从“铁-骨/脂”代谢稳态探索雷公藤多苷片治疗类风湿关节炎的“效/毒”关联机制

丁子禾, 王晓月, 张依, 刘健, 万磊, 李涛, 陈凛, 林娜, 张彦琼

工程(英文) ›› 2024, Vol. 39 ›› Issue (8) : 166-179.

PDF(6526 KB)
PDF(6526 KB)
工程(英文) ›› 2024, Vol. 39 ›› Issue (8) : 166-179. DOI: 10.1016/j.eng.2024.04.003
研究论文
Article

从“铁-骨/脂”代谢稳态探索雷公藤多苷片治疗类风湿关节炎的“效/毒”关联机制

作者信息 +

Altered Iron-Mediated Metabolic Homeostasis Governs the Efficacy and Toxicity of Tripterygium Glycosides Tablets Against Rheumatoid Arthritis

Author information +
History +

摘要

类风湿关节炎(RA)是一种全球范围内发病率和致残率均不断攀升的自身免疫病。雷公藤多苷片是中药雷公藤(TwHF)的代表性中成药品种,其针对RA的临床疗效确切。值得注意的是,药物性肝损伤(DILI)是限制该品种临床广泛应用的瓶颈问题之一。然而,雷公藤多苷片在治疗RA中的效、毒分子机制均尚未被完全阐明。为了解决这一问题,本研究整合了雷公藤多苷片缓解RA疗效和诱发DILI相关的临床转录组、蛋白质组与代谢组学数据,及其所含化学成分谱和候选靶标谱,开展了多维关联网络分析,不仅识别了其疗效与致毒候选生物标志,还系统解析了其相关分子机制。进一步,采用独立临床样本集,对上述雷公藤多苷片效、毒候选生物标志的临床效能进行验证,并利用胶原诱导性关节炎(CIA)小鼠模型验证其效、毒作用靶标。研究结果表明,雷公藤多苷片缓解RA所发挥的疗效和所诱发的DILI分别与其对“铁-骨”和“铁-脂”代谢稳态的调节密切相关。其中,信号转导和转录激活因子3(STAT3)-肝素(HAMP)/脂质运载蛋白2(LCN2)-抗酒石酸性磷酸酶5型(ACP5)轴所介导的“铁-骨”代谢途径和STAT3-HAMP-长链脂酰辅酶A合成酶4型(ACSL4)-卵磷脂胆碱酰基转移酶3型(LPCAT3)轴所介导的“铁-脂”代谢途径分别是雷公藤多苷片发挥疗效和诱发毒性的关键驱动因素,即,该中成药品种可通过抑制STAT3-HAMP/LCN2-ACP5轴有效逆转了CIA小鼠关节组织中的“铁-骨”紊乱,随后通过调节STAT3-HAMP-ACSL4-LPCAT3轴导致肝脏组织中的“铁-脂”紊乱。进而,在利用MH7A和AML12细胞的体外双向实验验证中,再次确认了雷公藤多苷片对上述关键靶点的双向调控作用。综上,本研究结果证实了“铁-骨/脂”代谢稳态与雷公藤多苷片抗RA疗效和诱发DILI毒性密切关联,为具有“双刃剑”特质中成药品种的临床合理应用提供了新的思路。

