用于溶栓的旋转式血管内多方向超声导管——体外和体内研究

Huaiyu Wu, Jinwook Kim, Bohua Zhang, Gabe Owens, Greyson Stocker, Mengyue Chen, Benjamin C. Kreager, Ashley Cornett, Kathlyne Bautista, Tarana Kaovasia, Paul A. Dayton, Zhen Xu, Xiaoning Jiang

工程(英文) ›› 2024, Vol. 42 ›› Issue (11) : 235-243.

PDF(2218 KB)
PDF(2218 KB)
工程(英文) ›› 2024, Vol. 42 ›› Issue (11) : 235-243. DOI: 10.1016/j.eng.2024.03.021
研究论文

用于溶栓的旋转式血管内多方向超声导管——体外和体内研究

作者信息 +

Rotational Intravascular Multidirectional Ultrasound Catheter for Sonothrombolysis of Retracted Clots: An in Vitro and in Vivo Study

Author information +
History +

Abstract

Thromboembolism in blood vessels poses a serious risk of stroke, heart attack, and even sudden death if not properly managed. Sonothrombolysis combined with ultrasound contrast agents has emerged as a promising approach for the effective treatment of thromboembolism. Recent reports have highlighted the potential of intravascular sonothrombolysis as a safe and effective treatment modality for deep vein thrombosis (DVT). However, its efficiency has not been validated through in vivo testing of retracted clots. This study aimed to develop a miniaturized multidirectional transducer featuring two 4-layer lead zirconate titanate (PZT-5A) stacks with an aperture size of 1.4 mm × 1.4 mm, enabling both forward- and side-looking treatment. Integrated into a custom two-lumen 10-French (Fr) catheter, the capability of this device for intravascular sonothrombolysis was validated both in vitro and in vivo. With low-dose tissue plasminogen activators and nanodroplets, the rotational multidirectional transducer reduced the retracted clot mass (800 mg) by an average of 52% within 30 min during in vitro testing. The lysis rate was significantly higher by 37% than that in a forward-viewing transducer without rotation. This improvement was particularly noteworthy in the treatment of retracted clots. Notably, a long-retracted clot (> 10 cm) was successfully treated within 40 min in vivo by creating a flow channel with a diameter > 4 mm in a porcine DVT model. In conclusion, these findings strongly suggest the potential of this technique for clinical applications in sonothrombolysis, offering a feasible solution for effectively treating thromboembolism, particularly in challenging cases involving retracted clots.

Keywords

Intravascular ultrasound catheter / Sonothrombolysis in vivo / Retracted clots thrombolysis

引用本文

导出引用
Huaiyu Wu, Jinwook Kim, Bohua Zhang. 用于溶栓的旋转式血管内多方向超声导管——体外和体内研究. Engineering. 2024, 42(11): 235-243 https://doi.org/10.1016/j.eng.2024.03.021

