-813.
|
[119] |
Wang S, Huang X, Yang C. Mixing enhancement for high viscous fluids in a microfluidic chamber. Lab Chip 2011; 11(12):2081-2087.
|
[120] |
Nama N, Huang PH, Huang TJ, Costanzo F. Investigation of micromixing by acoustically oscillated sharp-edges. Biomicrofluidics 2016; 10(2):024124.
|
[121] |
Hao N, Pei Z, Liu P, Bachman H, Naquin TD, Zhang P, et al. Acoustofluidics-assisted fluorescence-SERS bimodal biosensors. Small 2020; 16(48):2005179.
|
[122] |
Zhao X, Chen H, Xiao Y, Zhang J, Qiu Y, Wei J, et al. Rational design of robust flower-like sharp-edge acoustic micromixers towards efficient engineering of functional 3D ZnO nanorod array. Chem Eng J 2022; 447:137547.
|
[123] |
Chen Z, Pei Z, Zhao X, Zhang J, Wei J, Hao N. Acoustic microreactors for chemical engineering. Chem Eng J, 433 (Pt 2) (2022), Article 133258.
|
[124] |
Tang SY, Ayan B, Nama N, Bian Y, Lata JP, Guo X, et al. On-chip production of size-controllable liquid metal microdroplets using acoustic waves. Small 2016; 12(28):3861-3869.
|
[125] |
Ahmed D, Muddana HS, Lu M, French JB, Ozcelik A, Fang Y, et al. Acoustofluidic chemical waveform generator and switch. Anal Chem 2014; 86(23):11803-11810.
|
[126] |
Xie Y, Chindam C, Nama N, Yang S, Lu M, Zhao Y, et al. Exploring bubble oscillation and mass transfer enhancement in acoustic-assisted liquid–liquid extraction with a microfluidic device. Sci Rep 2015; 5:12572.
|
[127] |
Fung K, Li Y, Fan S, Fajrial AK, Ding Y, Ding X. Acoustically excited microstructure for on-demand fouling mitigation in a microfluidic membrane filtration device. J Membr Sci Lett 2022; 2(1):100012.
|
[128] |
Dijkink RJ, Van JP Der Dennen, Ohl CD, Prosperetti A. The ‘acoustic scallop’: a bubble-powered actuator. J Micromech Microeng 2006; 16(8):1653-1659.
|
[129] |
Feng J, Yuan J, Cho SK. Micropropulsion by an acoustic bubble for navigating microfluidic spaces. Lab Chip 2015; 15(6):1554-1562.
|
[130] |
Ryu K, Chung SK, Cho SK. Micropumping by an acoustically excited oscillating bubble for automated implantable microfluidic devices. J Assoc Lab Autom 2010; 15(3):163-171.
|
[131] |
Ryu K, Zueger J, Chung SK, Cho SK. Underwater propulsion using AC-electrowetting-actuated oscillating bubbles for swimming robots. In: Proceedings of the 23rd International Conference on Micro Electro Mechanical Systems (MEMS); 2010 Jan 24–28; Hong Kong, China. Piscataway: IEEE; 2010. p. 160–3.
|
[132] |
Tovar AR, Patel MV, Lee AP. Lateral air cavities for microfluidic pumping with the use of acoustic energy. Microfluid Nanofluid 2011; 10(6):1269-1278.
|
[133] |
Tovar AR, Lee AP. Lateral cavity acoustic transducer. Lab Chip 2009; 9(1):41-43.
|
[134] |
Hamilton MF, Ilinskii YA, Zabolotskaya EA. Acoustic streaming generated by standing waves in two-dimensional channels of arbitrary width. J Acoust Soc Am 2003; 113(1):153-160.
|
[135] |
Mozurkewich G. Heat transfer from a cylinder in an acoustic standing wave. J Acoust Soc Am 1995; 98(4):2209-2216.
|
[136] |
Mozurkewich G. Heat transfer from transverse tubes adjacent to a thermoacoustic stack. J Acoust Soc Am 2001; 110(2):841-847.
|
[137] |
Mozurkewich G. Heat transport by acoustic streaming within a cylindrical resonator. Appl Acoust 2002; 63(7):713-735.
|
[138] |
Gopinath A. Convective heat transfer in acoustic streaming flows [dissertation]. Los Angeles: University of California at Los Angeles; 1992.
|
[139] |
Gopinath A, Mills AF. Convective heat transfer due to acoustic streaming across the ends of a Kundt tube. J Heat Transfer 1994; 116(1):47-53.
