基于系统论框架整合人工智能与中医药整体物质基础研究

曾敬其, 贾晓斌

工程(英文) ›› 2024, Vol. 40 ›› Issue (9) : 28-50.

PDF(5151 KB)
PDF(5151 KB)
工程(英文) ›› 2024, Vol. 40 ›› Issue (9) : 28-50. DOI: 10.1016/j.eng.2024.04.009
研究论文
Review

基于系统论框架整合人工智能与中医药整体物质基础研究

作者信息 +

Systems Theory-Driven Framework for AI Integration into the Holistic Material Basis Research of Traditional Chinese Medicine

Author information +
History +

Abstract

This paper introduces a systems theory-driven framework to integration artificial intelligence (AI) into traditional Chinese medicine (TCM) research, enhancing the understanding of TCM’s holistic material basis while adhering to evidence-based principles. Utilizing the System Function Decoding Model (SFDM), the research progresses through define, quantify, infer, and validate phases to systematically explore TCM’s material basis. It employs a dual analytical approach that combines top-down, systems theory-guided perspectives with bottom-up, elements-structure-function methodologies, provides comprehensive insights into TCM’s holistic material basis. Moreover, the research examines AI’s role in quantitative assessment and predictive analysis of TCM’s material components, proposing two specific AI-driven technical applications. This interdisciplinary effort underscores AI’s potential to enhance our understanding of TCM’s holistic material basis and establishes a foundation for future research at the intersection of traditional wisdom and modern technology.

Keywords

Artificial intelligence / Systems theory / Traditional Chinese medicine / Material basis / Bottom-up

引用本文

导出引用
曾敬其, 贾晓斌. 基于系统论框架整合人工智能与中医药整体物质基础研究. Engineering. 2024, 40(9): 28-50 https://doi.org/10.1016/j.eng.2024.04.009