参考文献

[1]
G. Agnelli, C. Becattini. Acute pulmonary embolism. N Engl J Med, 363 (3) (2010), pp. 266-274
[2]
M. Di Nisio, N. van Es, H.R. Büller. Deep vein thrombosis and pulmonary embolism. Lancet, 388 (10063) (2016), pp. 3060-3073
[3]
R.H. White. The epidemiology of venous thromboembolism. Circulation, 107 (2003), pp. I4-8
[4]
M.D. Silverstein, J.A. Heit, D.N. Mohr, T.M. Petterson, W.M. O’Fallon, L.J. Melton. Trends in the incidence of deep vein thrombosis and pulmonary embolism: a 25-year population-based study. Arch Intern Med, 158 (6) (1998), pp. 585-593
[5]
G.W. Albers, V.E. Bates, W.M. Clark, R. Bell, P. Verro, S.A. Hamilton. Intravenous tissue-type plasminogen activator for treatment of acute stroke: the standard treatment with alteplase to reverse stroke (stars) study. JAMA, 283 (9) (2000), pp. 1145-1150
[6]
D. Scarvelis, P.S. Wells. Diagnosis and treatment of deep-vein thrombosis. CMAJ, 175 (9) (2006), pp. 1087-1092
[7]
M.B. Streiff, G. Agnelli, J.M. Connors, M. Crowther, S. Eichinger, R. Lopes, et al. Guidance for the treatment of deep vein thrombosis and pulmonary embolism. J Thromb Thrombolysis, 41 (1) (2016), pp. 32-67
[8]
D. Fleck, H. Albadawi, F. Shamoun, G. Knuttinen, S. Naidu, R. Oklu. Catheter-directed thrombolysis of deep vein thrombosis: literature review and practice considerations. Cardiovasc Diagn Ther, 7 (2017), pp. S228-S237
[9]
D.J. Miller, J.R. Simpson, B. Silver. Safety of thrombolysis in acute ischemic stroke: a review of complications, risk factors, and newer technologies. Neurohospitalist, 1 (3) (2011), pp. 138-147
[10]
S.J. Smith, G. Behrens, L.E. Sewall, M.J. Sichlau. Vacuum-assisted thrombectomy device (angiovac) in the management of symptomatic iliocaval thrombosis. J Vasc Interv Radiol, 25 (3) (2014), pp. 425-430
[11]
S.D. Abramowitz, H. Kado, J. Schor, S. Annambhotla, H. Mojibian, A.G. Marino, et al. Six-month deep vein thrombosis outcomes by chronicity: analysis of the real-world ClotTriever outcomes registry. J Vasc Interv Radiol, 34 (5) (2023), pp. 879-887
[12]
U. Rosenschein, V. Furman, E. Kerner, I. Fabian, J. Bernheim, Y. Eshel. Ultrasound imaging-guided noninvasive ultrasound thrombolysis: preclinical results. Circulation, 102 (2) (2000), pp. 238-245
[13]
C.H. Heldin, B. Westermark. Mechanism of action and in vivo role of platelet-derived growth factor. Physiol Rev, 79 (4) (1999), pp. 1283-1316
[14]
A.D. Maxwell, C.A. Cain, A.P. Duryea, L. Yuan, H.S. Gurm, Z. Xu. Noninvasive thrombolysis using pulsed ultrasound cavitation therapy-histotripsy. Ultrasound Med Biol, 35 (12) (2009), pp. 1982-1994
[15]
S.A. Hendley, A. Bhargava, C.K. Holland, G.D. Wool, O. Ahmed, J.D. Paul, et al. (More than) doubling down: effective fibrinolysis at a reduced rt-PA dose for catheter-directed thrombolysis combined with histotripsy. PLOS ONE, 17 (1) (2022), Article e0261567
[16]
S.A. Hendley, J.D. Paul, A.D. Maxwell, K.J. Haworth, C.K. Holland, K.B. Bader. Clot degradation under the action of histotripsy bubble activity and a lytic drug. IEEE Trans Ultrason Ferroelectr Freq Control, 68 (9) (2021), pp. 2942-2952
[17]
E. Vlaisavljevich, Y. Kim, G. Owens, W. Roberts, C. Cain, Z. Xu. Effects of tissue mechanical properties on susceptibility to histotripsy-induced tissue damage. Phys Med Biol, 59 (2) (2014), p. 253