Abstract

Rheumatoid arthritis (RA), a globally increasing autoimmune disorder, is associated with increased disability rates due to the disruption of iron metabolism. Tripterygium glycoside tablets (TGTs), a Tripterygium wilfordii Hook. f. (TwHF)-based therapy, exhibit satisfactory clinical efficacy for RA treatment. However, drug-induced liver injury (DILI) remains a critical issue that hinders the clinical application of TGTs, and the molecular mechanisms underlying the efficacy and toxicity of TGTs in RA have not been fully elucidated. To address this problem, we integrated clinical multi-omics data associated with the anti-RA efficacy and DILI of TGTs with the chemical and target profiling of TGTs to perform a systematic network analysis. Subsequently, we identified effective and toxic targets following experimental validation in a collagen-induced arthritis (CIA) mouse model. Significantly different transcriptome-protein-metabolite profiles distinguishing patients with favorable TGTs responses from those with poor outcomes were identified. Intriguingly, the clinical efficacy and DILI of TGTs against RA were associated with metabolic homeostasis between iron and bone and between iron and lipids, respectively. Particularly, the signal transducer and activator of transcription 3 (STAT3)-hepcidin (HAMP)/lipocalin 2 (LCN2)-tartrate-resis tant acid phosphatase type 5 (ACP5) and STAT3-HAMP-acyl-CoA synthetase long-chain family member 4 (ACSL4)-lysophosphatidylcholine acyltransferase 3 (LPCAT3) axes were identified as key drivers of the efficacy and toxicity of TGTs. TGTs play dual roles in ameliorating CIA-induced pathology and in inducing hepatic dysfunction, disruption of lipid metabolism, and hepatic lipid peroxidation. Notably, TGTs effectively reversed "iron-bone" disruptions in the inflamed joint tissues of CIA mice by inhibiting the STAT3-HAMP/LCN2-ACP5 axis, subsequently leading to "iron-lipid" disturbances in the liver tissues via modulation of the STAT3-HAMP-ACSL4-LPCAT3 axis. Additional bidirectional validation experiments were conducted using MH7A and AML12 cells to confirm the bidirectional regulatory effects of TGTs on key targets. Collectively, our data highlight the association between iron-mediated metabolic homeostasis and the clinical efficacy and toxicity of TGT in RA therapy, offering guidance for the rational clinical use of TwHF-based therapy with dual therapeutic and toxic potential.

关键词

雷公藤多苷片 / 类风湿关节炎 / 铁代谢 / 临床疗效 / 药物性肝损伤 / 临床多组学分析

Keywords

Tripterygium glycosides tablets / Rheumatoid arthritis / Iron metabolism / Clinical efficacy / Drug-induced liver injury / Clinical multi-omics data analysis

引用本文

导出引用
丁子禾, 王晓月, 张依. 从“铁-骨/脂”代谢稳态探索雷公藤多苷片治疗类风湿关节炎的“效/毒”关联机制. Engineering. 2024, 39(8): 166-179 https://doi.org/10.1016/j.eng.2024.04.003