参考文献

[1]
Unschuld PU. Traditional Chinese medicine: some historical and epistemological reflections. Soc Sci Med 1986; 24(12):1023-9.
[2]
Prance SE, Dresser A, Wood C, Fleming J, Aldridge D, Pietroni PC. Research on traditional Chinese acupuncture—science or myth: a review. J R Soc Med 1988; 10(10):588-90.
[3]
Xiong Y, Li NX, Duan N, Liu B, Zhu H, Zhang C, et al. Traditional Chinese medicine in treating influenza: from basic science to clinical applications. Front Pharmacol 2020; 11:575803.
[4]
Zhao Z, Li Y, Zhou L, Zhou X, Xie B, Zhang W, et al. Prevention and treatment of COVID-19 using traditional Chinese medicine: a review. Phytomedicine 2021; 85:153308.
[5]
Lyu M, Fan G, Xiao G, Wang T, Xu D, Gao J, et al. Traditional Chinese medicine in COVID-19. Acta Pharm Sin B 2021; 11(11):3337-63.
[6]
An X, Zhang Y, Duan L, Jin D, Zhao S, Zhou RR, et al. The direct evidence and mechanism of traditional Chinese medicine treatment of COVID-19. Biomed Pharmacother 2021; 137:111267.
[7]
Jiang W. Therapeutic wisdom in traditional Chinese medicine: a perspective from modern science. Trends Pharmacol Sci 2005; 26(11):558-63.
[8]
Liu B. Utilizing big data to build personalized technology and system of diagnosis and treatment in traditional Chinese medicine. Front Med 2014; 8 (3):272-8.
[9]
Chu X, Sun B, Huang Q, Peng S, Zhou Y, Zhang Y. Quantitative knowledge presentation models of traditional Chinese medicine (TCM): a review. Artif Intell Med 2020; 103:101810.
[10]
Tu Y. Artemisinin—a gift from traditional Chinese medicine to the world (Nobel Lecture). Angew Chem Int Ed 2016; 55(35):10210-26.
[11]
Hu C, Xu G. Metabolomics and traditional Chinese medicine. TrAC Trends Anal Chem 2014; 61:207-14.
[12]
Wang T, Liu J, Luo X, Hu L, Lu H. Functional metabolomics innovates therapeutic discovery of traditional Chinese medicine derived functional compounds. Pharmacol Ther 2021; 224:107824.
[13]
Zhang A, Sun H, Yan G, Han Y, Zhao QQ, Wang XJ. Chinmedomics: a powerful approach integrating metabolomics with serum pharmacochemistry to evaluate the efficacy of traditional Chinese medicine. Engineering 2019; 5 (1):60-8.
[14]
Zhang B, Li Y, Zhang Y, Li Z, Bi T, He Y, et al. ITPI: initial transcription processbased identification method of bioactive components in traditional Chinese medicine formula. Evid Based Complement Alternat Med 2016; 2016:8250323.
[15]
He H, Sun W, Chang J, Hu S, Yang J, Yi X, et al. Multi-component immune knockout: a strategy for studying the effective components of traditional Chinese medicine. J Chromatogr A 2023; 1692:463853.
[16]
Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 1997; 23(1-3):3-25.
[17]
Jiao X, Jin X, Ma Y, Yang Y, Li J, Liang L, et al. A comprehensive application: molecular docking and network pharmacology for the prediction of bioactive constituents and elucidation of mechanisms of action in component-based Chinese medicine. Comput Biol Chem 2021; 90:107402.
[18]
Sun C, Huang J, Tang R, Li M, Yuan H, Wang Y, et al. CPMCP: a database of Chinese patent medicine and compound prescription. Database 2022; 2022:baac073.
[19]
Wu Y, Zhang F, Yang K, Fang S, Bu D, Li H, et al. SymMap: an integrative database of traditional Chinese medicine enhanced by symptom mapping. Nucleic Acids Res 2018; 47(D1):D1110-7.
[20]
Ru J, Li P, Wang J, Zhou W, Li B, Huang C, et al. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J Cheminform 2014; 6(1):13.
[21]
Zhang Y, Li X, Shi Y, Chen T, Xu Z, Wang P, et al. ETCM v2.0: an update with comprehensive resource and rich annotations for traditional Chinese medicine. Acta Pharm Sin B 2023; 13(6):2559-71.
[22]
Huang L, Xie D, Yu Y, Liu H, Shi Y, Shi T, et al. TCMID 2.0: a comprehensive resource for TCM. Nucleic Acids Res 2017; 46(D1):D1117-20.
[23]
