金属材料抗侵彻性能及机理研究综述

陈嘉琳, 李述涛, 马上, 陈叶青, 刘引, 田权伟, 钟茜婷, 宋佳星

工程(英文) ›› 2024, Vol. 40 ›› Issue (9) : 131-157.

PDF(7220 KB)
PDF(7220 KB)
工程(英文) ›› 2024, Vol. 40 ›› Issue (9) : 131-157. DOI: 10.1016/j.eng.2024.03.023
研究论文
Review

金属材料抗侵彻性能及机理研究综述

作者信息 +

The Anti-Penetration Performance and Mechanism of Metal Materials: A Review

Author information +
History +

Abstract

This article reviews the anti-penetration principles and strengthening mechanisms of metal materials, ranging from macroscopic failure modes to microscopic structural characteristics, and further summarizes the micro-macro correlation in the anti-penetration process. Finally, it outlines the constitutive models and numerical simulation studies utilized in the field of impact and penetration. From the macro perspective, nine frequent penetration failure modes of metal materials are summarized, with a focus on the analysis of the cratering, compression shear, penetration, and plugging stages of the penetration process. The reasons for the formation of adiabatic shear bands (ASBs) in metal materials with different crystal structures are elaborated, and the formation mechanism of the equiaxed grains in the ASB is explored. Both the strength and the toughness of metal materials are related to the materials’ crystal structures and microstructures. The toughness is mainly influenced by the deformation mechanism, while the strength is explained by the strengthening mechanism. Therefore, the mechanical properties of metal materials depend on their microstructures, which are subject to the manufacturing process and material composition. Regarding numerical simulation, the advantages and disadvantages of different constitutive models and simulation methods are summarized based on the application characteristics of metal materials in high-speed penetration practice. In summary, this article provides a systematic overview of the macroscopic and microscopic characteristics of metal materials, along with their mechanisms and correlation during the anti-penetration and impact-resistance processes, thereby making an important contribution to the scientific understanding of anti-penetration performance and its optimization in metal materials.

Keywords

Metal materials / Failure model / Adiabatic shear band / Strengthening mechanisms / Numerical simulation

引用本文

导出引用
陈嘉琳, 李述涛, 马上. 金属材料抗侵彻性能及机理研究综述. Engineering. 2024, 40(9): 131-157 https://doi.org/10.1016/j.eng.2024.03.023