参考文献

[1]
A. Finckh, B. Gilbert, B. Hodkinson, S.C. Bae, R. Thomas, K.D. Deane, et al. Global epidemiology of rheumatoid arthritis. Nat Rev Rheumatol, 18 (2022), pp. 591-602.
[2]
F. Cao, Y.C. Liu, Q.Y. Ni, Y. Chen, C.H. Wan, S.Y. Liu, et al. Temporal trends in the prevalence of autoimmune diseases from 1990 to 2019. Autoimmun Rev, 22 (8) (2023), p. 103359.
[3]
M.H. Smith, J.R. Berman. What is rheumatoid arthritis>. JAMA, 327 (12) (2022), p. 1194.
[4]
D. Luo, Z. Zuo, H. Zhao, Y. Tan, C. Xiao. Immunoregulatory effects of Tripterygium wilfordii Hook F and its extracts in clinical practice. Front Med, 13 (5) (2019), pp. 556-563.
[5]
X.H. Xiao, C.X. Liu. Collaborative innovation boosting the safe and rational use of traditional Chinese medicines. China J Chin Mater Med, 44 (2019), pp. 3365-3367.
[6]
D.M. Marcus. Comparison of Tripterygium wilfordii Hook F with methotrexate in the treatment of rheumatoid arthritis. Ann Rheum Dis, 73 (9) (2014), p. e56.
[7]
X. Zhang, H. Yang, X. Zuo, L. Wu, J. Peng, Z. Li, et al. Efficacy and safety of Tripterygium wilfordii Hook F plus TNF inhibitor for active rheumatoid arthritis: a multicentre, randomized, double-blind, triple-dummy controlled trial. Clin Immunol, 255 (2023), p. 109749.
[8]
Q.W. Lv, W. Zhang, Q. Shi, W.J. Zheng, X. Li, H. Chen, et al. Comparison of Tripterygium wilfordii Hook F with methotrexate in the treatment of active rheumatoid arthritis (TRIFRA): a randomised, controlled clinical trial. Ann Rheum Dis, 74 (6) (2015), pp. 1078-1086.
[9]
J.X. Wang, C.F. Liu, Y.Q. Li, X.H. Su, N. Lin. Effect of Tripterygium glycosides tablets on synovial angiogenesis in rats with type II collagen induced arthritis. China J Chin Mater Med, 44 (2019), pp. 3441-3447.
[10]
Y. Zhu, L. Zhang, X. Zhang, D. Wu, L. Chen, C. Hu, et al. Tripterygium wilfordii glycosides ameliorates collagen-induced arthritis and aberrant lipid metabolism in rats. Front Pharmacol, 13 (2022), p. 938849.
[11]
K. Zhang, S. Pace, P.M. Jordan, L.K. Peltner, A. Weber, D. Fischer, et al. Beneficial modulation of lipid mediator biosynthesis in innate immune cells by antirheumatic Tripterygium wilfordii glycosides. Biomolecules, 11 (5) (2021), p. 746.
[12]
C. Xie, J. Jiang, J. Liu, G. Yuan, Z. Zhao. Triptolide suppresses human synoviocyte MH7A cells mobility and maintains redox balance by inhibiting autophagy. Biomed Pharmacother, 115 (2019), p. 108911.
[13]
Y.G. Tian, X.H. Su, L.L. Liu, X.Y. Kong, N. Lin. Overview of hepatotoxicity studies on Tripterygium wilfordii in recent 20 years. China J Chin Mater Med, 44 (2019), pp. 3399-3405.
[14]
Y.Y. Zhou, X. Xia, W.K. Peng, Q.H. Wang, J.H. Peng, Y.L. Li, et al. The effectiveness and safety of Tripterygium wilfordii Hook. F extracts in rheumatoid arthritis: a systematic review and meta-analysis. Front Pharmacol, 9 (2018), p. 356.
[15]
J. Wang, H. Song, F. Ge, P. Xiong, J. Jing, T. He, et al. Landscape of DILI-related adverse drug reaction in China Mainland. Acta Pharm Sin B, 12 (12) (2022), pp. 4424-4431.
[16]
M. Dai, W. Peng, T. Zhang, Q. Zhao, X. Ma, Y. Cheng, et al. Metabolomics reveals the role of PPARα in Tripterygium wilfordii-induced liver injury. J Ethnopharmacol, 289 (2022), p. 115090.
[17]
Y.Y. Miao, L. Luo, T. Shu, H. Wang, L.Y. Zhang. Study on difference of liver toxicity and its molecular mechanisms caused by Tripterygium wilfordii multiglycoside and equivalent amount of triptolid in rats. China J Chin Mater Med, 44 (2019), pp. 3468-3477.