Chen Q, Springer L, Gohlke BO, Goede A, Dunkel M, Abel R, et al. SuperTCM: a biocultural database combining biological pathways and historical linguistic data of Chinese Materia Medica for drug development. Biomed Pharmacother 2021; 144:112315.
[24]
Lv Q, Chen G, He H, Yang Z, Zhao L, Chen HY, et al. TCMBank: bridges between the largest herbal medicines, chemical ingredients, target proteins, and associated diseases with intelligence text mining. Chem Sci 2023; 14 (39):10684-701.
[25]
Fang S, Dong L, Liu L, Guo JC, Zhao LH, Zhang JY, et al. HERB: a highthroughput experiment- and reference-guided database of traditional Chinese medicine. Nucleic Acids Res 2020; 49(D1):D1197-206.
[26]
Zeng X, Zhang P, Wang Y, Qin C, Chen S, He W, et al. CMAUP: a database of collective molecular activities of useful plants. Nucleic Acids Res 2018; 47 (D1):D1118-27.
[27]
Li S, Zhang B. Traditional Chinese medicine network pharmacology: theory, methodology and application. Chin J Nat Med 2013; 11(2):110-20.
[28]
Sadri A. Is target-based drug discovery efficient? Discovery and ‘‘off-target” mechanisms of all drugs. J Med Chem 2023; 66(18):12651-77.
[29]
Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021; 596 (7873):583-9.
[30]
Zhang C, Xu J, Tang R, Yang J, Wang W, Yu X, et al. Novel research and future prospects of artificial intelligence in cancer diagnosis and treatment. J Hematol Oncol 2023; 16(1):114.
[31]
Lam R, Sanchez-Gonzalez A, Willson M, Wirnsberger P, Fortunato M, Alet F, et al. Learning skillful medium-range global weather forecasting. Science 2023; 382(6677):1416-21.
[32]
Ng AY, Oberije CJ, Ambrózay É, Szabó E, Serf}oz}o O, Karpati E, et al. Prospective implementation of AI-assisted screen reading to improve early detection of breast cancer. Nat Med 2023;29(12):3044-9.
[33]
Kurtz DM, Esfahani MS, Scherer F, Soo J, Jin MC, Liu CL, et al. Dynamic risk profiling using serial tumor biomarkers for personalized outcome prediction. Cell 2019; 178(3):699-713.e19.
[34]
Jiang M, Zhao S, Yang S, Lin X, He X, Wei X, et al. An ‘‘essential herbal medicine”—licorice: a review of phytochemicals and its effects in combination preparations. J Ethnopharmacol 2020; 249:112439.
[35]
Mancuso C, Santangelo R. Panax ginseng and Panax quinquefolius: from pharmacology to toxicology. Food Chem Toxicol 2017; 107:362-72.
[36]
Fu J, Wang Z, Huang L, Zheng S, Wang D, Chen S, et al. Review of the botanical characteristics, phytochemistry, and pharmacology of Astragalus membranaceus (Huangqi). Phytother Res 2014; 28(9):1275-83.
[37]
Still J. Use of animal products in traditional Chinese medicine: environmental impact and health hazards. Complement Ther Med 2003; 11(2):118-22.
[38]
Zhong X, Di Z, Xu Y, Liang Q, Feng K, Zhang Y, et al. Mineral medicine: from traditional drugs to multifunctional delivery systems. Chin Med 2022; 17(1):21.
[39]
Paterson RRM. Cordyceps—a traditional Chinese medicine and another fungal therapeutic biofactory? Phytochemistry 2008; 69(7):1469-95.
[40]
Ma B, Ma J, Li B, Tao Q, Gan J, Yan Z. Effects of different harvesting times and processing methods on the quality of cultivated Fritillaria cirrhosa D. Don. Food Sci Nutr 2021; 9(6):2853-61.
[41]
Wang S, Kang C, Guo L, Garran TA. The mechanism of formation of Daodi herbs. In: Huang L, editor. Molecular pharmacognosy. Singapore: Springer; 2019. p. 293-303.
[42]
Wu X, Wang S, Lu J, Jing Y, Li M, Cao J, et al. Seeing the unseen of Chinese herbal medicine processing (Paozhi): advances in new perspectives. Chin Med 2018; 13(1):4.
[43]
Roy A, Khan A, Ahmad I, Alghamdi S, Rajab BS, Babalghith AO, et al. Flavonoids a bioactive compound from medicinal plants and its therapeutic applications. BioMed Res Int 2022; 2022:5445291.
[44]
Zhang Y, Hao R, Chen J, Li S, Huang K, Cao H, et al. Health benefits of saponins and its mechanisms: perspectives from absorption, metabolism, and interaction with gut. Crit Rev Food Sci Nutr 2023; 22:1-22.
[45]
