[1] |
A. Finckh, B. Gilbert, B. Hodkinson, S.C. Bae, R. Thomas, K.D. Deane, et al. Global epidemiology of rheumatoid arthritis. Nat Rev Rheumatol, 18 (2022), pp. 591-602.
|
[2] |
F. Cao, Y.C. Liu, Q.Y. Ni, Y. Chen, C.H. Wan, S.Y. Liu, et al. Temporal trends in the prevalence of autoimmune diseases from 1990 to 2019. Autoimmun Rev, 22 (8) (2023), p. 103359.
|
[3] |
M.H. Smith, J.R. Berman. What is rheumatoid arthritis>. JAMA, 327 (12) (2022), p. 1194.
|
[4] |
D. Luo, Z. Zuo, H. Zhao, Y. Tan, C. Xiao. Immunoregulatory effects of Tripterygium wilfordii Hook F and its extracts in clinical practice. Front Med, 13 (5) (2019), pp. 556-563.
|
[5] |
X.H. Xiao, C.X. Liu. Collaborative innovation boosting the safe and rational use of traditional Chinese medicines. China J Chin Mater Med, 44 (2019), pp. 3365-3367.
|
[6] |
D.M. Marcus. Comparison of Tripterygium wilfordii Hook F with methotrexate in the treatment of rheumatoid arthritis. Ann Rheum Dis, 73 (9) (2014), p. e56.
|
[7] |
X. Zhang, H. Yang, X. Zuo, L. Wu, J. Peng, Z. Li, et al. Efficacy and safety of Tripterygium wilfordii Hook F plus TNF inhibitor for active rheumatoid arthritis: a multicentre, randomized, double-blind, triple-dummy controlled trial. Clin Immunol, 255 (2023), p. 109749.
|
[8] |
Q.W. Lv, W. Zhang, Q. Shi, W.J. Zheng, X. Li, H. Chen, et al. Comparison of Tripterygium wilfordii Hook F with methotrexate in the treatment of active rheumatoid arthritis (TRIFRA): a randomised, controlled clinical trial. Ann Rheum Dis, 74 (6) (2015), pp. 1078-1086.
|
[9] |
J.X. Wang, C.F. Liu, Y.Q. Li, X.H. Su, N. Lin. Effect of Tripterygium glycosides tablets on synovial angiogenesis in rats with type II collagen induced arthritis. China J Chin Mater Med, 44 (2019), pp. 3441-3447.
|
[10] |
Y. Zhu, L. Zhang, X. Zhang, D. Wu, L. Chen, C. Hu, et al. Tripterygium wilfordii glycosides ameliorates collagen-induced arthritis and aberrant lipid metabolism in rats. Front Pharmacol, 13 (2022), p. 938849.
|
[11] |
K. Zhang, S. Pace, P.M. Jordan, L.K. Peltner, A. Weber, D. Fischer, et al. Beneficial modulation of lipid mediator biosynthesis in innate immune cells by antirheumatic Tripterygium wilfordii glycosides. Biomolecules, 11 (5) (2021), p. 746.
|
[12] |
C. Xie, J. Jiang, J. Liu, G. Yuan, Z. Zhao. Triptolide suppresses human synoviocyte MH7A cells mobility and maintains redox balance by inhibiting autophagy. Biomed Pharmacother, 115 (2019), p. 108911.
|
[13] |
Y.G. Tian, X.H. Su, L.L. Liu, X.Y. Kong, N. Lin. Overview of hepatotoxicity studies on Tripterygium wilfordii in recent 20 years. China J Chin Mater Med, 44 (2019), pp. 3399-3405.
|
[14] |
Y.Y. Zhou, X. Xia, W.K. Peng, Q.H. Wang, J.H. Peng, Y.L. Li, et al. The effectiveness and safety of Tripterygium wilfordii Hook. F extracts in rheumatoid arthritis: a systematic review and meta-analysis. Front Pharmacol, 9 (2018), p. 356.
|
[15] |
J. Wang, H. Song, F. Ge, P. Xiong, J. Jing, T. He, et al. Landscape of DILI-related adverse drug reaction in China Mainland. Acta Pharm Sin B, 12 (12) (2022), pp. 4424-4431.
|
[16] |
M. Dai, W. Peng, T. Zhang, Q. Zhao, X. Ma, Y. Cheng, et al. Metabolomics reveals the role of PPARα in Tripterygium wilfordii-induced liver injury. J Ethnopharmacol, 289 (2022), p. 115090.
|
[17] |
Y.Y. Miao, L. Luo, T. Shu, H. Wang, L.Y. Zhang. Study on difference of liver toxicity and its molecular mechanisms caused by Tripterygium wilfordii multiglycoside and equivalent amount of triptolid in rats. China J Chin Mater Med, 44 (2019), pp. 3468-3477.
