一种具有优异机械耐久性和化学稳定性的用于输气管道的仿生超疏水涂层

Xuerui Zang, Yan Cheng, Yimeng Ni, Weiwei Zheng, Tianxue Zhu, Zhong Chen, Jiang Bian, Xuewen Cao, Jianying Huang, Yuekun Lai

工程(英文) ›› 2025, Vol. 47 ›› Issue (4) : 152-159.

PDF(2896 KB)
PDF(2896 KB)
工程(英文) ›› 2025, Vol. 47 ›› Issue (4) : 152-159. DOI: 10.1016/j.eng.2024.03.024
研究论文

一种具有优异机械耐久性和化学稳定性的用于输气管道的仿生超疏水涂层

作者信息 +

A Biomimetically Constructed Superhydrophobic Coating with Excellent Mechanical Durability and Chemical Stability for Gas Transmission Pipelines

Author information +
History +

摘要

受人体牙釉质分层结构的启发,开发了一种具有分层梯度结构的超疏水耐磨涂层,以减少油气管道冲蚀磨损和腐蚀损伤。涂层由外部耐磨的硬质涂层和中间水凝胶层组成。通过调控TiO2@月桂酸(LA)颗粒与碳纳米管(CNT)含量比构建了具有不同粘弹性的分层梯度结构,有效提高了外部涂层抗冲击性能。此外,直链淀粉水凝胶层不仅能够通过受击形变提供缓冲作用,还可借助自身具备的流动性修复外部结构中的裂痕,从而达到抑制因涂层断裂引发局部腐蚀的效果。受益于这三种协同策略,涂层表现出优异的机械耐久性(在49 kPa外载荷作用下采用600目砂纸可维持800次循环)和耐腐蚀性(腐蚀电位-0.21 V)。此外,它在打磨、弯曲、浸泡和刮擦后依旧能够保持其表面超疏水性能,展示了其在保护输送管道免受侵蚀和腐蚀方面的应用潜力。

Abstract

Inspired by the layered structure of dental enamel in the human body, a superhydrophobic coating with an elastic gradient was developed and placed on the inner wall of a gas transmission pipeline to reduce erosion and corrosion. The coating comprises a hard bionic superhydrophobic top coating and a hydrogel layer underneath for buffering and self-repair. To improve the impact resistance of the top coating, layered structures with different viscoelasticities were constructed by controlling the content of lauric acid (LA)@TiO2 particles and carbon nanotubes (CNTs). The amylose hydrogel underlayer not only acts as a shock absorber but also restores potential damage in the top layer, bringing an additional benefit to the corrosion resistance of the coating. Thanks to these three cooperative approaches, the coating exhibits excellent mechanical durability (800 cycles with 600-mesh sandpaper under a 49 kPa load) and corrosion resistance (with a corrosion potential of −0.21 V). Moreover, it maintains its superhydrophobicity after sanding, bending, soaking, and scratching, demonstrating its potential for application to protect transmission pipelines from erosion and corrosion.

关键词

仿生微结构 / 牙釉质结构 / 耐磨性 / 自修补性 / 超疏水性

Keywords

Bionic microstructure / Dental enamel structure / Wear-resistance / Self-repairing / Superhydrophobicity

引用本文

导出引用
Xuerui Zang, Yan Cheng, Yimeng Ni. 一种具有优异机械耐久性和化学稳定性的用于输气管道的仿生超疏水涂层. Engineering. 2025, 47(4): 152-159 https://doi.org/10.1016/j.eng.2024.03.024