Xu D, Hu M, Wang Y, Cui YL. Antioxidant activities of quercetin and its complexes for medicinal application. Molecules 2018; 24(6):1123.
[46]
Upadhyay R, Rao LJM. An outlook on chlorogenic acids—occurrence, chemistry, technology, and biological activities. Crit Rev Food Sci Nutr 2013; 53(9):968-84.
[47]
Dong X, Fu J, Yin X, Cao S, Li X, Lin L, et al. Emodin: a review of its pharmacology, toxicity and pharmacokinetics. Phytother Res 2016; 30(8):1207-18.
[48]
Ma C, Jiang Y, Wang Y, Xu R. The latest research advances of Danggui Buxue Tang as an effective prescription for various diseases: a comprehensive review. Curr Med Sci 2022; 42(5):913-24.
[49]
Gao Q, Li J, Cheung JKH, Duan J, Ding A, Cheung AWH, et al. Verification of the formulation and efficacy of Danggui Buxue Tang (a decoction of Radix Astragali and Radix Angelicae Sinensis): an exemplifying systematic approach to revealing the complexity of Chinese herbal medicine formulae. Chin Med 2007; 2(1):12.
[50]
Zhou X, Seto SW, Chang D, Kiat H, Razmovski-Naumovski V, Chan K, et al. Synergistic effects of Chinese herbal medicine: a comprehensive review of methodology and current research. Front Pharmacol 2016; 7:206424.
[51]
Muluye RA, Bian Y, Alemu PN. Anti-inflammatory and antimicrobial effects of heat-clearing Chinese herbs: a current review. J Tradit Complement Med 2014; 4(2):93-8.
[52]
Zhou R, Zheng Y, An X, Jin D, Lian F, Tong X. Dosage modification of traditional Chinese medicine prescriptions: an analysis of two randomized controlled trials. Front Pharmacol 2021; 12:732698.
[53]
Bai X, Zhu C, Chen J, Jiang X, Jin Y, Shen R, et al. Recent progress on mass spectrum based approaches for absorption, distribution, metabolism, and excretion characterization of traditional Chinese medicine. Curr Drug Metab 2022; 23(2):99-112.
[54]
Li C, Jia W, Yang J, Cheng C, Olaleye OE. Multi-compound and drugcombination pharmacokinetic research on Chinese herbal medicines. Acta Pharmacol Sin 2022; 43(12):3080-95.
[55]
Calabrese EJ. The emergence of the dose-response concept in biology and medicine. Int J Mol Sci 2016; 17(12):2034.
[56]
Moreno García V, Olmos D, Gomez-Roca C, Cassier PA, Morales-Barrera R, Del Conte G, et al. Dose-response relationship in phase I clinical trials: a European Drug Development Network (EDDN) collaboration study. Clin Cancer Res 2014; 20(22):5663-71.
[57]
Moffett DB, Mumtaz MM, Sullivan DW, Whittaker MH. General considerations of dose-effect and dose-response relationships. In: Nordberg GF, Costa M, editors. Handbook on the toxicology of metals. Academic Press; 2022. p. 299-317.
[58]
Xu H, Li S, Liu J, Cheng J, Kang L, Li W, et al. Bioactive compounds from Huashi Baidu decoction possess both antiviral and anti-inflammatory effects against COVID-19. Proc Natl Acad Sci USA 2023; 120(18):e2301775120.
[59]
Chen Z, Cao Y, He S, Qiao Y. Development of models for classification of action between heat-clearing herbs and blood-activating stasis-resolving herbs based on theory of traditional Chinese medicine. Chin Med 2018; 13(1):12.
[60]
Yan S, Lu Y, Zhang G, Li X, Wang Z, Yao C, et al. Effect of heat-clearing and detoxifying Chinese medicines combined with conventional therapy on mild hand, foot, and mouth disease with fever: an individual patient data metaanalysis. Medicine 2020; 99(23):e20473.
[61]
Al-Khayri JM, Sahana GR, Nagella P, Joseph BV, Alessa FM, Al-Mssallem MQ. Flavonoids as potential anti-inflammatory molecules: a review. Molecules 2022; 27(9):2901.
[62]
Choy KW, Murugan D, Leong X, Abas R, Alias A, Mustafa MR. Flavonoids as natural anti-inflammatory agents targeting nuclear factor-kappa B (NFjB) signaling in cardiovascular diseases: a mini review. Front Pharmacol 2019; 10:491923.
[63]
Liang H, Ruan H, Ouyang Q, Lai L. Herb-target interaction network analysis helps to disclose molecular mechanism of traditional Chinese medicine. Sci Rep 2016; 6(1):1-10.