参考文献

[1]
Hu K, Schonberg WP. Ballistic limit curves for non-spherical projectiles impacting dual-wall spacecraft systems. Int J Impact Eng 2003; 29(1- 10):345-55.
[2]
Lee JH, Loya PE, Lou J, Thomas EL. Dynamic mechanical behavior of multilayer graphene via supersonic projectile penetration. Science 2014; 346 (6213):1092-6.
[3]
Song J, Chen C, Zhu S, Zhu M, Dai J, Ray U, et al. Processing bulk natural wood into a high-performance structural material. Nature 2018; 554(7691):224-8.
[4]
Wang J, Dong S, Pang SD, Yu X, Han B, Ou J. Tailoring anti-impact properties of ultra-high performance concrete by incorporating functionalized carbon nanotubes. Engineering 2022; 18:232-45.
[5]
Shen J, Lopes JG, Zeng Z, Choi YT, Maawad E, Schell N, et al. Deformation behavior and strengthening effects of an eutectic AlCoCrFeNi2.1 high entropy alloy probed by in-situ synchrotron X-ray diffraction and post-mortem EBSD. Mater Sci Eng A 2023; 872:144946.
[6]
Shen J, Gonçalves R, Choi YT, Lopes JG, Yang J, Schell N, et al. Microstructure and mechanical properties of gas metal arc welded CoCrFeMnNi joints using a 308 stainless steel filler metal. Scr Mater 2023; 222:115053.
[7]
Rodrigues TA, Cipriano Farias FW, Zhang K, Shamsolhodaei A, Shen J, Zhou N, et al. Wire and arc additive manufacturing of 316L stainless steel/Inconel 625 functionally graded material: development and characterization. J Mater Res Technol 2022; 21:237-51.
[8]
Su H, Zhang C, Yan Z, Gao P, Guo H, Pan G, et al. Numerical simulation of penetration process of depleted uranium alloy based on an FEM-SPH coupling algorithm. Metals 2023; 13(1):79.
[9]
Ranaweera P, Bambach MR, Weerasinghe D, Mohotti D. Ballistic impact response of monolithic steel and tri-metallic steel-titanium-aluminium armour to nonrigid NATO FMJ M80 projectiles. Thin Wall Struct 2023;182 (Pt A):110200.
[10]
Dubey R, Jayaganthan R, Ruan D, Gupta NK, Jones N, Velmurugan R. Ballistic perforation and penetration of 6xxx-series aluminium alloys: a review. Int J Impact Eng 2023; 172:104426.
[11]
Xin SW, Hao F, Zhou W, Zhang SY, Mao YC, Sun JP, et al. Relationship between static, dynamic properties and ballistic performance of typical titanium alloys. Rare Met Mater Eng 2022; 51(1):295-300. Chinese.
[12]
Wang KL, Li MJ, Yan P, Dong L. An experimental and numerical study on the ballistic performance of multi-layered moderately-thick metallic targets against 12.7-mm projectiles. Comp Model Eng Sci 2022; 131(1):165-97.
[13]
Muskeri S, Jannotti PA, Schuster BE, Lloyd JT, Mukherjee S. Ballistic impact response of complex concentrated alloys. Int J Impact Eng 2022; 161:104091.
[14]
Khan MA, Wang YW, Yasin G, Malik A, Nazeer F, Khan WQ, et al. Microstructure characteristic of spray formed 7055 Al alloy subjected to ballistic impact by two different steel core projectiles impact. J Mater Res Technol 2019; 8(6):6177-90.
[15]
Jiang K, Zhang Q, Li J, Li X, Zhao F, Hou B, et al. Abnormal hardening and amorphization in an FCC high entropy alloy under extreme uniaxial tension. Int J Plast 2022; 159:103463.
[16]
Li T, Liu T, Zhao S, Chen Y, Luan J, Jiao Z, et al. Ultra-strong tungsten refractory high-entropy alloy via stepwise controllable coherent nanoprecipitations. Nat Commun 2023; 14(1):3006.
[17]
Alavi Nia A, Hoseini GR. Experimental study of perforation of multi-layered targets by hemispherical-nosed projectiles. Mater Des 2011; 32(2):1057-65.
[18]
Praveen R, Koteswara Rao SR, Kumar SS, Kumar SS. Optimization of target thickness and investigation on the effect of heat treatment on the ballistic performance of aluminium alloy 7075 targets against hard steel core projectile. Proc Inst Mech Eng Part L 2022; 237(1):131-43.
[19]
Yang J, Han J, Tian H, Zha L, Zhang X, Song Kim C, et al. Structural and magnetic properties of nanocomposite Nd-Fe-B prepared by rapid thermal processing. Engineering 2020; 6(2):132-40.
[20]
Fei YH, Zhou L, Qu HL, Zhao YQ, Feng L. Effects of heat-treatments on microstructures of TC21 titanium alloy. Rare Met Mater Eng 2007; 36 (11):1928-32. Chinese.
[21]
Gao X, Jiang W, Lu Y, Ding Z, Liu J, Liu W, et al. Excellent strength-ductility combination of Cr26Mn20Fe20CO20Ni14 high-entropy alloy at cryogenic temperatures. J Mater Sci Technol 2023; 154:166-77.
[22]
An Z, Li A, Mao S, Yang T, Zhu L, Wang R, et al. Negative mixing enthalpy solid solutions deliver high strength and ductility. Nature 2024; 625 (7996):697-702.
[23]
Krishna Teja Palleti HN, Gurusamy S, Kumar S, Soni R, John B, Vaidya R, et al. Ballistic impact performance of metallic targets. Mater Des 2012; 39:253-63.
[24]
Bikakis GSE, Dimou CD, Sideridis EP. Ballistic impact response of fiber-metal laminates and monolithic metal plates consisting of different aluminum alloys. Aerosp Sci Technol 2017; 69:201-8.
[25]
Rahman NA, Abdullah S, Zamri WFH, Abdullah MF, Omar MZ, Sajuri Z. Ballistic limit of high-strength steel and Al7075-T6 multi-layered plates under 7.62-mm armour piercing projectile impact. Lat Am J Solids Struct 2016; 13(9):1658-76.
[26]
Faidzi MK, Abdullah S, Abdullah MF, Azman AH, Singh SSK, Hui D. Computational analysis on the different core configurations for metal sandwich panel under high velocity impact. Soft Comput 2021; 25 (16):10561-74.
[27]
Wang YL, Hui SX, Liu R, Ye WJ. Evaluation of dynamic performance and ballistic behavior of Ti-5Al-5Mo-5V-3Cr-1Zr alloy. Trans Nonferrous Met Soc China 2015; 25(2):429-36.
[28]
Murr LE, Ramirez AC, Gaytan SM, Lopez MI, Martinez EY, Hernandez DH, et al. Microstructure evolution associated with adiabatic shear bands and shear band failure in ballistic plug formation in Ti-6Al-4V targets. Mater Sci Eng A 2009; 516(1-2):205-16.
[29]
Martinez F, Murr LE, Ramirez A, Lopez MI, Gaytan SM. Dynamic deformation and adiabatic shear microstructures associated with ballistic plug formation and fracture in Ti-6Al-4V targets. Mater Sci Eng A 2007;454-455:581-9.
[30]
Shi K, Cheng J, Cui L, Qiao J, Huang J, Zhang M, et al. Ballistic impact response of Fe40Mn20Cr20Ni 20 high-entropy alloys. J Appl Phys 2022; 132(20):205105.
[31]