[18]
Y. Zhang, X. Mao, W. Li, W. Chen, X. Wang, Z. Ma, et al. Tripterygium wilfordii: an inspiring resource for rheumatoid arthritis treatment. Med Res Rev, 41 (3) (2021), pp. 1337-1374.
[19]
X. Wang, Y. Zhang, Z. Ding, L. Du, Y. Zhang, S. Yan, et al. Cross-talk between the RAS-ERK and mTOR signalings-associated autophagy contributes to Tripterygium glycosides tablet-induced liver injury. Biomed Pharmacother, 160 (2023), p. 114325.
[20]
N. Lin, Y.Q. Zhang, Q. Jiang, W. Liu, J. Liu, Q.C. Huang, et al. Clinical practice guideline for Tripterygium glycosides/Tripterygium wilfordii tablets in the treatment of rheumatoid arthritis. Front Pharmacol, 11 (2020), p. 608703.
[21]
N. Lin, Q. Jiang, W. Liu, Liu Jian, Q. Huang, K. Wu, et al. Clinical practice guideline for Tripterygium glycosides/Tripterygium wilfordii tablets in treatment of rheumatoid arthritis. China J Chin Mater Med, 45 (2020), pp. 4149-4153.
[22]
Y. Zhang, H. Wang, X. Mao, Q. Guo, W. Li, X. Wang, et al. A novel gene-expression-signature-based model for prediction of response to Tripterygium glycosides tablet for rheumatoid arthritis patients. J Transl Med, 16 (1) (2018), p. 187.
[23]
Y. Zhang, H. Wang, X. Mao, Q. Guo, W. Li, X. Wang, et al. A novel circulating miRNA-based model predicts the response to Tripterygium glycosides tablets: moving toward model-based precision medicine in rheumatoid arthritis. Front Pharmacol, 9 (2018), p. 378.
[24]
Z. Ding, W. Chen, H. Wu, W. Li, X. Mao, W. Su, et al. Integrative network fusion-based multi-omics study for biomarker identification and patient classification of rheumatoid arthritis. Chin Med, 18 (1) (2023), p. 48.
[25]
M.M. Bradford. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 72 (1976), pp. 248-254.
[26]
X. Wang, Y. Zhang, W. Chen, L. Wan, J. Liu, Y. Zhang, et al. Exploration on the mechanisms underlying the “efficacy-toxicity” association of Tripterygium glycosides tablets through the analysis of multi-omics integrated regulatory network. Chin J Exp Trad, 29 (2023), pp. 49-57.
[27]
Y. Zhang, X. Wang, W. Li, H. Wang, X. Yin, F. Jiang, et al. Inferences of individual differences in response to Tripterygium glycosides across patients with rheumatoid arthritis using a novel ceRNA regulatory axis. Clin Transl Med, 10 (6) (2020), p. e185.
[28]
Y. Zhang, X. Wang, Z. Ding, N. Lin, Y. Zhang. Enhanced efficacy with reduced toxicity of Tripterygium glycoside tablet by compatibility with total glucosides of paeony for rheumatoid arthritis therapy. Biomed Pharmacother, 166 (2023), p. 115417.
[29]
X. Su, B. Yuan, X. Tao, W. Guo, X. Mao, A. Wu, et al. Anti-angiogenic effect of YuXueBi tablet in experimental rheumatoid arthritis by suppressing LOX/Ras/Raf-1 signaling. J Ethnopharmacol, 298 (2022), p. 115611.
[30]
W. Li, K. Wang, Y. Liu, H. Wu, Y. He, C. Li, et al. A novel drug combination of mangiferin and cinnamic acid alleviates rheumatoid arthritis by inhibiting TLR4/NFκB/NLRP 3 activation-induced pyroptosis. Front Immunol, 13 (2022), p. 912933.
[31]
Z. Ding, R. Zhong, Y. Yang, T. Xia, W. Wang, Y. Wang, et al. Systems pharmacology reveals the mechanism of activity of Ge-Gen-Qin-Lian decoction against LPS-induced acute lung injury: a novel strategy for exploring active components and effective mechanism of TCM formulae. Pharmacol Res, 156 (2020), p. 104759.
[32]