[64]
Gu S, Lai L. Associating 197 Chinese herbal medicine with drug targets and diseases using the similarity ensemble approach. Acta Pharmacol Sin 2020; 41 (3):432-8.
[65]
Zhu Y, Ouyang Z, Du H, Wang M, Wang J, Sun H, et al. New opportunities and challenges of natural products research: when target identification meets single-cell multiomics. Acta Pharm Sin B 2022; 12(11):4011-39.
[66]
Zhang J, Liu Y, Xu Y. Soothing liver-qi stagnation method for cancer-related depression: a protocol for systematic review and meta-analysis. Medicine 2020; 99(43):e22797.
[67]
Zhai X, Wang X, Wang L, Xiu L, Wang W, Pang X. Treating different diseases with the same method—a traditional Chinese medicine concept analyzed for its biological basis. Front Pharmacol 2020; 11:547328.
[68]
Xu L, Chen C. Mechanism and basis of traditional Chinese medicine against obesity: prevention and treatment strategies. Front Pharmacol 2021; 12:615895.
[69]
Liu T, Qin M, Xiong X, Lai X, Gao Y. Multi-omics approaches for deciphering the complexity of traditional Chinese medicine syndromes in stroke: a systematic review. Front Pharmacol 2022; 13:980650.
[70]
Lu Y, Fang Z, Zeng T, Li M, Chen Q, Zhang H, et al. Chronic hepatitis B: dynamic change in traditional Chinese medicine syndrome by dynamic network biomarkers. Chin Med 2019; 14(1):52.
[71]
Sun Y, Zhao Y, Xue SA, Chen J. The theory development of traditional Chinese medicine constitution: a review. J Tradit Chin Med Sci 2017; 5(1):16-28.
[72]
Yap SY, Ng FL, Subramaniam M, Lim YM, Foo CN.Traditional Chinese medicine body constitutions as predictors for depression: a systematic review and meta-analysis. Behav Sci 2022; 12(11):423.
[73]
Liang X, Wang Q, Jiang Z, Li Z, Zhang M, Yang P, et al. Clinical research linking traditional Chinese medicine constitution types with diseases: a literature review of 1639 observational studies. J Tradit Chin Med 2020; 40(4):690-702.
[74]
Li M, Mo S, Lv Y, Tang Z, Dong J. A study of traditional Chinese medicine body constitution associated with overweight, obesity, and underweight. Evid Based Complement Alternat Med 2017; 2017:7361896.
[75]
Hu X, Su S. An overview of epigenetics in Chinese medicine researches. Chin J Integr Med 2017; 23(9):714-20.
[76]
Teijido O. Epigenetic mechanisms in the regulation of drug metabolism and transport. In: Cacabelos R, editor. Pharmacoepigenetics. Academic Press; 2019. p. 113-28.
[77]
Wang W, Li H, Shi Y, Zhou J, Khan GJ, Zhu J, et al. Targeted intervention of natural medicinal active ingredients and traditional Chinese medicine on epigenetic modification: possible strategies for prevention and treatment of atherosclerosis. Phytomedicine 2023; 122:155139.
[78]
Wang Q. Individualized medicine, health medicine, and constitutional theory in Chinese medicine. Front Med 2012; 6(1):1-7.
[79]
Sang X, Wang Z, Liu S, Wang R. Relationship between traditional Chinese medicine (TCM) constitution and TCM syndrome in the diagnosis and treatment of chronic diseases. Chin Med Sci J 2018; 33(2):114-9.
[80]
Yu R, Zhao X, Li L, Ni C, Yang Y, Han Y, et al. Consistency between traditional Chinese medicine constitution-based classification and genetic classification. J Tradit Chin Med Sci 2015; 2(4):248-57.
[81]
Zhao S, Tang Y, Wang R, Najafi M. Mechanisms of cancer cell death induction by paclitaxel: an updated review. Apoptosis 2022; 27(9-10):647-67.
[82]
Wang K, Chen Q, Shao Y, Yin S, Liu C, Liu Y, et al. Anticancer activities of TCM and their active components against tumor metastasis. Biomed Pharmacother 2020; 133:111044.
[83]
Qi F, Zhao L, Zhou A, Zhang B, Li A, Wang Z, et al. The advantages of using traditional Chinese medicine as an adjunctive therapy in the whole course of cancer treatment instead of only terminal stage of cancer. Biosci Trends 2015; 9(1):16-34.
[84]
