[1] |
G. Agnelli, C. Becattini. Acute pulmonary embolism. N Engl J Med, 363 (3) (2010), pp. 266-274
|
[2] |
M. Di Nisio, N. van Es, H.R. Büller. Deep vein thrombosis and pulmonary embolism. Lancet, 388 (10063) (2016), pp. 3060-3073
|
[3] |
R.H. White. The epidemiology of venous thromboembolism. Circulation, 107 (2003), pp. I4-8
|
[4] |
M.D. Silverstein, J.A. Heit, D.N. Mohr, T.M. Petterson, W.M. O’Fallon, L.J. Melton. Trends in the incidence of deep vein thrombosis and pulmonary embolism: a 25-year population-based study. Arch Intern Med, 158 (6) (1998), pp. 585-593
|
[5] |
G.W. Albers, V.E. Bates, W.M. Clark, R. Bell, P. Verro, S.A. Hamilton. Intravenous tissue-type plasminogen activator for treatment of acute stroke: the standard treatment with alteplase to reverse stroke (stars) study. JAMA, 283 (9) (2000), pp. 1145-1150
|
[6] |
D. Scarvelis, P.S. Wells. Diagnosis and treatment of deep-vein thrombosis. CMAJ, 175 (9) (2006), pp. 1087-1092
|
[7] |
M.B. Streiff, G. Agnelli, J.M. Connors, M. Crowther, S. Eichinger, R. Lopes, et al. Guidance for the treatment of deep vein thrombosis and pulmonary embolism. J Thromb Thrombolysis, 41 (1) (2016), pp. 32-67
|
[8] |
D. Fleck, H. Albadawi, F. Shamoun, G. Knuttinen, S. Naidu, R. Oklu. Catheter-directed thrombolysis of deep vein thrombosis: literature review and practice considerations. Cardiovasc Diagn Ther, 7 (2017), pp. S228-S237
|
[9] |
D.J. Miller, J.R. Simpson, B. Silver. Safety of thrombolysis in acute ischemic stroke: a review of complications, risk factors, and newer technologies. Neurohospitalist, 1 (3) (2011), pp. 138-147
|
[10] |
S.J. Smith, G. Behrens, L.E. Sewall, M.J. Sichlau. Vacuum-assisted thrombectomy device (angiovac) in the management of symptomatic iliocaval thrombosis. J Vasc Interv Radiol, 25 (3) (2014), pp. 425-430
|
[11] |
S.D. Abramowitz, H. Kado, J. Schor, S. Annambhotla, H. Mojibian, A.G. Marino, et al. Six-month deep vein thrombosis outcomes by chronicity: analysis of the real-world ClotTriever outcomes registry. J Vasc Interv Radiol, 34 (5) (2023), pp. 879-887
|
[12] |
U. Rosenschein, V. Furman, E. Kerner, I. Fabian, J. Bernheim, Y. Eshel. Ultrasound imaging-guided noninvasive ultrasound thrombolysis: preclinical results. Circulation, 102 (2) (2000), pp. 238-245
|
[13] |
C.H. Heldin, B. Westermark. Mechanism of action and in vivo role of platelet-derived growth factor. Physiol Rev, 79 (4) (1999), pp. 1283-1316
|
[14] |
A.D. Maxwell, C.A. Cain, A.P. Duryea, L. Yuan, H.S. Gurm, Z. Xu. Noninvasive thrombolysis using pulsed ultrasound cavitation therapy-histotripsy. Ultrasound Med Biol, 35 (12) (2009), pp. 1982-1994
|
[15] |
S.A. Hendley, A. Bhargava, C.K. Holland, G.D. Wool, O. Ahmed, J.D. Paul, et al. (More than) doubling down: effective fibrinolysis at a reduced rt-PA dose for catheter-directed thrombolysis combined with histotripsy. PLOS ONE, 17 (1) (2022), Article e0261567
|
[16] |
S.A. Hendley, J.D. Paul, A.D. Maxwell, K.J. Haworth, C.K. Holland, K.B. Bader. Clot degradation under the action of histotripsy bubble activity and a lytic drug. IEEE Trans Ultrason Ferroelectr Freq Control, 68 (9) (2021), pp. 2942-2952
|
[17] |
E. Vlaisavljevich, Y. Kim, G. Owens, W. Roberts, C. Cain, Z. Xu. Effects of tissue mechanical properties on susceptibility to histotripsy-induced tissue damage. Phys Med Biol, 59 (2) (2014), p. 253