Wang X, Yu Y, Zhong K, Jiang Z, Gao G. Effects of impact velocity on the dynamic fragmentation of rigid-brittle projectiles and ceramic composite armors. Lat Am J Solids Struct 2021; 18(8):e410.
[32]
Zhang W, Li K, Chi R, Tan S, Li P. Insights into microstructural evolution and deformation behaviors of a gradient textured AZ31B Mg alloy plate under hypervelocity impact. J Mater Sci Technol 2021; 91:40-57.
[33]
Deng YF, Hu A, Xiao XK, Jia B. Experimental and numerical investigation on the ballistic resistance of ZK61m magnesium alloy plates struck by blunt and ogival projectiles. Int J Impact Eng 2021; 158:104021.
[34]
Deng YF, Zhang W, Yang YG, Wei G. The ballistic performance of metal plates subjected to impact by projectiles of different strength. Mater Des 2014; 58:305-15.
[35]
Mondal C, Mishra B, Jena PK, Siva Kumar K, Bhat TB. Effect of heat treatment on the behavior of an AA7055 aluminum alloy during ballistic impact. Int J Impact Eng 2011; 38(8-9):745-54.
[36]
Børvik T, Hopperstad OS, Pedersen KO. Quasi-brittle fracture during structural impact of AA7075-T651 aluminium plates. Int J Impact Eng 2010; 37(5):537-51.
[37]
Rao CL, Narayanamurthy V, Simha KRY. Applied impact mechanics. Chichester: John Wiley & Sons Ltd.; 2016.
[38]
Corbett GG, Reid SR, Johnson W. Impact loading of plates and shells by freeflying projectiles: a review. Int J Impact Eng 1996; 18(2):141-230.
[39]
Backman ME, Goldsmith W. The mechanics of penetration of projectiles into targets. Int J Eng Sci 1978; 16(1):1-99.
[40]
Xing L, Liu X, Cao Z, He C, Liu J. Effect of increasing Ti content on the phase, interface, dynamic mechanical properties and ballistic performance of W-Ti- Zr alloys. Mater Sci Eng A 2022; 831:142196.
[41]
Sharma A, Sai SKV, Dixit M, Gupta AK, Sujith R. Ballistic performance of functionally graded boron carbide reinforced Al-Zn-Mg-Cu alloy. J Mater Res Technol 2022; 18:4042-59.
[42]
Malik A, Nazeer F, Wang YW. A prospective way to achieve ballistic impact resistance of lightweight magnesium alloys. Metals 2022; 12(2):241.
[43]
Li L, Zhang QC, Lu TJ. Ballistic penetration of deforming metallic plates: experimental and numerical investigation. Int J Impact Eng 2022; 170:104359.
[44]
Li C, Rasheed S, Malik A, Nazeer F, Long J. Study on ballistic impact behavior of Al alloys against two different shapes of steel core projectiles. J Mater Res Technol 2022; 20:2489-500.
[45]
Cheng JC, Zhang S, Liu Q, Ye SJ, Luo SN, Cai Y, et al. Ballistic impact experiments and modeling on impact cratering, deformation and damage of 2024-T4 aluminum alloy. Int J Mech Sci 2022; 224:107312.
[46]
Hou X, Zhang X, Liu C, Chen H, Xiong W, Chen J, et al. Effects of annealing temperatures on mechanical behavior and penetration characteristics of FeNiCoCr high-entropy alloys. Metals 2022; 12(11):1885.
[47]
Souza ERS, Weber RP, Monteiro SN, Oliveira SS. Microstructure effect of heat input on ballistic performance of welded high strength armor steel. Materials 2021; 14(19):5789.
[48]
Muskeri S, Gwalani B, Jha S, Yu A, Jannotti PA, Haridas RS, et al. Excellent ballistic impact resistance of Al0.3CoCrFeNi multi-principal element alloy with unique bimodal microstructure. Sci Rep 2021; 11(1):22715.
[49]
Magagnosc DJ, Jannotti PA, Ligda JP, Lloyd JT. Pre-twinned magnesium for improved ballistic performance. Mech Mater 2021; 161:104005.
[50]
Kim S, Jo MC, Park TW, Ham J, Sohn SS, Lee S. Correlation of dynamic compressive properties, adiabatic shear banding, and ballistic performance of high-strength 2139 and 7056 aluminum alloys. Mater Sci Eng A 2021; 804:140757.
[51]
Cui T, Qin Q, Yan W, Wang T, Zhang J. Ballistic resistance of novel amorphousalloy- reinforced perforated armor. Acta Mech Solida Sin 2021; 34(1):12-26.
[52]
Muskeri S, Choudhuri D, Jannotti PA, Schuster BE, Lloyd JT, Mishra RS, et al. Ballistic impact response of Al0.1CoCrFeNi high-entropy alloy. Adv Eng Mater 2020; 22(6):2000124.
[53]
Mohammad Z, Gupta PK, Baqi A. Experimental and numerical investigations on the behavior of thin metallic plate targets subjected to ballistic impact. Int J Impact Eng 2020; 146:103717.
[54]
Deng Y, Zhang Y, Xiao X, Hu A, Wu H, Xiong J. Experimental and numerical study on the ballistic impact behavior of 6061-T651 aluminum alloy thick plates against blunt-nosed projectiles. Int J Impact Eng 2020; 144:103659.
[55]
Liu J, Zheng B, Zhang K, Yang B, Yu X. Ballistic performance and energy absorption characteristics of thin nickel based alloy plates at elevated temperatures. Int J Impact Eng 2019; 126:160-71.
[56]
Rahman NA, Abdullah S, Abdullah MF, Zamri WFH, Omar MZ, Sajuri Z. Experimental and numerical investigation on the layering configuration effect to the laminated aluminium/steel panel subjected to high speed impact test. Metals 2018; 8(9):732.
[57]
Karakoç H, Karabulut Ş, Çıtak R. Study on mechanical and ballistic performances of boron carbide reinforced Al 6061 aluminum alloy produced by powder metallurgy. Compos Pt B 2018; 148:68-80.
[58]
Yu DH, Fan QB. Study on the mechanical properties and ballistic performance of as-cast titanium alloys. Rare Met Mater Eng 2017; 46(8):2234-9. Chinese.
[59]
Ren J, Xu Y, Liu J, Li X, Wang S. Effect of strength and ductility on antipenetration performance of low-carbon alloy steel against blunt-nosed cylindrical projectiles. Mater Sci Eng A 2017; 682:312-22.
[60]
Zheng C, Wang F, Cheng X, Liu J, Fu K, Liu T, et al. Failure mechanisms in ballistic performance of Ti-6Al-4V targets having equiaxed and lamellar microstructures. Int J Impact Eng 2015; 85:161-9.
[61]
Yang KW, Cheng XW, Zheng C, Peng MQ, Jin D. Dynamic mechanical properties and ballistic performance of TC21 alloy. Rare Met Mater Eng 2015; 44(11):2728-32. Chinese.
[62]
Sukumar G, Bhav Singh B, Bhattacharjee A, Siva Kumar K, Gogia AK. Ballistic impact behaviour of b-CEZ Ti alloy against 7.62 mm armour piercing projectiles. Int J Impact Eng 2013; 54:149-60.
[63]
Zhang W, Deng YF, Cao ZS, Wei G. Experimental investigation on the ballistic performance of monolithic and layered metal plates subjected to impact by blunt rigid projectiles. Int J Impact Eng 2012; 49:115-29.
[64]