|
[18] |
Y. Zhang, X. Mao, W. Li, W. Chen, X. Wang, Z. Ma, et al. Tripterygium wilfordii: an inspiring resource for rheumatoid arthritis treatment. Med Res Rev, 41 (3) (2021), pp. 1337-1374.
|
[19] |
X. Wang, Y. Zhang, Z. Ding, L. Du, Y. Zhang, S. Yan, et al. Cross-talk between the RAS-ERK and mTOR signalings-associated autophagy contributes to Tripterygium glycosides tablet-induced liver injury. Biomed Pharmacother, 160 (2023), p. 114325.
|
[20] |
N. Lin, Y.Q. Zhang, Q. Jiang, W. Liu, J. Liu, Q.C. Huang, et al. Clinical practice guideline for Tripterygium glycosides/Tripterygium wilfordii tablets in the treatment of rheumatoid arthritis. Front Pharmacol, 11 (2020), p. 608703.
|
[21] |
N. Lin, Q. Jiang, W. Liu, Liu Jian, Q. Huang, K. Wu, et al. Clinical practice guideline for Tripterygium glycosides/Tripterygium wilfordii tablets in treatment of rheumatoid arthritis. China J Chin Mater Med, 45 (2020), pp. 4149-4153.
|
[22] |
Y. Zhang, H. Wang, X. Mao, Q. Guo, W. Li, X. Wang, et al. A novel gene-expression-signature-based model for prediction of response to Tripterygium glycosides tablet for rheumatoid arthritis patients. J Transl Med, 16 (1) (2018), p. 187.
|
[23] |
Y. Zhang, H. Wang, X. Mao, Q. Guo, W. Li, X. Wang, et al. A novel circulating miRNA-based model predicts the response to Tripterygium glycosides tablets: moving toward model-based precision medicine in rheumatoid arthritis. Front Pharmacol, 9 (2018), p. 378.
|
[24] |
Z. Ding, W. Chen, H. Wu, W. Li, X. Mao, W. Su, et al. Integrative network fusion-based multi-omics study for biomarker identification and patient classification of rheumatoid arthritis. Chin Med, 18 (1) (2023), p. 48.
|
[25] |
M.M. Bradford. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 72 (1976), pp. 248-254.
|
[26] |
X. Wang, Y. Zhang, W. Chen, L. Wan, J. Liu, Y. Zhang, et al. Exploration on the mechanisms underlying the “efficacy-toxicity” association of Tripterygium glycosides tablets through the analysis of multi-omics integrated regulatory network. Chin J Exp Trad, 29 (2023), pp. 49-57.
|
[27] |
Y. Zhang, X. Wang, W. Li, H. Wang, X. Yin, F. Jiang, et al. Inferences of individual differences in response to Tripterygium glycosides across patients with rheumatoid arthritis using a novel ceRNA regulatory axis. Clin Transl Med, 10 (6) (2020), p. e185.
|
[28] |
Y. Zhang, X. Wang, Z. Ding, N. Lin, Y. Zhang. Enhanced efficacy with reduced toxicity of Tripterygium glycoside tablet by compatibility with total glucosides of paeony for rheumatoid arthritis therapy. Biomed Pharmacother, 166 (2023), p. 115417.
|
[29] |
X. Su, B. Yuan, X. Tao, W. Guo, X. Mao, A. Wu, et al. Anti-angiogenic effect of YuXueBi tablet in experimental rheumatoid arthritis by suppressing LOX/Ras/Raf-1 signaling. J Ethnopharmacol, 298 (2022), p. 115611.
|
[30] |
W. Li, K. Wang, Y. Liu, H. Wu, Y. He, C. Li, et al. A novel drug combination of mangiferin and cinnamic acid alleviates rheumatoid arthritis by inhibiting TLR4/NFκB/NLRP 3 activation-induced pyroptosis. Front Immunol, 13 (2022), p. 912933.
|
[31] |
Z. Ding, R. Zhong, Y. Yang, T. Xia, W. Wang, Y. Wang, et al. Systems pharmacology reveals the mechanism of activity of Ge-Gen-Qin-Lian decoction against LPS-induced acute lung injury: a novel strategy for exploring active components and effective mechanism of TCM formulae. Pharmacol Res, 156 (2020), p. 104759.
|
[32] |
W. Chen, Z. Ma, L. Yu, X. Mao, N. Ma, X. Guo, et al. Preclinical investigation of artesunate as a therapeutic agent for hepatocellular carcinoma via impairment of glucosylceramidase-mediated autophagic degradation. Exp Mol Med, 54 (9) (2022), pp. 1536-1548.