|
[140] |
Gopinath A, Harder DR. An experimental study of heat transfer from a cylinder in low-amplitude zero-mean oscillatory flows. Int J Heat Mass Transfer 2000; 43(4):505-520.
|
[141] |
Gopinath A, Mills AF. Convective heat transfer from a sphere due to acoustic streaming. J Heat Transfer 1993; 115(2):332-341.
|
[142] |
Kamotani Y, Prasad A, Ostrach S. Thermal convection in an enclosure due to vibrations aboard spacecraft. AIAA J 1981; 19(4):511-516.
|
[143] |
Farooq A, Homsy GM. Streaming flows due to g-jitter-induced natural convection. J Fluid Mech 1994; 271(2):351-378.
|
[144] |
Hirata K, Tatsumoto K, Nobuhara M, Tanigawa H. On g-jitter effects on three-dimensional laminar thermal convection in low gravity. Mech Eng J 2015; 2(5):15-00268.
|
[145] |
Hirata K, Nobuhara M, Kodama M, Tanigawa H, Noguchi T. Three-pronged convection in a cubic cavity under modulating gravity. Int J Heat Mass Transfer 2019; 135:1073-1081.
|
[146] |
Tatsumoto K, Nobuhara M, Tanigawa H, Hirata K. Thermal convection inside an oscillating cube analysed with proper orthogonal decomposition. Mech Eng J 2015;2(2):15-00018.
|
[147] |
Dyko MP, Vafai K. Effects of gravity modulation on convection in a horizontal annulus. Int J Heat Mass Transfer 2007; 50(1–2):348-360.
|
[148] |
Lappa M. On the variety of particle accumulation structures under the effect of g-jitters. J Fluid Mech 2013; 726:160-195.
|
[149] |
Lambert AA, Cuevas S, del JA Río. Enhanced heat transfer using oscillatory flows in solar collectors. Sol Energy 2006; 80(10):1296-1302.
|
[150] |
Michel G, Gissinger C. Cooling by baroclinic acoustic streaming. Phys Rev Appl 2021; 16(5):L051003.
|
[151] |
Joergensen JH, Qiu W, Bruus H. Transition from boundary-driven to bulk-driven acoustic streaming due to nonlinear thermoviscous effects at high acoustic energy densities. Phys Rev Lett 2023; 130(4):044001.
|
[152] |
Coenen W. Steady streaming around a cylinder pair. Proc R Soc A 2016; 472(2195):20160522.
|
[153] |
Alaminos-Quesada J, Lawrence JJ, Coenen W, Sánchez AL. Oscillating viscous flow past a streamwise linear array of circular cylinders. J Fluid Mech 2023; 959:A39.
|
[154] |
Boughzala M, Stephan O, Bossy E, Dollet B, Marmottant P. Polyhedral bubble vibrations. Phys Rev Lett 2021; 126(5):054502.
|
[155] |
Zhou Y, Wang H, Ma Z, Yang JKW, Ai Y. Acoustic vibration-induced actuation of multiple microrotors in microfluidics. Adv Mater Technol 2020; 5(9):2000323.
|
[156] |
Joseph DD. Fluid dynamics of viscoelastic liquids. Springer, Berlin (1990).
|
[157] |
Böhme G. On steady streaming in viscoelastic liquids. J Non-Newt Fluid Mech 1992; 44:149-170.
|
[158] |
Chang CF, Schowalter W. Secondary flow in the neighborhood of a cylinder oscillating in a viscoelastic fluid. J Non-Newt Fluid Mech 1979; 6(1):47-67.
|
[159] |
Vishwanathan G, Juarez G. Steady streaming flows in viscoelastic liquids. J Non-Newt Fluid Mech 2019; 271:104143.
|
[160] |
Benmouffok-Benbelkacem G, Caton F, Baravian C, Skali-Lami S. Non-linear viscoelasticity and temporal behavior of typical yield stress fluids: carbopol, xanthan and ketchup. Rheol Acta 2010; 49(3):305-314.
|
[161] |
Varchanis S, Haward SJ, Hopkins CC, Syrakos A, Shen AQ, Dimakopoulos Y, et al. Transition between solid and liquid state of yield-stress fluids under purely extensional deformations. Proc Natl Acad Sci USA 2020; 117(23):12611-12617.
|
[162] |
Tatsuno M. Secondary flow induced by a circular cylinder performing unharmonic oscillations. J Phys Soc Jpn 1981; 50(1):330-337.
|