Zhang T, Chen W, Guan Y, Gao D. Study on titanium alloy TC4 ballistic penetration resistance part I: ballistic impact tests. Chin J Aeronaut 2012; 25 (3):388-95.
[65]
Bhav Singh B, Sukumar G, Bhattacharjee A, Siva Kumar K, Balakrishna Bhat T, Gogia AK. Effect of heat treatment on ballistic impact behavior of Ti-6Al-4V against 7.62 mm deformable projectile. Mater Des 2012; 36:640-9.
[66]
Flores-Johnson EA, Saleh M, Edwards L. Ballistic performance of multi-layered metallic plates impacted by a 7.62-mm APM2 projectile. Int J Impact Eng 2011; 38(12):1022-32.
[67]
Übeyli M, Demir T, Deniz H, Yıldırım RO, Keleş Ö. Investigation on the ballistic performance of a dual phase steel against 7.62 mm AP projectile. Mater Sci Eng A 2010; 527(7-8):2036-44.
[68]
Børvik T, Dey S, Clausen AH. Perforation resistance of five different highstrength steel plates subjected to small-arms projectiles. Int J Impact Eng 2009; 36(7):948-64.
[69]
Wang XW, Wang YL, Zhou Y. Application of a new differential quadrature element method to free vibrational analysis of beams and frame structures. J Sound Vibrat 2004; 269(3-5):1133-41.
[70]
Tan ML, Gan LF. Equilibrium equations for nonlinear buckling analysis of drill-strings in 3D curved well-bores. Sci China Ser E 2009; 52(3):590-5.
[71]
Qiao P, Yang M, Bobaru F. Impact mechanics and high-energy absorbing materials: review. J Aerosp Eng 2008; 21(4):235-48.
[72]
Wadley HNG, Dharmasena KP, O’Masta MR, Wetzel JJ. Impact response of aluminum corrugated core sandwich panels. Int J Impact Eng 2013; 62:114-28.
[73]
Meyers MA, Subhash G, Kad BK, Prasad L. Evolution of microstructure and shear-band formation in a-hcp titanium. Mech Mater 1994; 17(2-3):175-93.
[74]
Demir T, Übeyli M, Yıldırım RO. Investigation on the ballistic impact behavior of various alloys against 7.62 mm armor piercing projectile. Mater Des 2008; 29(10):2009-16.
[75]
Børvik T, Hopperstad OS, Berstad T, Langseth M. Perforation of 12 mm thick steel plates by 20 mm diameter projectiles with flat, hemispherical and conical noses: part II: numerical simulations. Int J Impact Eng 2002; 27 (1):37-64.
[76]
Recht RF, Ipson TW. Ballistic perforation dynamics. J Appl Mech 1963; 30 (3):384-90.
[77]
Taylor GI. The formation and enlargement of a circular hole in a thin plastic sheet. Q J Mech Appl Math 1948; 1(1):103-24.
[78]
Thomson WT. An approximate theory of armor penetration. J Appl Phys 1955; 26(1):80-2.
[79]
Sun BB, Liu RT. A new formula for critical velocity of target penetrated by conical projectile. Appl Sci Technol 2002; 29(8):7-9. Chinese.
[80]
Zener C, Hollomon JH. Effect of strain rate upon plastic flow of steel. J Appl Phys 1944; 15(1):22-32.
[81]
Marchand A, Duffy J. An experimental study of the formation process of adiabatic shear bands in a structural steel. J Mech Phys Solids 1988; 36 (3):251-83.
[82]
Welsh NC. Frictional heating and its influence on the wear of steel. J Appl Phys 1957; 28(9):960-8.
[83]
Cho K, Chi YC, Duffy J. Microscopic observations of adiabatic shear bands in three different steels. Metall Trans A 1990; 21(5):1161-75.
[84]
Zurek AK. The study of adiabatic shear band instability in a pearlitic 4340 steel using a dynamic punch test. Metall Mater Trans A 1994; 25(11):2483-9.
[85]
Liao SC, Duffy J. Adiabatic shear bands in a Ti-6Al-4V titanium alloy. J Mech Phys Solids 1998; 46(11):2201-31.
[86]
Grebe HA, Pak HR, Meyers MA. Adiabatic shear localization in titanium and Ti-6 pct Al-4 pct V alloy. Metall Trans A 1985; 16(5):761-75.
[87]
Timothy SP, Hutchings IM. Initiation and growth of microfractures along adiabatic shear bands in Ti-6Al-4V. Mater Sci Technol 1985; 1(7):526-30.
[88]
Zhou S, Tan H, Liu S, Deng C, Liu Y, Zhu J, et al. Microstructural evolution and ultrafine-grain formation during dynamic shear in pure tantalum. Mater Charact 2022; 186:111820.
[89]
Wang BF, Yang Y. Microstructure evolution in adiabatic shear band in finegrain- sized Ti-3Al-5Mo-4.5V alloy. Mater Sci Eng A 2008; 473(1-2):306-11.
[90]
Zhang X, Cui J, Xu J, Li G. Microstructure investigations on 2A10 aluminum alloy bars subjected to electromagnetic impact upsetting. Mater Sci Eng A 2017; 702:142-52.
[91]
Kim HL, Lee JH, Lee CS, Bang W, Ahn SH, Chang YW. Shear band formation during hot compression of AZ31 Mg alloy sheets. Mater Sci Eng A 2012; 558:431-8.
[92]
Me-Bar Y, Shechtman D. On the adiabatic shear of Ti-6Al-4V ballistic targets. Mater Sci Eng 1983; 58(2):181-8.
[93]
Khan MA, Wang YW, Yasin G, Nazeer F, Malik A, Ahmad T, et al. Adiabatic shear band localization in an Al-Zn-Mg-Cu alloy under high strain rate compression. J Mater Res Technol 2020; 9(3):3977-83.
[94]
Chen XX, Ligda JP, Schuster BE, Kecskes LJ, Wei Q. Adiabatic shear localization of tungsten based heterogeneous multilayer structures. Mater Sci Eng A 2021; 801:140393.
[95]
Li Z, Zhao S, Wang B, Cui S, Chen R, Valiev RZ, et al. The effects of ultra-finegrained structure and cryogenic temperature on adiabatic shear localization in titanium. Acta Mater 2019; 181:408-22.
[96]
Li XY, Zhang ZH, Cheng XW, Wang Q, Jia XT, Wang D, et al. The evolution of adiabatic shear band in high Co-Ni steel during high strain-rate compression. Mater Sci Eng A 2022; 858:144173.
[97]
Qin DY, Miao YG, Li YL. Formation of adiabatic shearing band for highstrength Ti-5553 alloy: a dramatic thermoplastic microstructural evolution. Def Technol 2022; 18(11):2045-51.
[98]
Gu L, Wang M, Duan C. On adiabatic shear localized fracture during serrated chip evolution in high speed machining of hardened AISI 1045 steel. Int J Mech Sci 2013; 75:288-98.
[99]
Nemat-Nasser S, Chang SN. Compression-induced high strain rate void collapse, tensile cracking, and recrystallization in ductile single and polycrystals. Mech Mater 1990; 10(1-2):1-17.
[100]
Andrade U, Meyers MA, Vecchio KS, Chokshi AH. Dynamic recrystallization in high-strain, high-strain-rate plastic deformation of copper. Acta Metall Mater 1994; 42(9):3183-95.
[101]
Hwang B, Lee S, Kim YC, Kim NJ, Shin DH. Microstructural development of adiabatic shear bands in ultra-fine-grained low-carbon steels fabricated by equal channel angular pressing. Mater Sci Eng A 2006; 441(1-2):308-20.