|
[33] |
Z. Ma, W. Chen, Y. Liu, L. Yu, X. Mao, X. Guo, et al. Artesunate sensitizes human hepatocellular carcinoma to sorafenib via exacerbating AFAP1L2-SRC-FUNDC 1 axis-dependent mitophagy. Autophagy, 20 (3) (2024), pp. 541-556.
|
[34] |
X. Mao, Y. Liu, W. Li, K. Wang, C. Li, Q. Wang, et al. A promising drug combination of mangiferin and glycyrrhizic acid ameliorates disease severity of rheumatoid arthritis by reversing the disturbance of thermogenesis and energy metabolism. Phytomedicine, 104 (2022), p. 154216.
|
[35] |
S. Sun, J. Shen, J. Jiang, F. Wang, J. Min. Targeting ferroptosis opens new avenues for the development of novel therapeutics. Signal Transduct Target Ther, 8 (1) (2023), p. 372.
|
[36] |
M. Hu, Q. Luo, G. Alitongbieke, S. Chong, C. Xu, L. Xie, et al. Celastrol-induced Nur 77 interaction with TRAF2 alleviates inflammation by promoting mitochondrial ubiquitination and autophagy. Mol Cell, 66 (1) (2017), pp. 141-153.e6.
|
[37] |
M. Jing, J. Yang, L. Zhang, J. Liu, S. Xu, M. Wang, et al. Celastrol inhibits rheumatoid arthritis through the ROS-NF-κB-NLRP 3 inflammasome axis. Int Immunopharmacol, 98 (2021), p. 107879.
|
[38] |
A. Xu, R. Yang, M. Zhang, X. Wang, Y. Di, B. Jiang, et al. Macrophage targeted triptolide micelles capable of cGAS-STING pathway inhibition for rheumatoid arthritis treatment. J Drug Target, 30 (9) (2022), pp. 961-972.
|
[39] |
J.J. Lin, K. Tao, N. Gao, H. Zeng, D.L. Wang, J. Yang, et al. Triptolide inhibits expression of inflammatory cytokines and proliferation of fibroblast-like synoviocytes induced by IL-6/sIL-6R-mediated JAK2/STAT3 signaling pathway. Curr Med Sci, 41 (1) (2021), pp. 133-139.
|
[40] |
S. Ni, Y. Yuan, Y. Kuang, X. Li. Iron metabolism and immune regulation. Front Immunol, 13 (2022), p. 816282.
|
[41] |
B.K. Das, L. Wang, T. Fujiwara, J. Zhou, N. Aykin-Burns, K.J. Krager, et al. Transferrin receptor 1-mediated iron uptake regulates bone mass in mice via osteoclast mitochondria and cytoskeleton. ELife, 11 (2022), p. e73539.
|
[42] |
M.D. Cappellini, V. Santini, C. Braxs, A. Shander. Iron metabolism and iron deficiency anemia in women. Fertil Steril, 118 (4) (2022), pp. 607-614.
|
[43] |
W. Tański, M. Chabowski, B. Jankowska-Polańska, E.A. Jankowska. Iron metabolism in patients with rheumatoid arthritis. Eur Rev Med Pharmacol Sci, 25 (2021), pp. 4325-4335.
|
[44] |
M.G. Ledesma-Colunga, U. Baschant, I.A.K. Fiedler, B. Busse, L.C. Hofbauer, M.U. Muckenthaler, et al. Disruption of the hepcidin/ferroportin regulatory circuitry causes low axial bone mass in mice. Bone, 137 (2020), p. 115400.
|
[45] |
G.F. Li, Y.J. Xu, Y.F. He, B.C. Du, P. Zhang, D.Y. Zhao, et al. Effect of hepcidin on intracellular calcium in human osteoblasts. Mol Cell Biochem, 366 (1-2) (2012), pp. 169-174.
|
[46] |
T. Zhao, Q. Yang, Y. Xi, Z. Xie, J. Shen, Z. Li, et al. Ferroptosis in rheumatoid arthritis: a potential therapeutic strategy. Front Immunol, 13 (2022), p. 779585.
|
[47] |
M. Bonadonna, S. Altamura, E. Tybl, G. Palais, M. Qatato, M. Polycarpou-Schwarz, et al. Iron regulatory protein (IRP)-mediated iron homeostasis is critical for neutrophil development and differentiation in the bone marrow. Sci Adv, 8 (40) (2022), p. eabq4469.
|
[48] |
D.M. Wrighting, N.C. Andrews. Interleukin-6 induces hepcidin expression through STAT3. Blood, 108 (9) (2006), pp. 3204-3209.