Yao CL, Zhang JQ, Li JY, Wei W, Wu S, Guo D. Traditional Chinese medicine (TCM) as a source of new anticancer drugs. Nat Prod Rep 2021; 38(9):1618-33.
[85]
Sheik A, Kim K, Varaprasad GL, Lee H, Kim S, Kim E, et al. The anti-cancerous activity of adaptogenic herb Astragalus membranaceus. Phytomedicine 2021; 91:153698.
[86]
Bai F, Huang Z, Luo J, Qiu Y, Huang S, Huang C, et al. Bibliometric and visual analysis in the field of traditional Chinese medicine in cancer from 2002 to 2022. Front Pharmacol 2023; 14:1164425.
[87]
Hu Q, Sun Y, Lau E, Zhao M, Su SB. Advances in synergistic combinations of Chinese herbal medicine for the treatment of cancer. Curr Cancer Drug Targets 2016; 16(4):346-56.
[88]
Yen C, Zhao F, Yu Z, Zhu X, Li CG. Interactions between natural products and tamoxifen in breast cancer: a comprehensive literature review. Front Pharmacol 2022; 13:847113.
[89]
Ali M, Wani SUD, Salahuddin M, Manjula SN, Mruthunjaya K, Dey T, et al. Recent advance of herbal medicines in cancer—a molecular approach. Heliyon 2023; 9(2):e13684.
[90]
Xia X, Cole PC, Cai T, Cai Y. Effect of traditional Chinese medicine components on multidrug resistance in tumors mediated by P-glycoprotein. Oncol Lett 2017; 13(6):3989-96.
[91]
Birch S, Alraek T, Lee MS, Kim TH. Descriptions of qi deficiency and qi stagnation in traditional East Asian medicine: a comparison of Asian and Western sources. Eur J Integr Med 2022; 55:102180.
[92]
Ji Q, Luo Y, Wang W, Liu X, Li Q, Su S. Research advances in traditional Chinese medicine syndromes in cancer patients. J Integr Med 2015; 14(1):12-21.
[93]
Echle A, Rindtorff NT, Brinker TJ, Luedde T, Pearson AT, Kather JN. Deep learning in cancer pathology: a new generation of clinical biomarkers. Br J Cancer 2021; 124(4):686-96.
[94]
Hristova VA, Chan DW. Cancer biomarker discovery and translation: proteomics and beyond. Expert Rev Proteomics 2019; 16(2):93-103.
[95]
Kumar RR, Kumar A, Chuang CH, Shaikh MO. Recent advances and emerging trends in cancer biomarker detection technologies. Ind Eng Chem Res 2023; 62(14):5691-713.
[96]
Liao X, Bu Y, Jia Q. Traditional Chinese medicine as supportive care for the management of liver cancer: past, present, and future. Genes Dis 2020; 7(3):370-9.
[97]
Wang M, Ye Q, Mao D, Li H. Research progress in liver-regenerating microenvironment and DNA methylation in hepatocellular carcinoma: the role of traditional Chinese medicine. Med Sci Monit 2020; 26:e920310-1.
[98]
Wang S, Long S, Wu W. Application of traditional Chinese medicines as personalized therapy in human cancers. Am J Chin Med 2018; 46(5):953-70.
[99]
Meng C, Wang P, Hao Z, Gao Z, Li Q, Gao H, et al. Ecological and health risk assessment of heavy metals in soil and Chinese herbal medicines. Environ Geochem Health 2022; 44(3):817-28.
[100]
Chen W, Yang Y, Fu K, Zhang D, Wang Z. Progress in ICP-MS analysis of minerals and heavy metals in traditional medicine. Front Pharmacol 2022; 13:891273.
[101]
Mullowney MW, Duncan KR, Elsayed SS, Garg N, van der Hooft JJJ, Martin NI, et al. Artificial intelligence for natural product drug discovery. Nat Rev Drug Discov 2023; 22(11):1-22.
[102]
Chen Y, Yao F, Ming K, Wang D, Hu Y, Liu J. Polysaccharides from traditional Chinese medicines: extraction, purification, modification, and biological activity. Molecules 2016; 21(12):1705.
[103]
Yue B, Zong G, Tao R, Wei Z, Lu Y. Crosstalk between traditional Chinese medicine-derived polysaccharides and the gut microbiota: a new perspective to understand traditional Chinese medicine. Phytother Res 2022; 36(11):4125-38.
[104]
Liu M, Wang Y, Liu Y, Ruan R. Bioactive peptides derived from traditional Chinese medicine and traditional Chinese food: a review. Food Res Int 2016; 89:63-73.
[105]
Zhang Y, Liu L, Zhang M, Li S, Wu J, Sun Q, et al. The research progress of bioactive peptides derived from traditional natural products in China. Molecules 2022; 28(17):6421.