W. Chen, Z. Ma, L. Yu, X. Mao, N. Ma, X. Guo, et al. Preclinical investigation of artesunate as a therapeutic agent for hepatocellular carcinoma via impairment of glucosylceramidase-mediated autophagic degradation. Exp Mol Med, 54 (9) (2022), pp. 1536-1548.
[33]
Z. Ma, W. Chen, Y. Liu, L. Yu, X. Mao, X. Guo, et al. Artesunate sensitizes human hepatocellular carcinoma to sorafenib via exacerbating AFAP1L2-SRC-FUNDC 1 axis-dependent mitophagy. Autophagy, 20 (3) (2024), pp. 541-556.
[34]
X. Mao, Y. Liu, W. Li, K. Wang, C. Li, Q. Wang, et al. A promising drug combination of mangiferin and glycyrrhizic acid ameliorates disease severity of rheumatoid arthritis by reversing the disturbance of thermogenesis and energy metabolism. Phytomedicine, 104 (2022), p. 154216.
[35]
S. Sun, J. Shen, J. Jiang, F. Wang, J. Min. Targeting ferroptosis opens new avenues for the development of novel therapeutics. Signal Transduct Target Ther, 8 (1) (2023), p. 372.
[36]
M. Hu, Q. Luo, G. Alitongbieke, S. Chong, C. Xu, L. Xie, et al. Celastrol-induced Nur 77 interaction with TRAF2 alleviates inflammation by promoting mitochondrial ubiquitination and autophagy. Mol Cell, 66 (1) (2017), pp. 141-153.e6.
[37]
M. Jing, J. Yang, L. Zhang, J. Liu, S. Xu, M. Wang, et al. Celastrol inhibits rheumatoid arthritis through the ROS-NF-κB-NLRP 3 inflammasome axis. Int Immunopharmacol, 98 (2021), p. 107879.
[38]
A. Xu, R. Yang, M. Zhang, X. Wang, Y. Di, B. Jiang, et al. Macrophage targeted triptolide micelles capable of cGAS-STING pathway inhibition for rheumatoid arthritis treatment. J Drug Target, 30 (9) (2022), pp. 961-972.
[39]
J.J. Lin, K. Tao, N. Gao, H. Zeng, D.L. Wang, J. Yang, et al. Triptolide inhibits expression of inflammatory cytokines and proliferation of fibroblast-like synoviocytes induced by IL-6/sIL-6R-mediated JAK2/STAT3 signaling pathway. Curr Med Sci, 41 (1) (2021), pp. 133-139.
[40]
S. Ni, Y. Yuan, Y. Kuang, X. Li. Iron metabolism and immune regulation. Front Immunol, 13 (2022), p. 816282.
[41]
B.K. Das, L. Wang, T. Fujiwara, J. Zhou, N. Aykin-Burns, K.J. Krager, et al. Transferrin receptor 1-mediated iron uptake regulates bone mass in mice via osteoclast mitochondria and cytoskeleton. ELife, 11 (2022), p. e73539.
[42]
M.D. Cappellini, V. Santini, C. Braxs, A. Shander. Iron metabolism and iron deficiency anemia in women. Fertil Steril, 118 (4) (2022), pp. 607-614.
[43]
W. Tański, M. Chabowski, B. Jankowska-Polańska, E.A. Jankowska. Iron metabolism in patients with rheumatoid arthritis. Eur Rev Med Pharmacol Sci, 25 (2021), pp. 4325-4335.
[44]
M.G. Ledesma-Colunga, U. Baschant, I.A.K. Fiedler, B. Busse, L.C. Hofbauer, M.U. Muckenthaler, et al. Disruption of the hepcidin/ferroportin regulatory circuitry causes low axial bone mass in mice. Bone, 137 (2020), p. 115400.
[45]
G.F. Li, Y.J. Xu, Y.F. He, B.C. Du, P. Zhang, D.Y. Zhao, et al. Effect of hepcidin on intracellular calcium in human osteoblasts. Mol Cell Biochem, 366 (1-2) (2012), pp. 169-174.
[46]
T. Zhao, Q. Yang, Y. Xi, Z. Xie, J. Shen, Z. Li, et al. Ferroptosis in rheumatoid arthritis: a potential therapeutic strategy. Front Immunol, 13 (2022), p. 779585.
[47]
M. Bonadonna, S. Altamura, E. Tybl, G. Palais, M. Qatato, M. Polycarpou-Schwarz, et al. Iron regulatory protein (IRP)-mediated iron homeostasis is critical for neutrophil development and differentiation in the bone marrow. Sci Adv, 8 (40) (2022), p. eabq4469.
[48]
D.M. Wrighting, N.C. Andrews. Interleukin-6 induces hepcidin expression through STAT3. Blood, 108 (9) (2006), pp. 3204-3209.