[102]
Xu YB, Zhong WL, Chen YJ, Shen LT, Liu Q, Bai YL, et al. Shear localization and recrystallization in dynamic deformation of 8090 Al-Li alloy. Mater Sci Eng A 2001; 299(1-2):287-95.
[103]
Meyers MA, Nesterenko VF, LaSalvia JC, Xue Q. Shear localization in dynamic deformation of materials: microstructural evolution and self-organization. Mater Sci Eng A 2001; 317(1-2):204-25.
[104]
Taylor GI, Quinney H. The latent energy remaining in a metal after cold working. Proc R Soc A 1934; 143(849):307-26.
[105]
Jiang L, Yang Y, Wang Z, Hu H. Microstructure evolution within adiabatic shear band in peak aged ZK60 magnesium alloy. Mater Sci Eng A 2018; 711:317-24.
[106]
Lins JFC, Sandim HRZ, Kestenbach HJ, Raabe D, Vecchio KS. A microstructural investigation of adiabatic shear bands in an interstitial free steel. Mater Sci Eng A 2007; 457(1-2):205-18.
[107]
Chen S, Aitken ZH, Pattamatta S, Wu Z, Yu ZG, Srolovitz DJ, et al. Simultaneously enhancing the ultimate strength and ductility of highentropy alloys via short-range ordering. Nat Commun 2021; 12(1):4953.
[108]
Zhao S, Li Z, Zhu C, Yang W, Zhang Z, Armstrong DEJ, et al. Amorphization in extreme deformation of the CrMnFeCoNi high-entropy alloy. Sci Adv 2021; 7 (5):eabb3108.
[109]
Huang B, Miao X, Luo X, Yang Y, Zhang Y. Microstructure and texture evolution near the adiabatic shear band (ASB) in TC17 titanium alloy with starting equiaxed microstructure studied by EBSD. Mater Charact 2019; 151:151-65.
[110]
Duffy J, Chi YC. On the measurement of local strain and temperature during the formation of adiabatic shear bands. Mater Sci Eng A 1992; 157 (2):195-210.
[111]
Yang Y, Jiang F, Zhou BM, Li XM, Zheng HG, Zhang QM. Microstructural characterization and evolution mechanism of adiabatic shear band in a near beta-Ti alloy. Mater Sci Eng A 2011; 528(6):2787-94.
[112]
Yang G, Du K, Xu D, Xie H, Li W, Liu D, et al. High speed dynamic deformation of polysynthetic twinned titanium aluminide intermetallic compound. Acta Mater 2018; 152:269-77.
[113]
Guan XR, Chen Q, Qu SJ, Cao GJ, Wang H, Feng AH, et al. Adiabatic shear instability in a titanium alloy: extreme deformation-induced phase transformation, nanotwinning, and grain refinement. J Mater Sci Technol 2023; 150:104-13.
[114]
Seo JH, Yoo Y, Park NY, Yoon SW, Lee H, Han S, et al. Superplastic deformation of defect-free Au nanowires via coherent twin propagation. Nano Lett 2011; 11(8):3499-502.
[115]
Ma Y, Yuan F, Yang M, Jiang P, Ma E, Wu X. Dynamic shear deformation of a CrCoNi medium-entropy alloy with heterogeneous grain structures. Acta Mater 2018; 148:407-18.
[116]
Ulacia I, Dudamell NV, Gálvez F, Yi S, Pérez-Prado MT, Hurtado I. Mechanical behavior and microstructural evolution of a Mg AZ31 sheet at dynamic strain rates. Acta Mater 2010; 58(8):2988-98.
[117]
Foley DL, Huang SH, Anber E, Shanahan L, Shen Y, Lang AC, et al. Simultaneous twinning and microband formation under dynamic compression in a high entropy alloy with a complex energetic landscape. Acta Mater 2020; 200:1-11.
[118]
Hu W, Yang Z, Ye H. Sliding and migration of tilt grain boundaries in a Mg- Zn-Y alloy. Adv Eng Mater 2018; 20(1):1700516.
[119]
Li Z, Zhao S, Alotaibi SM, Liu Y, Wang B, Meyers MA. Adiabatic shear localization in the CrMnFeCoNi high-entropy alloy. Acta Mater 2018; 151:424-31.
[120]
Wang BF, Liu ZL, Wang XY, Li ZZ. An EBSD investigation on deformationinduced shear bands in a low nickel austenitic stainless steel under controlled shock-loading conditions. Mater Sci Eng A 2014; 610:301-8.
[121]
Yang H, Zhang JH, Xu Y, Meyers MA. Microstructural characterization of the shear bands in Fe-Cr-Ni Single crystal by EBSD. J Mater Sci Technol 2008; 24 (6):819-28.
[122]
Zhang X, Cui J, Li G. Microstructural mechanism in adiabatic shear bands of Al-Cu alloy bars using electromagnetic impact upsetting. Mater Lett 2017; 194:62-5.
[123]
Li J, Li Y, Huang C, Suo T. Mechanical responses and dynamic failure of nanostructure Cu-Al alloys under uniaxial compression. Mech Mater 2017; 114:147-60.
[124]
Chen J, Bao K, Zhang X, Cao Y, Peng Y, Kong J, et al. Adiabatic shear band development and following failure in 316L fabricated by an additive manufacturing process. Mater Sci Eng A 2021; 811:141003.
[125]
Li J, Suo T, Huang C, Li Y, Wang H, Liu J. Adiabatic shear localization in nanostructured face centered cubic metals under uniaxial compression. Mater Des 2016; 105:262-7.
[126]
Song WL, Ma Q, Zeng QL, Zhu SX, Sui MB, Cao TQ, et al. Experimental and numerical study on the dynamic shear banding mechanism of HfNbZrTi high entropy alloy. Sci China Technol Sci 2022; 65(8):1808-18.
[127]
Wang B, Sun J, Wang X, Fu A. Adiabatic shear localization in a near beta Ti- 5Al-5Mo-5V-1Cr-1Fe alloy. Mater Sci Eng A 2015; 639:526-33.
[128]
Ali T, Wang L, Cheng X, Liu A, Xu X. Omega phase formation and deformation mechanism in heat treated Ti-5553 alloy under high strain rate compression. Mater Lett 2019; 236:163-6.
[129]
Zou DL, Zhen L, Xu CY, Shao WZ. Characterization of adiabatic shear bands in AM60B magnesium alloy under ballistic impact. Mater Charact 2011; 62 (5):496-502.
[130]
Mendoza I, Villalobos D, Alexandrov BT. Crack propagation of Ti alloy via adiabatic shear bands. Mater Sci Eng A 2015; 645:306-10.
[131]
Kad BK, Gebert JM, Perez-Prado MT, Kassner ME, Meyers MA. Ultrafine-grainsized zirconium by dynamic deformation. Acta Mater 2006; 54(16):4111-27.
[132]
Peirs J, Tirry W, Amin-Ahmadi B, Coghe F, Verleysen P, Rabet L, et al. Microstructure of adiabatic shear bands in Ti6Al4V. Mater Charact 2013; 75:79-92.
[133]
Chung TF, Chiu PH, Tai CL, Li YL, Wang LM, Chen CY, et al. Investigation on the ballistic induced nanotwinning in the Mn-free Fe27CO24Ni23Cr 26 high entropy alloy plate. Mater Chem Phys 2021; 270:124707.
[134]
Li Z, Pradeep KG, Deng Y, Raabe D, Tasan CC. Metastable high-entropy dualphase alloys overcome the strength-ductility trade-off. Nature 2016; 534 (7606):227-30.
[135]
Yeh JW, Chen SK, Lin SJ, Gan JY, Chin TS, Shun TT, et al. Nanostructured highentropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater 2004; 6(5):299-303.