参考文献

[1]
Oh S, Cho JW, Lee J, Han J, Kim SK, Nam Y.A scalable haze-free antireflective hierarchical surface with self-cleaning capability.Adv Sci 2022; 9(27):2202781.
[2]
Zhao Y, Gu Y, Liu B, Yan Y, Shan C, Guo J, et al.Pulsed hydraulic-pressure-responsive self-cleaning membrane.Nature 2022; 608(7921):69-73.
[3]
Guan K, Tao L, Yang R, Zhang H, Wang N, Wan H, et al.Anti-corrosion for reversible zinc anode via a hydrophobic interface in aqueous zinc batteries.Adv Energy Mater 2022; 12(9):2103557.
[4]
Han X, Ren L, Ma Y, Gong X, Wang H.A mussel-inspired self-repairing superhydrophobic coating with good anti-corrosion and photothermal properties.Carbon 2022; 197:27-39.
[5]
Sun Y, Yuan S, Fan W, Lin D, Zhang K, Bai Z, et al.A smart composite coating with photothermal response, anti-UV and anti-corrosion properties.Chem Eng J 2023; 452(Pt 1):138983.
[6]
Zhang W, Wang D, Sun Z, Song J, Deng X.Robust superhydrophobicity: mechanisms and strategies.Chem Soc Rev 2021; 50(6):4031-4061.
[7]
Wang N, Wang Q, Xu S, Lei L.Green fabrication of mechanically stable superhydrophobic concrete with anti-corrosion property.J Clean Prod 2021; 312:127836.
[8]
Dai Z, Ding S, Lei M, Li S, Xu Y, Zhou Y, et al.A superhydrophobic and anti-corrosion strain sensor for robust underwater applications.J Mater Chem A 2021; 9(27):15282-15293.
[9]
Liu X, Xu X, Zhang F, Ge X, Ji H, Li Y, et al.A synergistic anti-corrosion system based on durable superhydrophobic F-SiO2/epoxy coatings and self-powered cathodic protection.J Mater Chem A 2022; 10(36):18616-18625.
[10]
Dong J, Wang D, Peng Y, Zhang C, Lai F, He G, et al.Ultra-stretchable and superhydrophobic textile-based bioelectrodes for robust self-cleaning and personal health monitoring.Nano Energy 2022; 97:107160.
[11]
Goharshenas S Moghadam, Parsimehr H, Ehsani A.Multifunctional superhydrophobic surfaces.Adv Colloid Interface Sci 2021; 290:102397.
[12]
Wang D, Sun Q, Hokkanen MJ, Zhang C, Lin FY, Liu Q, et al.Design of robust superhydrophobic surfaces.Nature 2020; 582(7810):55-59.
[13]
Zhang L, Ng TCA, Liu X, Gu Q, Pang Y, Zhang Z, et al.Hydrogenated TiO2 membrane with photocatalytically enhanced anti-fouling for ultrafiltration of surface water.Appl Catal B 2020; 264:118528.
[14]
Dai H, Gao C, Sun J, Li C, Li N, Wu L, et al.Controllable high-speed electrostatic manipulation of water droplets on a superhydrophobic surface.Adv Mater 2019; 31(43):1905449.
[15]
Li J, Hou Y, Liu Y, Hao C, Li M, Chaudhury MK, et al.Directional transport of high-temperature Janus droplets mediated by structural topography.Nat Phys 2016; 12(6):606-612.
[16]
Lin Y, Hu Z, Zhang M, Xu T, Feng S, Jiang L, et al.Magnetically induced low adhesive direction of nano/micropillar arrays for microdroplet transport.Adv Funct Mater 2018; 28(49):1800163.
[17]
Rajabi M, Baza H, Turiv T, Lavrentovich OD.Directional self-locomotion of active droplets enabled by nematic environment.Nat Phys 2021; 17(2):260-266.
[18]
Baig U, Faizan M, Waheed A.A review on super-wettable porous membranes and materials based on bio-polymeric chitosan for oil–water separation.Adv Colloid Interface Sci 2022; 303:102635.
[19]
Li F, Wang Z, Huang S, Pan Y, Zhao X.Flexible, durable, and unconditioned superoleophobic/superhydrophilic surfaces for controllable transport and oil–water separation.Adv Funct Mater 2018; 28(20):1706867.
[20]
Boinovich LB, Modin EB, Sayfutdinova AR, Emelyanenko KA, Vasiliev AL, Emelyanenko AM.Combination of functional nanoengineering and nanosecond laser texturing for design of superhydrophobic aluminum alloy with exceptional mechanical and chemical properties.ACS Nano 2017; 11(10):10113-10123.
[21]
Dai Z, Chen G, Ding S, Lin J, Li S, Xu Y, et al.Facile formation of hierarchical textures for flexible, translucent, and durable superhydrophobic film.Adv Funct Mater 2021; 31(7):2008574.
[22]
Zang D, Zhu R, Zhang W, Yu X, Lin L, Guo X, et al.Corrosion-resistant superhydrophobic coatings on Mg alloy surfaces inspired by lotus seedpod.Adv Funct Mater 2017; 27(8):1605446.
[23]
Zhang Y, Li N, Ling N, Zhang J, Wang L.Enhanced long-term corrosion resistance of Mg alloys by superhydrophobic and self-healing composite coating.Chem Eng J 2022; 449:137778.
[24]
Zhang Y, Yang S, Wang S, Liu HK, Li L, Dou SX, et al.Engineering high-performance MoO2-based nanomaterials with supercapacity and superhydrophobicity by tuning the raw materials source.Small 2018; 14(25):1800480.