|
[18] |
J. Kim, B.D. Lindsey, W. Chang, X. Dai, J.M. Stavas, P.A. Dayton, et al. Intravascular forward-looking ultrasound transducers for microbubble-mediated sonothrombolysis. Sci Rep, 7 (1) (2017), p. 3454
|
[19] |
L. Goel, H. Wu, H. Kim, B. Zhang, J. Kim, P.A. Dayton, et al. Examining the influence of low-dose tissue plasminogen activator on microbubble-mediated forward-viewing intravascular sonothrombolysis. Ultrasound Med Biol, 46 (7) (2020), pp. 1698-1706
|
[20] |
L. Goel, X. Jiang. Advances in sonothrombolysis techniques using piezoelectric transducers. Sensors, 20 (5) (2020), p. 1288
|
[21] |
J. Kim, R.M. DeRuiter, L. Goel, Z. Xu, X. Jiang, P.A. Dayton. A comparison of sonothrombolysis in aged clots between low-boiling-point phase-change nanodroplets and microbubbles of the same composition. Ultrasound Med Biol, 46 (11) (2020), pp. 3059-3068
|
[22] |
K. Tachibana, S. Tachibana. Albumin microbubble echo-contrast material as an enhancer for ultrasound accelerated thrombolysis. Circulation, 92 (5) (1995), pp. 1148-1150
|
[23] |
K.E. Hitchcock, N.M. Ivancevich, K.J. Haworth, D.N.C. Stamper, D.C. Vela, J.T. Sutton, et al. Ultrasound-enhanced rt-PA thrombolysis in an ex vivo porcine carotid artery model. Ultrasound Med Biol, 37 (8) (2011), pp. 1240-1251
|
[24] |
K.B. Bader, M.J. Gruber, C.K. Holland. Shaken and stirred: mechanisms of ultrasound-enhanced thrombolysis. Ultrasound Med Biol, 41 (1) (2015), pp. 187-196
|
[25] |
C.G. Chaussy, S. Thüroff. High-intensity focused ultrasound for the treatment of prostate cancer: a review. J Endourol, 31 (S1) (2017), pp. S30-S37
|
[26] |
S. Xu, Y. Zong, Y. Feng, R. Liu, X. Liu, Y. Hu, et al. Dependence of pulsed focused ultrasound induced thrombolysis on duty cycle and cavitation bubble size distribution. Ultrason Sonochem, 22 (2015), pp. 160-166
|
[27] |
X. Zhang, G.E. Owens, C.A. Cain, H.S. Gurm, J. Macoskey, Z. Xu. Histotripsy thrombolysis on retracted clots. Ultrasound Med Biol, 42 (8) (2016), pp. 1903-1918
|
[28] |
C. Wright, K. Hynynen, D. Goertz. In vitro and in vivo high- intensity focused ultrasound thrombolysis. Invest Radiol, 47 (4) (2012), pp. 217-225
|
[29] |
Burgess Y. Huang A.C. Waspe M. Ganguly D.E. Goertz K. Hynynen. High-intensity focused ultrasound (HIFU) for dissolution of clots in a rabbit model of embolic stroke. PLOS ONE, 7 (8) (2012), Article e43211
|
[30] |
L. Goel, H. Wu, B. Zhang, J. Kim, P.A. Dayton, Z. Xu, et al. Safety evaluation of a forward-viewing intravascular transducer for sonothrombolysis: an in vitro and ex vivo study. Ultrasound Med Biol, 47 (11) (2021), pp. 3231-3239
|
[31] |
J. Kim, K.J.B. Bautista, R.M. Deruiter, L. Goel, X. Jiang, Z. Xu, et al.. An analysis of sonothrombolysis and cavitation for retracted and unretracted clots using microbubbles versus low-boiling-point nanodroplets. IEEE Trans Ultrason Ferroelectr Freq Control, 69 (2) (2022), pp. 711-719
|
[32] |
L. Goel, H. Wu, B. Zhang, J. Kim, P. Dayton, Z. Xu, et al. Nanodroplet-mediated catheter-directed sonothrombolysis of retracted blood clots. Microsyst Nanoeng, 7 (2021), p. 3
|
[33] |
P. Prandoni, A. Cogo, E. Bernardi, S. Villalta, P. Polistena, P. Simioni, et al. A simple ultrasound approach for detection of recurrent proximal-vein thrombosis. Circulation, 88 (4) (1993), pp. 1730-1735