[18]
J. Kim, B.D. Lindsey, W. Chang, X. Dai, J.M. Stavas, P.A. Dayton, et al. Intravascular forward-looking ultrasound transducers for microbubble-mediated sonothrombolysis. Sci Rep, 7 (1) (2017), p. 3454
[19]
L. Goel, H. Wu, H. Kim, B. Zhang, J. Kim, P.A. Dayton, et al. Examining the influence of low-dose tissue plasminogen activator on microbubble-mediated forward-viewing intravascular sonothrombolysis. Ultrasound Med Biol, 46 (7) (2020), pp. 1698-1706
[20]
L. Goel, X. Jiang. Advances in sonothrombolysis techniques using piezoelectric transducers. Sensors, 20 (5) (2020), p. 1288
[21]
J. Kim, R.M. DeRuiter, L. Goel, Z. Xu, X. Jiang, P.A. Dayton. A comparison of sonothrombolysis in aged clots between low-boiling-point phase-change nanodroplets and microbubbles of the same composition. Ultrasound Med Biol, 46 (11) (2020), pp. 3059-3068
[22]
K. Tachibana, S. Tachibana. Albumin microbubble echo-contrast material as an enhancer for ultrasound accelerated thrombolysis. Circulation, 92 (5) (1995), pp. 1148-1150
[23]
K.E. Hitchcock, N.M. Ivancevich, K.J. Haworth, D.N.C. Stamper, D.C. Vela, J.T. Sutton, et al. Ultrasound-enhanced rt-PA thrombolysis in an ex vivo porcine carotid artery model. Ultrasound Med Biol, 37 (8) (2011), pp. 1240-1251
[24]
K.B. Bader, M.J. Gruber, C.K. Holland. Shaken and stirred: mechanisms of ultrasound-enhanced thrombolysis. Ultrasound Med Biol, 41 (1) (2015), pp. 187-196
[25]
C.G. Chaussy, S. Thüroff. High-intensity focused ultrasound for the treatment of prostate cancer: a review. J Endourol, 31 (S1) (2017), pp. S30-S37
[26]
S. Xu, Y. Zong, Y. Feng, R. Liu, X. Liu, Y. Hu, et al. Dependence of pulsed focused ultrasound induced thrombolysis on duty cycle and cavitation bubble size distribution. Ultrason Sonochem, 22 (2015), pp. 160-166
[27]
X. Zhang, G.E. Owens, C.A. Cain, H.S. Gurm, J. Macoskey, Z. Xu. Histotripsy thrombolysis on retracted clots. Ultrasound Med Biol, 42 (8) (2016), pp. 1903-1918
[28]
C. Wright, K. Hynynen, D. Goertz. In vitro and in vivo high- intensity focused ultrasound thrombolysis. Invest Radiol, 47 (4) (2012), pp. 217-225
[29]
Burgess Y. Huang A.C. Waspe M. Ganguly D.E. Goertz K. Hynynen. High-intensity focused ultrasound (HIFU) for dissolution of clots in a rabbit model of embolic stroke. PLOS ONE, 7 (8) (2012), Article e43211
[30]
L. Goel, H. Wu, B. Zhang, J. Kim, P.A. Dayton, Z. Xu, et al. Safety evaluation of a forward-viewing intravascular transducer for sonothrombolysis: an in vitro and ex vivo study. Ultrasound Med Biol, 47 (11) (2021), pp. 3231-3239
[31]
J. Kim, K.J.B. Bautista, R.M. Deruiter, L. Goel, X. Jiang, Z. Xu, et al.. An analysis of sonothrombolysis and cavitation for retracted and unretracted clots using microbubbles versus low-boiling-point nanodroplets. IEEE Trans Ultrason Ferroelectr Freq Control, 69 (2) (2022), pp. 711-719
[32]
L. Goel, H. Wu, B. Zhang, J. Kim, P. Dayton, Z. Xu, et al. Nanodroplet-mediated catheter-directed sonothrombolysis of retracted blood clots. Microsyst Nanoeng, 7 (2021), p. 3
[33]
P. Prandoni, A. Cogo, E. Bernardi, S. Villalta, P. Polistena, P. Simioni, et al. A simple ultrasound approach for detection of recurrent proximal-vein thrombosis. Circulation, 88 (4) (1993), pp. 1730-1735
[34]