[106]
Afshar Bakshloo M, Kasianowicz JJ, Pastoriza-Gallego M, Mathé J, Daniel R, Piguet F, et al. Nanopore-based protein identification. J Am Chem Soc 2022; 144(6):2716-25.
[107]
Yu M, Choi YH, Tu J. RNA drugs and RNA targets for small molecules: principles, progress, and challenges. Pharmacol Rev 2020; 72(4):862-98.
[108]
Chen X, Dai GH, Ren ZM, Tong YL, Yang F, Zhu YQ. Identification of dietetically absorbed rapeseed (Brassica campestris L.) bee pollen microRNAs in serum of mice. BioMed Res Int 2016; 2016:5413849.
[109]
Gu C, Yu X, Tang X, Gong L, Tan J, Zhang Y, et al. Lycium barbarum L.-derived miR162a functions on osteoporosis through directly promoting osteoblast formation. Engineering. In press.
[110]
Kim J, Li S, Zhang S, Wang J. Plant-derived exosome-like nanoparticles and their therapeutic activities. Asian J Pharm Sci 2021; 17(1):53-69.
[111]
Cao M, Yan H, Han X, Weng L, Wei Q, Sun X, et al. Ginseng-derived nanoparticles alter macrophage polarization to inhibit melanoma growth. J Immunother Cancer 2019; 7(1):1.
[112]
Seo K, Yoo JH, Kim J, Min SJ, Heo DN, Kwon IK, et al. Ginseng-derived exosome-like nanovesicles extracted by sucrose gradient ultracentrifugation to inhibit osteoclast differentiation. Nanoscale 2023; 15(12):5798-808.
[113]
Dad HA, Gu W, Zhu Q, Huang LQ, Peng LH. Plant exosome-like nanovesicles: emerging therapeutics and drug delivery nanoplatforms. Mol Ther 2020; 29(1):13-31.
[114]
Pottel J, Armstrong D, Zou L, Fekete A, Huang XP, Torosyan H, et al. The activities of drug inactive ingredients on biological targets. Science 2020; 369(6502):403-13.
[115]
Takizawa Y, Goto N, Furuya T, Hayashi M. Influence of pharmaceutical excipients on the membrane transport of a P-glycoprotein substrate in the rat small intestine. Eur J Drug Metab Pharmacokinet 2020; 45(5):645-52.
[116]
Leclercq L. Interactions between cyclodextrins and cellular components: towards greener medical applications? Beilstein J Org Chem 2016; 12:2644-62.
[117]
Miron A, Aprotosoaie AC, Trifan A, Xiao J. Flavonoids as modulators of metabolic enzymes and drug transporters. Ann N Y Acad Sci 2017; 1398(1):152-67.
[118]
Liu M, Zhang G, Zhou K, Wen J, Zheng F, Sun L, et al. Structural characterization, antioxidant activity, and the effects of Codonopsis pilosula polysaccharides on the solubility and stability of flavonoids. J Pharm Biomed Anal 2023; 229:115368.
[119]
Terada T. Molecular mechanisms for biliary phospholipid and drug efflux mediated by ABCB4 and bile salts. BioMed Res Int 2014; 2014:954781.
[120]
Chiang LY. Bile acid metabolism and signaling. Compr Physiol 2013; 3(3):1191.
[121]
Bihari S, Bannard-Smith J, Bellomo R. Albumin as a drug: its biological effects beyond volume expansion. Crit Care Resusc 2020; 22(3):257-65.
[122]
Plana D, Palmer AC, Sorger PK. Independent drug action in combination therapy: implications for precision oncology. Cancer Discov 2022; 12(3):606-24.
[123]
Calzetta L, Koziol-White C. Pharmacological interactions: synergism, or not synergism, that is the question. Curr Res Pharmacol Drug Discov 2021; 2:100046.
[124]
Liang L, Jin X, Li J, Li R, Jiao X, Ma Y, et al. A comprehensive review of pharmacokinetics and pharmacodynamics in animals: exploration of interaction with antibiotics of Shuang-Huang-Lian preparations. Curr Top Med Chem 2022; 22(2):83-94.
[125]
Yao J, Li Y, Jin Y, Chen Y, Tian L, He W. Synergistic cardioprotection by tilianin and syringin in diabetic cardiomyopathy involves interaction of TLR4/NF-jB/ NLRP3 and PGC1a/SIRT3 pathways. Int Immunopharmacol 2021; 96:107728.
[126]
Kumari N, Dalal V, Kumar P, Rath SN. Antagonistic interaction between TTAA2 and paclitaxel for anti-cancer effects by complex formation with T-type calcium channel. J Biomol Struct Dyn 2022; 40(6):2395-406.
[127]