[49]
S. Banerjee, P. Katiyar, L. Kumar, V. Kumar, S.S. Saini, V. Krishnan, et al. Black pepper prevents anemia of inflammation by inhibiting hepcidin over-expression through BMP6-SMAD1/IL6-STAT3 signaling pathway. Free Radic Biol Med, 168 (2021), pp. 189-202.
[50]
S. Ye, W. Luo, Z.A. Khan, G. Wu, L. Xuan, P. Shan, et al. Celastrol attenuates angiotensin II-induced cardiac remodeling by targeting STAT3. Circ Res, 126 (8) (2020), pp. 1007-1023.
[51]
Y. Huang, X. Ba, H. Wang, P. Shen, L. Han, W. Lin, et al. Triptolide alleviates collagen-induced arthritis in mice by modulating Treg/Th 17 imbalance through the JAK/PTEN-STAT3 pathway. Basic Clin Pharmacol Toxicol, 133 (1) (2023), pp. 43-58.
[52]
Z. Zhao, Y. Wang, Y. Gong, X. Wang, L. Zhang, H. Zhao, et al. Celastrol elicits antitumor effects by inhibiting the STAT3 pathway through ROS accumulation in non-small cell lung cancer. J Transl Med, 20 (1) (2022), p. 525.
[53]
X. Xiao, B.S. Yeoh, M. Vijay-Kumar. Lipocalin 2: an emerging player in iron homeostasis and inflammation. Annu Rev Nutr, 37 (1) (2017), pp. 103-130.
[54]
H.S. An, J.W. Yoo, J.H. Jeong, M. Heo, S.H. Hwang, H.M. Jang, et al. Lipocalin-2 promotes acute lung inflammation and oxidative stress by enhancing macrophage iron accumulation. Int J Biol Sci, 19 (4) (2023), pp. 1163-1177.
[55]
X. Wang, X. Li, X. Zuo, Z. Liang, T. Ding, K. Li, et al. Photobiomodulation inhibits the activation of neurotoxic microglia and astrocytes by inhibiting Lcn2/JAK2-STAT3 crosstalk after spinal cord injury in male rats. J Neuroinflammation, 18 (1) (2021), p. 256.
[56]
C.Y. Wang, J.L. Babitt. Liver iron sensing and body iron homeostasis. Blood, 133 (1) (2019), pp. 18-29.
[57]
R.J. Andrade, N. Chalasani, E.S. Björnsson, A. Suzuki, G.A. Kullak-Ublick, P.B. Watkins, et al. Drug-induced liver injury. Nat Rev Dis Primers, 5 (1) (2019), p. 58.
[58]
J. Chen, X. Li, C. Ge, J. Min, F. Wang. The multifaceted role of ferroptosis in liver disease. Cell Death Differ, 29 (3) (2022), pp. 467-480.
[59]
Y. Henning, U.S. Blind, S. Larafa, J. Matschke, J. Fandrey. Hypoxia aggravates ferroptosis in RPE cells by promoting the Fenton reaction. Cell Death Dis, 13 (7) (2022), p. 662.
[60]
B.R. Stockwell. Ferroptosis turns 10: emerging mechanisms, physiological functions, and therapeutic applications. Cell, 185 (14) (2022), pp. 2401-2421.
[61]
X. Fan, X. Wang, Y. Hui, T. Zhao, L. Mao, B. Cui, et al. Genipin protects against acute liver injury by abrogating ferroptosis via modification of GPX4 and ALOX15-launched lipid peroxidation in mice. Apoptosis, 28 (9-10) (2023), pp. 1469-1483.
[62]
C.B. Billesbølle, C.M. Azumaya, R.C. Kretsch, A.S. Powers, S. Gonen, S. Schneider, et al. Structure of hepcidin-bound ferroportin reveals iron homeostatic mechanisms. Nature, 586 (7831) (2020), pp. 807-811.
[63]
P. Luo, D. Liu, Q. Zhang, F. Yang, Y.K. Wong, F. Xia, et al. Celastrol induces ferroptosis in activated HSCs to ameliorate hepatic fibrosis via targeting peroxiredoxins and HO-1. Acta Pharm Sin B, 12 (5) (2022), pp. 2300-2314.
[64]
M.M. Clemens, S. Kennon-McGill, J.H. Vazquez, O.W. Stephens, E.A. Peterson, D.J. Johann, et al. Exogenous phosphatidic acid reduces acetaminophen-induced liver injury in mice by activating hepatic interleukin-6 signaling through inter-organ crosstalk. Acta Pharm Sin B, 11 (12) (2021), pp. 3836-3846.
PDF(6526 KB)

Accesses

Citation

Detail

段落导航
相关文章

/