M.A. Rodger, S.R. Kahn, P.S. Wells, D.A. Anderson, I. Chagnon, G. Le Gal, et al. Identifying unprovoked thromboembolism patients at low risk for recurrence who can discontinue anticoagulant therapy. CMAJ, 179 (5) (2008), pp. 417-426
[35]
P. Prandoni, F. Noventa, A. Ghirarduzzi, V. Pengo, E. Bernardi, R. Pesavento, et al. The risk of recurrent venous thromboembolism after discontinuing anticoagulation in patients with acute proximal deep vein thrombosis or pulmonary embolism. A prospective cohort study in 1626 patients. Haematologica, 92 (2) (2007), pp. 199-205
[36]
G. Agnelli, P. Prandoni, C. Becattini, M. Silingardi, M.R. Taliani, M. Miccio, et al. Extended oral anticoagulant therapy after a first episode of pulmonary embolism. Ann Intern Med, 139 (1) (2003), pp. 19-25
[37]
P. Prandoni, A.W. Lensing, M.H. Prins, E. Bernardi, A. Marchiori, P. Bagatella, et al. Residual venous thrombosis as a predictive factor of recurrent venous thromboembolism. Ann Intern Med, 137 (12) (2002), pp. 955-960
[38]
B. Zhang, H. Wu, H. Kim, P.J. Welch, A. Cornett, G. Stocker, et al. A model of high-speed endovascular sonothrombolysis with vortex ultrasound-induced shear stress to treat cerebral venous sinus thrombosis. Research, 6 (2023), p. 0048
[39]
J.D. Rojas, P.A. Dayton. Vaporization detection imaging: a technique for imaging low-boiling-point phase-change contrast agents with a high depth of penetration and contrast-to-tissue ratio. Ultrasound Med Biol, 45 (1) (2019), pp. 192-207
[40]
S. Vedantham, G. Piazza, A.K. Sista, N.A. Goldenberg. Guidance for the use of thrombolytic therapy for the treatment of venous thromboembolism. J Thromb Thrombolysis, 41 (1) (2016), pp. 68-80
[41]
C. Go, Z. Saadeddin, Y. Pandya, R.A. Chaer, M.H. Eslami, E.S. Hager, et al. Single-versus multiple-stage catheter-directed thrombolysis for acute iliofemoral deep venous thrombosis does not have an impact on iliac vein stent length or patency rates. J Vasc Surg Venous Lymphat Disord, 7 (6) (2019), pp. 781-788
[42]
Y. Haig, T. Enden, O. Grøtta, N. Kløw, C. Slagsvold, W. Ghanima, et al. Post-thrombotic syndrome after catheter-directed thrombolysis for deep vein thrombosis (CaVenT): 5-year follow-up results of an open-label, randomised controlled trial. Lancet Haematol, 3 (2) (2016), pp. e64-e71
[43]
T. Enden, Y. Haig, N. Kløw, C. Slagsvold, L. Sandvik, W. Ghanima, et al. Long-term outcome after additional catheter-directed thrombolysis versus standard treatment for acute iliofemoral deep vein thrombosis (the CaVenT study): a randomised controlled trial. Lancet, 379 (9810) (2012), pp. 31-38
[44]
G.E. Stocker, J. Shi, K. Ives, A.D. Maxwell, P.A. Dayton, X. Jiang, et al. In vivo porcine aged deep vein thrombosis model for testing ultrasound-based thrombolysis techniques. Ultrasound Med Biol, 47 (12) (2021), pp. 3447-3457
[45]
S. Guo, X. Guo, X. Wang, D. Zhou, X. Du, M. Han, et al. Reduced clot debris size in sonothrombolysis assisted with phase-change nanodroplets. Ultrason Sonochem, 54 (2019), pp. 183-191
[46]
Y. Shi, W. Shi, L. Chen, J. Gu. A systematic review of ultrasound-accelerated catheter-directed thrombolysis in the treatment of deep vein thrombosis. J Thromb Thrombolysis, 45 (3) (2018), pp. 440-451
PDF(2218 KB)

Accesses

Citation

Detail

段落导航
相关文章

/