[25]
Huang W, Huang J, Guo Z, Liu W.Icephobic/anti-icing properties of superhydrophobic surfaces.Adv Colloid Interface Sci 2022; 304:102658.
[26]
Tang S, Wu Z, Feng G, Wei L, Weng J, Ruiz-Hitzky E, et al.Multifunctional sandwich-like composite film based on superhydrophobic MXene for self-cleaning, photodynamic and antimicrobial applications.Chem Eng J 2023; 454(Pt 3):140457.
[27]
Verho T, Bower C, Andrew P, Franssila S, Ikkala O, Ras RHA.Mechanically durable superhydrophobic surfaces.Adv Mater 2011; 23(5):673-678.
[28]
Guo S, Zhang J, Wu W, Zhou W.Corrosion in the molten fluoride and chloride salts and materials development for nuclear applications.Prog Mater Sci 2018; 97:448-487.
[29]
Li X, Xue Z, Sun W, Chu J, Wang Q, Tong L, et al.Bio-inspired self-healing MXene/polyurethane coating with superior active/passive anticorrosion performance for Mg alloy.Chem Eng J 2023; 454(Pt 2):140187.
[30]
Yan P, Zheng J, Gu M, Xiao J, Zhang JG, Wang CM.Intragranular cracking as a critical barrier for high-voltage usage of layer-structured cathode for lithium-ion batteries.Nat Commun 2017; 8(1):14101.
[31]
Kim IH, Yun T, Kim JE, Yu H, Sasikala SP, Lee KE, et al.Mussel-inspired defect engineering of graphene liquid crystalline fibers for synergistic enhancement of mechanical strength and electrical conductivity.Adv Mater 2018; 30(40):1803267.
[32]
Yin Z, Liang X, Zhou K, Li S, Lu H, Zhang M, et al.Biomimetic mechanically enhanced carbon nanotube fibers by silk fibroin infiltration.Small 2021; 17(19):2100066.
[33]
Liu Z, Wang H, Zhang X, Wang C, Lv C, Zhu Y.Durable and self-healing superhydrophobic surface with bistratal gas layers prepared by electrospinning and hydrothermal processes.Chem Eng J 2017; 326:578-586.
[34]
Zhang H, Bu X, Li W, Cui M, Ji X, Tao F, et al.A skin-inspired design integrating mechano–chemical–thermal robustness into superhydrophobic coatings.Adv Mater 2022; 34(31):2203792.
[35]
Gomez-Florit M, Labrador-Rached CJ, Domingues RMA, Gomes ME.The tendon microenvironment: engineered in vitro models to study cellular crosstalk.Adv Drug Deliv Rev 2022; 185:114299.
[36]
Yuan Z, Cao Z, Ma C, Wu R, Wu H, Xu Q, et al.Ultra-robust, repairable and smart physical hydrogels enabled by nano-domain reconfiguration of network topology.Chem Eng J 2022; 450(Pt 2):138085.
[37]
Zhang H, Wang R, Chen Z, Zhong Q.Amylopectin-sodium palmitate complexes as sustainable nanohydrogels with tunable size and fractal dimensions.J Agric Food Chem 2020; 68(12):3796-3805.
[38]
Funamori Y, Suzuki R, Wakahara T, Ohmura T, Nakagawa E, Tachibana M.Large elastic deformation of C60 nanowhiskers.Carbon 2020; 169:65-72.
[39]
Vella D.Buffering by buckling as a route for elastic deformation.Nat Rev Phys 2019; 1(7):425-436.
[40]
Regueiro-Picallo M, Suárez J, Sañudo E, Puertas J, Anta J.New insights to study the accumulation and erosion processes of fine-grained organic sediments in combined sewer systems from a laboratory scale model.Sci Total Environ 2020; 716:136923.
[41]
Zheng W, Huang J, Zang X, Xu X, Cai W, Lin Z, et al.Judicious design and rapid manufacturing of a flexible, mechanically resistant liquid-like coating with strong bonding and antifouling abilities.Adv Mater 2022; 34(42):2204581.
[42]
Kim JG, Kang H, Lee Y, Park J, Kim J, Truong TK, et al.Carbon-nanotube-templated, sputter-deposited, flexible superconducting NbN nanowire yarns.Adv Funct Mater 2017; 27(30):1701108.
[43]
Owens CE, Headrick RJ, Williams SM, Fike AJ, Pasquali M, McKinley GH, et al.Substrate-versatile direct-write printing of carbon nanotube-based flexible conductors, circuits, and sensors.Adv Funct Mater 2021; 31(25):2100245.
[44]
Yoon J, Kim U, Yoo Y, Byeon J, Lee SK, Nam JS, et al.Foldable perovskite solar cells using carbon nanotube-embedded ultrathin polyimide conductor.Adv Sci 2021; 8(7):2004092.
[45]
Zhang C, Li H, Huang A, Zhang Q, Rui K, Lin H, et al.Rational design of a flexible CNTs@PDMS film patterned by bio-inspired templates as a strain sensor and supercapacitor.Small 2019; 15(18):1805493.
[46]
Sedrez TA, Shirazi SA.Erosion evaluation of elbows in series with different configurations.Wear 2021; 476:203683.
[47]
Dai S, Fan J, Li J, Fan C, Yang S.Study on the erosion performance of high-pressure double elbow based on experiment and numerical simulation.Tribol Int 2023; 187:108671.
PDF(2896 KB)

Accesses

Citation

Detail

段落导航
相关文章

/