|
[34] |
M.A. Rodger, S.R. Kahn, P.S. Wells, D.A. Anderson, I. Chagnon, G. Le Gal, et al. Identifying unprovoked thromboembolism patients at low risk for recurrence who can discontinue anticoagulant therapy. CMAJ, 179 (5) (2008), pp. 417-426
|
[35] |
P. Prandoni, F. Noventa, A. Ghirarduzzi, V. Pengo, E. Bernardi, R. Pesavento, et al. The risk of recurrent venous thromboembolism after discontinuing anticoagulation in patients with acute proximal deep vein thrombosis or pulmonary embolism. A prospective cohort study in 1626 patients. Haematologica, 92 (2) (2007), pp. 199-205
|
[36] |
G. Agnelli, P. Prandoni, C. Becattini, M. Silingardi, M.R. Taliani, M. Miccio, et al. Extended oral anticoagulant therapy after a first episode of pulmonary embolism. Ann Intern Med, 139 (1) (2003), pp. 19-25
|
[37] |
P. Prandoni, A.W. Lensing, M.H. Prins, E. Bernardi, A. Marchiori, P. Bagatella, et al. Residual venous thrombosis as a predictive factor of recurrent venous thromboembolism. Ann Intern Med, 137 (12) (2002), pp. 955-960
|
[38] |
B. Zhang, H. Wu, H. Kim, P.J. Welch, A. Cornett, G. Stocker, et al. A model of high-speed endovascular sonothrombolysis with vortex ultrasound-induced shear stress to treat cerebral venous sinus thrombosis. Research, 6 (2023), p. 0048
|
[39] |
J.D. Rojas, P.A. Dayton. Vaporization detection imaging: a technique for imaging low-boiling-point phase-change contrast agents with a high depth of penetration and contrast-to-tissue ratio. Ultrasound Med Biol, 45 (1) (2019), pp. 192-207
|
[40] |
S. Vedantham, G. Piazza, A.K. Sista, N.A. Goldenberg. Guidance for the use of thrombolytic therapy for the treatment of venous thromboembolism. J Thromb Thrombolysis, 41 (1) (2016), pp. 68-80
|
[41] |
C. Go, Z. Saadeddin, Y. Pandya, R.A. Chaer, M.H. Eslami, E.S. Hager, et al. Single-versus multiple-stage catheter-directed thrombolysis for acute iliofemoral deep venous thrombosis does not have an impact on iliac vein stent length or patency rates. J Vasc Surg Venous Lymphat Disord, 7 (6) (2019), pp. 781-788
|
[42] |
Y. Haig, T. Enden, O. Grøtta, N. Kløw, C. Slagsvold, W. Ghanima, et al. Post-thrombotic syndrome after catheter-directed thrombolysis for deep vein thrombosis (CaVenT): 5-year follow-up results of an open-label, randomised controlled trial. Lancet Haematol, 3 (2) (2016), pp. e64-e71
|
[43] |
T. Enden, Y. Haig, N. Kløw, C. Slagsvold, L. Sandvik, W. Ghanima, et al. Long-term outcome after additional catheter-directed thrombolysis versus standard treatment for acute iliofemoral deep vein thrombosis (the CaVenT study): a randomised controlled trial. Lancet, 379 (9810) (2012), pp. 31-38
|
[44] |
G.E. Stocker, J. Shi, K. Ives, A.D. Maxwell, P.A. Dayton, X. Jiang, et al. In vivo porcine aged deep vein thrombosis model for testing ultrasound-based thrombolysis techniques. Ultrasound Med Biol, 47 (12) (2021), pp. 3447-3457
|
[45] |
S. Guo, X. Guo, X. Wang, D. Zhou, X. Du, M. Han, et al. Reduced clot debris size in sonothrombolysis assisted with phase-change nanodroplets. Ultrason Sonochem, 54 (2019), pp. 183-191
|
[46] |
Y. Shi, W. Shi, L. Chen, J. Gu. A systematic review of ultrasound-accelerated catheter-directed thrombolysis in the treatment of deep vein thrombosis. J Thromb Thrombolysis, 45 (3) (2018), pp. 440-451
|