[136]
Lopes JG, Rocha P, Santana DA, Shen J, Maawad E, Schell N, et al. Impact of arc-based welding on the microstructure evolution and mechanical properties in newly developed Cr29.7CO29.7Ni35.4Al4Ti1.2 multi-principal element alloy. Adv Eng Mater 2023; 25(13):2300109.
[137]
Shen J, Martin AC, Schell N, Fink C, Oliveira JP. Microstructures in arc-welded Al10CO25Cr8Fe15Ni36Ti6 and Al10.87CO21.74Cr21.74Cu2.17Fe21.74Ni21.74 multiprincipal element alloys: comparison between experimental data and thermodynamic predictions. Mater Today Commun 2023; 34:104784.
[138]
Martin AC, Oliveira JP, Fink C. Elemental effects on weld cracking susceptibility in AlxCoCrCuyFeNi high-entropy alloy. Metall Mater Trans A 2020; 51(2):778-87.
[139]
Cheng Q, Xu XD, Li XQ, Li YP, Nieh TG, Chen MW. Solid solution softening in a Al0.1CoCrFeMnNi high-entropy alloy. Scr Mater 2020; 186:63-8.
[140]
Zhang Z, Zhang H, Tang Y, Zhu L, Ye Y, Li S, et al. Microstructure, mechanical properties and energetic characteristics of a novel high-entropy alloy HfZrTiTa0.53. Mater Des 2017; 133:435-43.
[141]
Jiang W, Yuan S, Cao Y, Zhang Y, Zhao Y. Mechanical properties and deformation mechanisms of a Ni2Co1Fe1V0.5Mo0.2 medium-entropy alloy at elevated temperatures. Acta Mater 2021; 213:116982.
[142]
Fu W, Gan K, Huang Y, Ning Z, Sun J, Cao F. Elucidating the transition of cryogenic deformation mechanism of CrMnFeCoNi high entropy alloy. J Alloys Compd 2021; 872:159606.
[143]
Kang M, Won JW, Kwon JB, Na YS. Intermediate strain rate deformation behavior of a CoCrFeMnNi high-entropy alloy. Mater Sci Eng A 2017; 707:16-21.
[144]
Kumar N, Ying Q, Nie X, Mishra RS, Tang Z, Liaw PK, et al. High strain-rate compressive deformation behavior of the Al0.1CrFeCoNi high entropy alloy. Mater Des 2015; 86:598-602.
[145]
Jiang ZJ, He JY, Wang HY, Zhang HS, Lu ZP, Dai LH. Shock compression response of high entropy alloys. Mater Res Lett 2016; 4(4):226-32.
[146]
Wei S, Kim SJ, Kang J, Zhang Y, Zhang Y, Furuhara T, et al. Natural-mixing guided design of refractory high-entropy alloys with as-cast tensile ductility. Nat Mater 2020; 19(11):1175-81.
[147]
Wang B, Fu A, Huang X, Liu B, Liu Y, Li Z, et al. Mechanical properties and microstructure of the CoCrFeMnNi high entropy alloy under high strain rate compression. J Mater Eng Perform 2016; 25(7):2985-92.
[148]
Ma SG, Jiao ZM, Qiao JW, Yang HJ, Zhang Y, Wang ZH. Strain rate effects on the dynamic mechanical properties of the AlCrCuFeNi2 high-entropy alloy. Mater Sci Eng A 2016; 649:35-8.
[149]
Tang Y, Wang R, Xiao B, Zhang Z, Li S, Qiao J, et al. A review on the dynamicmechanical behaviors of high-entropy alloys. Prog Mater Sci 2023; 135:101090.
[150]
Derby B. The dependence of grain size on stress during dynamic recrystallisation. Acta Metall Mater 1991; 39(5):955-62.
[151]
Hu H, Rath BB. On the time exponent in isothermal grain growth. Metall Trans 1970; 1(11):3181-4.
[152]
Hu H, Rath BB. Influence of solutes on the mobility of tilt boundaries. In: Hu H, editor. The nature and behavior of grain boundaries: a symposium held at the TMS-AIME Fall Meeting; 1971 Oct 18-19; Detroit, MI, USA. New York City: Springer New York; 1972. p. 405-35.
[153]
Hines JA, Vecchio KS. Recrystallization kinetics within adiabatic shear bands. Acta Mater 1997; 45(2):635-49.
[154]
Li Q, Xu YB, Lai ZH, Shen LT, Bai YL. Dynamic recrystallization induced by plastic deformation at high strain rate in a Monel alloy. Mater Sci Eng A 2000; 276(1-2):250-6.
[155]
Cottrell AH. Theory of dislocations. Prog Met Phys 1949; 1:77-126.
[156]
Mishra A, Kad BK, Gregori F, Meyers MA. Microstructural evolution in copper subjected to severe plastic deformation: experiments and analysis. Acta Mater 2007; 55(1):13-28.
[157]
Meyers MA, Perez-Prado MT, Xue Q, Xu Y, McNelley TR. Microstructural evolution in adiabatic shear localization in stainless steel. AIP Conf Proc 2002; 620(1):571-4.
[158]
Yang H, Xu Y, Seki Y, Nesterenko VF, Meyers MA. Analysis and characterization by electron backscatter diffraction of microstructural evolution in the adiabatic shear bands in Fe-Cr-Ni alloys. J Mater Res 2009; 24(8):2617-27.
[159]
Murr LE, Garcia EP, Rivas JM, Huang W, Grace FI, Rupert NL. Ballistic penetration in thick copper plates: microstructural characterization. Scr Mater 1997; 37(9):1329-35.
[160]
Galy B, Musi M, Hantcherli M, Molénat G, Couret A, Spoerk-Erdely P, et al. Glide and mixed climb dislocation velocity in c-TiAl investigated by in-situ transmission electron microscopy. Scr Mater 2023; 228:115333.
[161]
Park KT, Jin KG, Han SH, Hwang SW, Choi K, Lee CS. Stacking fault energy and plastic deformation of fully austenitic high manganese steels: effect of Al addition. Mater Sci Eng A 2010; 527(16-17):3651-61.
[162]
Kamran S, Chen K, Chen L. Ab initio examination of ductility features of fcc metals. Phys Rev B 2009; 79(2):024106.
[163]
Kulkarni Y, Asaro RJ. Are some nanotwinned fcc metals optimal for strength, ductility and grain stability? Acta Mater 2009; 57(16):4835-44.
[164]
Zhang FC, Yang ZN. Development of and perspective on high-performance nanostructured bainitic bearing steel. Engineering 2019; 5(2):319-28.
[165]
Liu D, Yu Q, Kabra S, Jiang M, Forna-Kreutzer P, Zhang R, et al. Exceptional fracture toughness of CrCoNi-based medium- and high-entropy alloys at 20 kelvin. Science 2022; 378(6623):978-83.
[166]
Ding L, Hilhorst A, Idrissi H, Jacques PJ. Potential TRIP/TWIP coupled effects in equiatomic CrCoNi medium-entropy alloy. Acta Mater 2022; 234:118049.
[167]
Li L, Liu W, Qi F, Wu D, Zhang Z. Effects of deformation twins on microstructure evolution, mechanical properties and corrosion behaviors in magnesium alloys—a review. J Magnesium Alloys 2022; 10(9):2334-53.
[168]
Proust G, Tomé CN, Jain A, Agnew SR. Modeling the effect of twinning and detwinning during strain-path changes of magnesium alloy AZ31. Int J Plast 2009; 25(5):861-80.
[169]
Barnett MR. Twinning and the ductility of magnesium alloys: part II. ‘‘Contraction” twins. Mater Sci Eng A 2007; 464(1-2):8-16.
[170]