|
[49] |
S. Banerjee, P. Katiyar, L. Kumar, V. Kumar, S.S. Saini, V. Krishnan, et al. Black pepper prevents anemia of inflammation by inhibiting hepcidin over-expression through BMP6-SMAD1/IL6-STAT3 signaling pathway. Free Radic Biol Med, 168 (2021), pp. 189-202.
|
[50] |
S. Ye, W. Luo, Z.A. Khan, G. Wu, L. Xuan, P. Shan, et al. Celastrol attenuates angiotensin II-induced cardiac remodeling by targeting STAT3. Circ Res, 126 (8) (2020), pp. 1007-1023.
|
[51] |
Y. Huang, X. Ba, H. Wang, P. Shen, L. Han, W. Lin, et al. Triptolide alleviates collagen-induced arthritis in mice by modulating Treg/Th 17 imbalance through the JAK/PTEN-STAT3 pathway. Basic Clin Pharmacol Toxicol, 133 (1) (2023), pp. 43-58.
|
[52] |
Z. Zhao, Y. Wang, Y. Gong, X. Wang, L. Zhang, H. Zhao, et al. Celastrol elicits antitumor effects by inhibiting the STAT3 pathway through ROS accumulation in non-small cell lung cancer. J Transl Med, 20 (1) (2022), p. 525.
|
[53] |
X. Xiao, B.S. Yeoh, M. Vijay-Kumar. Lipocalin 2: an emerging player in iron homeostasis and inflammation. Annu Rev Nutr, 37 (1) (2017), pp. 103-130.
|
[54] |
H.S. An, J.W. Yoo, J.H. Jeong, M. Heo, S.H. Hwang, H.M. Jang, et al. Lipocalin-2 promotes acute lung inflammation and oxidative stress by enhancing macrophage iron accumulation. Int J Biol Sci, 19 (4) (2023), pp. 1163-1177.
|
[55] |
X. Wang, X. Li, X. Zuo, Z. Liang, T. Ding, K. Li, et al. Photobiomodulation inhibits the activation of neurotoxic microglia and astrocytes by inhibiting Lcn2/JAK2-STAT3 crosstalk after spinal cord injury in male rats. J Neuroinflammation, 18 (1) (2021), p. 256.
|
[56] |
C.Y. Wang, J.L. Babitt. Liver iron sensing and body iron homeostasis. Blood, 133 (1) (2019), pp. 18-29.
|
[57] |
R.J. Andrade, N. Chalasani, E.S. Björnsson, A. Suzuki, G.A. Kullak-Ublick, P.B. Watkins, et al. Drug-induced liver injury. Nat Rev Dis Primers, 5 (1) (2019), p. 58.
|
[58] |
J. Chen, X. Li, C. Ge, J. Min, F. Wang. The multifaceted role of ferroptosis in liver disease. Cell Death Differ, 29 (3) (2022), pp. 467-480.
|
[59] |
Y. Henning, U.S. Blind, S. Larafa, J. Matschke, J. Fandrey. Hypoxia aggravates ferroptosis in RPE cells by promoting the Fenton reaction. Cell Death Dis, 13 (7) (2022), p. 662.
|
[60] |
B.R. Stockwell. Ferroptosis turns 10: emerging mechanisms, physiological functions, and therapeutic applications. Cell, 185 (14) (2022), pp. 2401-2421.
|
[61] |
X. Fan, X. Wang, Y. Hui, T. Zhao, L. Mao, B. Cui, et al. Genipin protects against acute liver injury by abrogating ferroptosis via modification of GPX4 and ALOX15-launched lipid peroxidation in mice. Apoptosis, 28 (9-10) (2023), pp. 1469-1483.
|
[62] |
C.B. Billesbølle, C.M. Azumaya, R.C. Kretsch, A.S. Powers, S. Gonen, S. Schneider, et al. Structure of hepcidin-bound ferroportin reveals iron homeostatic mechanisms. Nature, 586 (7831) (2020), pp. 807-811.
|
[63] |
P. Luo, D. Liu, Q. Zhang, F. Yang, Y.K. Wong, F. Xia, et al. Celastrol induces ferroptosis in activated HSCs to ameliorate hepatic fibrosis via targeting peroxiredoxins and HO-1. Acta Pharm Sin B, 12 (5) (2022), pp. 2300-2314.
|
[64] |
M.M. Clemens, S. Kennon-McGill, J.H. Vazquez, O.W. Stephens, E.A. Peterson, D.J. Johann, et al. Exogenous phosphatidic acid reduces acetaminophen-induced liver injury in mice by activating hepatic interleukin-6 signaling through inter-organ crosstalk. Acta Pharm Sin B, 11 (12) (2021), pp. 3836-3846.
|