Schuh B, Mendez-Martin F, Völker B, George EP, Clemens H, Pippan R, et al. Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation. Acta Mater 2015; 96:258-68.
[171]
Veysset D, Kooi SE, Maznev AA, Tang S, Mijailovic AS, Yang YJ, et al. Highvelocity micro-particle impact on gelatin and synthetic hydrogel. J Mech Behav Biomed Mater 2018; 86:71-6.
[172]
Murr LE, Trillo EA, Bujanda AA, Martinez NE. Comparison of residual microstructures associated with impact craters in fcc stainless steel and bcc iron targets: the microtwin versus microband issue. Acta Mater 2002; 50 (1):121-31.
[173]
Murr LE, Esquivel EV. Observations of common microstructural issues associated with dynamic deformation phenomena: twins, microbands, grain size effects, shear bands, and dynamic recrystallization. J Mater Sci 2004; 39(4):1153-68.
[174]
Li ZM, Tasan CC, Pradeep KG, Raabe D. A TRIP-assisted dual-phase highentropy alloy: grain size and phase fraction effects on deformation behavior. Acta Mater 2017; 131:323-35.
[175]
Zheng H, Cao A, Weinberger CR, Huang JY, Du K, Wang J, et al. Discrete plasticity in sub-10-nm-sized gold crystals. Nat Commun 2010; 1(1):144.
[176]
Diao J, Gall K, Dunn ML. Surface-stress-induced phase transformation in metal nanowires. Nat Mater 2003; 2(10):656-60.
[177]
Gall K, Diao JK, Dunn ML, Haftel M, Bernstein N, Mehl MJ. Tetragonal phase transformation in gold nanowires. J Eng Mater Technol 2005; 127(4):417-22.
[178]
Durandurdu M. Structural phase transition of gold under uniaxial, tensile, and triaxial stresses: an ab initio study. Phys Rev B 2007; 76(2):024102.
[179]
Nie AM, Wang HT. Deformation-mediated phase transformation in gold nano-junction. Mater Lett 2011; 65(23-24):3380-3.
[180]
Wang L, Liu P, Guan P, Yang M, Sun J, Cheng Y, et al. In situ atomic-scale observation of continuous and reversible lattice deformation beyond the elastic limit. Nat Commun 2013; 4(1):2413.
[181]
Galindo-Nava EI, Rivera-Díaz-del-Castillo PEJ. A thermodynamic theory for dislocation cell formation and misorientation in metals. Acta Mater 2012; 60 (11):4370-8.
[182]
Moon J, Qi Y, Tabachnikova E, Estrin Y, Choi WM, Joo SH, et al. Microstructure and mechanical properties of high-entropy alloy CO20Cr26Fe20Mn20Ni14 processed by high-pressure torsion at 77 K and 300 K. Sci Rep 2018; 8 (1):11074.
[183]
Zhang L, Song R, Zhao C, Yang F. Work hardening behavior involving the substructural evolution of an austenite-ferrite Fe-Mn-Al-C steel. Mater Sci Eng A 2015; 640:225-34.
[184]
Huang CX, Hu WP, Wang QY, Wang C, Yang G, Zhu YT. An ideal ultrafinegrained structure for high strength and high ductility. Mater Res Lett 2015; 3 (2):88-94.
[185]
Lu L, Chen X, Huang X, Lu K. Revealing the maximum strength in nanotwinned copper. Science 2009; 323(5914):607-10.
[186]
Lu K, Yan FK, Wang HT, Tao NR. Strengthening austenitic steels by using nanotwinned austenitic grains. Scr Mater 2012; 66(11):878-83.
[187]
Hall EO. The deformation and ageing of mild steel: III discussion of results. Proc Phys Soc B 1951; 64(9):747.
[188]
Jin M, Minor AM, Stach EA, Morris Jr JW. Direct observation of deformationinduced grain growth during the nanoindentation of ultrafine-grained Al at room temperature. Acta Mater 2004; 52(18):5381-7.
[189]
Wang YB, Ho JC, Liao XZ, Li HQ, Ringer SP, Zhu YT. Mechanism of grain growth during severe plastic deformation of a nanocrystalline Ni-Fe alloy. Appl Phys Lett 2009; 94(1):011908.
[190]
Zhu Q, Cao G, Wang J, Deng C, Li J, Zhang Z, et al. In situ atomistic observation of disconnection-mediated grain boundary migration. Nat Commun 2019; 10 (1):156.
[191]
Schiøtz J, Di Tolla FD, Jacobsen KW. Softening of nanocrystalline metals at very small grain sizes. Nature 1998; 391(6667):561-3.
[192]
Schiøtz J, Jacobsen KW. A maximum in the strength of nanocrystalline copper. Science 2003; 301(5638):1357-9.
[193]
Yip S. The strongest size. Nature 1998; 391(6667):532-3.
[194]
Haslam AJ, Moldovan D, Yamakov V, Wolf D, Phillpot SR, Gleiter H. Stressenhanced grain growth in a nanocrystalline material by molecular-dynamics simulation. Acta Mater 2003; 51(7):2097-112.
[195]
Yang B, Vehoff H, Hohenwarter A, Hafok M, Pippan R. Strain effects on the coarsening and softening of electrodeposited nanocrystalline Ni subjected to high pressure torsion. Scr Mater 2008; 58(9):790-3.
[196]
Mott NF. Slip at grain boundaries and grain growth in metals. Proc Phys Soc 1948; 60(4):391-4.
[197]
Gleiter H. Theory of grain boundary migration rate. Acta Metall 1969; 17 (7):853-62.
[198]
Cahn JW, Mishin Y, Suzuki A. Coupling grain boundary motion to shear deformation. Acta Mater 2006; 54(19):4953-75.
[199]
Homer ER, Foiles SM, Holm EA, Olmsted DL. Phenomenology of shearcoupled grain boundary motion in symmetric tilt and general grain boundaries. Acta Mater 2013; 61(4):1048-60.
[200]
Caillard D, Mompiou F, Legros M. Grain-boundary shear-migration coupling. II. Geometrical model for general boundaries. Acta Mater 2009; 57 (8):2390-402.
[201]
Huang W, Chen J, Yan H, Li Q, Xia W, Su B, et al. Solid solution strengthening and damping capacity of Mg-Ga binary alloys. Trans Nonferrous Met Soc China 2022; 32(9):2852-65.
[202]
Wang Z, Baker I, Cai Z, Chen S, Poplawsky JD, Guo W. The effect of interstitial carbon on the mechanical properties and dislocation substructure evolution in Fe40.4Ni11.3Mn34.8Al7.5Cr6 high entropy alloys. Acta Mater 2016; 120:228-39.
[203]
Stepanov ND, Shaysultanov DG, Chernichenko RS, Yurchenko NY, Zherebtsov SV, Tikhonovsky MA, et al. Effect of thermomechanical processing on microstructure and mechanical properties of the carboncontaining CoCrFeNiMn high entropy alloy. J Alloys Compd 2017; 693:394-405.
[204]
Chen Y, Li Y, Cheng X, Xu Z, Wu C, Cheng B, et al. Interstitial strengthening of refractory ZrTiHfNb0.5Ta0.5Ox (x = 0.05, 0.1, 0.2) high-entropy alloys. Mater Lett 2018; 228:145-7.
[205]
Lei Z, Liu X, Wu Y, Wang H, Jiang S, Wang S, et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes. Nature 2018; 563(7732):546-50.
[206]
He JY, Wang H, Huang HL, Xu XD, Chen MW, Wu Y, et al. A precipitationhardened high-entropy alloy with outstanding tensile properties. Acta Mater 2016; 102:187-96.
[207]
Ming K, Bi X, Wang J. Realizing strength-ductility combination of coarsegrained Al0.2Co1.5CrFeNi1.5Ti0.3 alloy via nano-sized, coherent precipitates. Int J Plast 2018; 100:177-91.
[208]
Yang G, Kim JK. Hierarchical precipitates, sequential deformation-induced phase transformation, and enhanced back stress strengthening of the microalloyed high entropy alloy. Acta Mater 2022; 233:117974.
[209]
Williamson GK, Smallman RE. Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray Debye-Scherrer spectrum. Philos Mag 1956; 1(1):34-46.
[210]
Smallman RE, Westmacott KH. Stacking faults in face-centred cubic metals and alloys. Philos Mag 1957; 2(17):669-83.
[211]
Williamson GK, Hall WH. X-ray line broadening from filed aluminium and wolfram. Acta Metall 1953; 1(1):22-31.
[212]
Ji G, Zhou Z, Meng F, Yang X, Sheng R, Qiao J, et al. Effect of Zr addition on the local structure and mechanical properties of Ti-Ta-Nb-Zr refractory highentropy alloys. J Mater Res Technol 2022; 19:4428-38.
[213]
Moravcik I, Cizek J, Zapletal J, Kovacova Z, Vesely J, Minarik P, et al. Microstructure and mechanical properties of Ni1.5Co1.5CrFeTi0.5 high entropy alloy fabricated by mechanical alloying and spark plasma sintering. Mater Des 2017; 119:141-50.
[214]
Gao X, Lu Y, Zhang B, Liang N, Wu G, Sha G, et al. Microstructural origins of high strength and high ductility in an AlCoCrFeNi2.1 eutectic high-entropy alloy. Acta Mater 2017; 141:59-66.
[215]
Senkov ON, Semiatin SL. Microstructure and properties of a refractory highentropy alloy after cold working. J Alloys Compd 2015; 649:1110-23.
[216]
Ming K, Bi X, Wang J. Precipitation strengthening of ductile Cr15Fe20Co35Ni20Mo10 alloys. Scr Mater 2017; 137:88-93.
[217]
Wani IS, Bhattacharjee T, Sheikh S, Bhattacharjee PP, Guo S, Tsuji N. Tailoring nanostructures and mechanical properties of AlCoCrFeNi2.1 eutectic high entropy alloy using thermo-mechanical processing. Mater Sci Eng A 2016; 675:99-109.
[218]
Wani IS, Bhattacharjee T, Sheikh S, Lu YP, Chatterjee S, Bhattacharjee PP, et al. Ultrafine-grained AlCoCrFeNi2.1 eutectic high-entropy alloy. Mater Res Lett 2016; 4(3):174-9.
[219]
Fu Z, Jiang L, Wardini JL, MacDonald BE, Wen H, Xiong W, et al. A highentropy alloy with hierarchical nanoprecipitates and ultrahigh strength. Sci Adv 2018; 4(10):eaat8712.
[220]
Jonas GH, Zukas JA. Mechanics of penetration: analysis and experiment. Int J Eng Sci 1978; 16(11):879-903.
[221]
Zerilli FJ, Armstrong RW. Dislocation-mechanics-based constitutive relations for material dynamics calculations. J Appl Phys 1987; 61(5):1816-25.
[222]
Sellars CM, McTegart WJ. On the mechanism of hot deformation. Acta Metall 1966; 14(9):1136-8.
[223]
Preston DL, Tonks DL, Wallace DC. Model of plastic deformation for extreme loading conditions. J Appl Phys 2003; 93(1):211-20.
[224]
Cowper GR, Symonds PS. Strain-hardening and strain-rate effects in the impact loading of cantilever beams. Providence: Division of Applied Mathematics, Brown University; 1957.
[225]
Johnson GR, Cook WH. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In: Proceedings of the 7th International Symposium on Ballistics; 1983 Apr 19-21; the Hague, the Netherlands; 1983. p. 541-7.
[226]
Johnson GR, Cook WH. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng Fract Mech 1985; 21(1):31-48.
[227]
Steinberg DJ, Cochran SG, Guinan MW. A constitutive model for metals applicable at high-strain rate. J Appl Phys 1980; 51(3):1498-504.
[228]
Field JE, Walley SM, Proud WG, Goldrein HT, Siviour CR. Review of experimental techniques for high rate deformation and shock studies. Int J Impact Eng 2004; 30(7):725-75.
[229]
Hopkinson B. A method of measuring the pressure produced in the detonation of high explosives or by the impact of bullets. Philos Trans R Soc A 1914; 213(497-508):437-56.
[230]
Rohr I, Nahme H, Thoma K. Material characterization and constitutive modelling of ductile high strength steel for a wide range of strain rates. Int J Impact Eng 2005; 31(4):401-33.
[231]
Birnbaum NK, Cowler MS, Itoh M, Katayama M, Obata H. Autodyn—an interactive non-linear dynamic analysis program for microconputers through supercomputers. In: Wittmann FH, editor. Transactions of the 9th International Conference on Structural Mechanics in Reactor Technology; 1987 Aug 17-21; Lausanne, Switzerland. Rotterdam: A.A. Balkema; 1987. p. 401-6.
[232]
Hallquist JO, Werne RW, Wilkins ML. High velocity impact calculations in three dimensions. J Appl Phys 1977; 44(4):7931-4.
[233]
Wang J, Bu PF, Ruan WJ. The research for characters of detonated rupture disks used in rarefaction wave gun for test. Adv Mech Eng 2021; 13 (6):16878140211022879.
[234]
Lucy LB. A numerical approach to the testing of the fission hypothesis. Astron J 1977; 82:1013-24.
[235]
Petschek AG, Libersky LD. Cylindrical smoothed particle hydrodynamics. J Comput Phys 1993; 109(1):761-83.
[236]
Bjorkman MD, Holsapple KA. Velocity scaling impact melt volume. Int J Impact Eng 1987; 5(1-4):155-63.
[237]
Anders C, Bringa EM, Ziegenhain G, Graham GA, Hansen JF, Park N, et al. Why nanoprojectiles work differently than macroimpactors: the role of plastic flow. Phys Rev Lett 2012; 108(2):027601.
[238]
Kositski R, Mordehai D. Employing molecular dynamics to shed light on the microstructural origins of the Taylor-Quinney coefficient. Acta Mater 2021; 205:116511.
[239]
Zhang TW, Ma SG, Zhao D, Wu YC, Zhang Y, Wang ZH, et al. Simultaneous enhancement of strength and ductility in a NiCoCrFe high-entropy alloy upon dynamic tension: micromechanism and constitutive modeling. Int J Plast 2020; 124:226-46.
[240]
Zhao S, Yin S, Liang X, Cao F, Yu Q, Zhang R, et al. Deformation and failure of the CrCoNi medium-entropy alloy subjected to extreme shock loading. Sci Adv 2023; 9(18):eadf8602.
[241]
Tang Y, Li DY. Dynamic response of high-entropy alloys to ballistic impact. Sci Adv 2022; 8(32):eabp9096.
[242]
Xie Z, Jian WR, Xu S, Beyerlein IJ, Zhang X, Wang Z, et al. Role of local chemical fluctuations in the shock dynamics of medium entropy alloy CoCrNi. Acta Mater 2021; 221:117380.
PDF(7220 KB)

Accesses

Citation

Detail

段落导航
相关文章

/