Zuo GY, Fu RC, Yu W, Zhang YL, Wang GC. Potentiation effects by usnic acid in combination with antibiotics on clinical multi-drug resistant isolates of methicillin-resistant Staphylococcus aureus (MRSA). Med Chem Res 2018; 27(5):1443- 2148.
[128]
Foucquier J, Guedj M. Analysis of drug combinations: current methodological landscape. Pharmacol Res Perspect 2015; 3(3):e00149.
[129]
Zheng S, Wang W, Aldahdooh J, Malyutina A, Shadbahr T, Tanoli Z, et al. SynergyFinder plus: toward better interpretation and annotation of drug combination screening datasets. Genomics Proteomics Bioinf 2022; 20(3):587-96.
[130]
Malyutina A, Majumder MM, Wang W, Pessia A, Heckman CA, Tang J. Drug combination sensitivity scoring facilitates the discovery of synergistic and efficacious drug combinations in cancer. PLOS Comput Biol 2019; 15(5):e1006752.
[131]
Kong W, Midena G, Chen Y, Athanasiadis P, Wang T, Rousu J, et al. Systematic review of computational methods for drug combination prediction. Comput Struct Biotechnol J 2021; 20:2807-14.
[132]
Li J, Xu H, McIndoe RA. A novel network based linear model for prioritization of synergistic drug combinations. PLoS One 2022; 17(4):e0266382.
[133]
Cheng F, Kovács IA, Barabási AL. Network-based prediction of drug combinations. Nat Commun 2019;10(1):1-11.
[134]
Gan X, Shu Z, Wang X, Yan D, Li J, Ofaim S, et al. Network medicine framework reveals generic herb-symptom effectiveness of traditional Chinese medicine. Sci Adv 2023; 9(43):eadh0215.
[135]
Li L, Zheng R, Sun R. Multicomponent self-assembly based on bioactive molecules of traditional Chinese medicine (TCM). Pharmacol Res Modern Chin Med 2022; 4:100158.
[136]
Huang J, Zhu Y, Xiao H, Liu J, Li S, Zheng Q, et al. Formation of a traditional Chinese medicine self-assembly nanostrategy and its application in cancer: a promising treatment. Chin Med 2023; 18(1):66.
[137]
Lin X, Huang X, Tian X, Yuan Z, Lu J, Nie X, et al. Natural small-molecule-based carrier-free self-assembly library originated from traditional Chinese herbal medicine. ACS Omega 2022; 7(48):43510-21.
[138]
Gao Y, Dong Y, Guo Q, Wang H, Feng M, Yan Z, et al. Study on supramolecules in traditional Chinese medicine decoction. Molecules 2022; 27(10):3268.
[139]
Parayath NN, Amiji MM. Therapeutic targeting strategies using endogenous cells and proteins. J Control Release 2017; 258:81-94.
[140]
Asrorov AM, Gu Z, Li F, Liu L, Huang Y. Biomimetic camouflage delivery strategies for cancer therapy. Nanoscale 2021; 13(19):8693-706.
[141]
Khatoon SS, Chen Y, Zhao H, Lv F, Liu L, Wang S. In situ self-assembly of conjugated polyelectrolytes for cancer targeted imaging and photodynamic therapy. Biomater Sci 2020; 21;8(8):2156-63.
[142]
Kim J, Lee S, Kim Y, Choi M, Lee I, Kim E, et al. In situ self-assembly for cancer therapy and imaging. Nat Rev Mater 2023; 8(11):1-16.
[143]
Sun X, Yang X, Chen Y, Sun J, He Z, Zhang S, et al. In situ self-assembled nanomedicines for cancer treatment. Chem Eng J 2023; 466:143365.
[144]
Bag BG, Majumdar R. Self-assembly of renewable nano-sized triterpenoids. Chem Rec 2017; 17(9):841-73.
[145]
Zhi K, Zhao H, Yang X, Zhang H, Wang J, Wang J, et al. Natural product gelators and a general method for obtaining them from organisms. Nanoscale 2018; 10(8):3639-43.
[146]
Hou Y, Chen M, Ruan H, Sun Z, Wu H, Xu X, et al. A new supramolecular natural product gel based on self-assembled pomolic acid from traditional Chinese medicine. Colloid Interface Sci Commun 2021; 46:100583.
[147]
Zheng J, Fan R, Wu H, Yao H, Yan Y, Liu J, et al. Directed self-assembly of herbal small molecules into sustained release hydrogels for treating neural inflammation. Nat Commun 2019; 10(1):1604.
[148]
Li T, Wang P, Guo W, Huang X, Tian X, Wu G, et al. Natural berberine-based Chinese herb medicine assembled nanostructures with modified antibacterial application. ACS Nano 2019; 13(6):6770-81.
[149]
Wang P, Guo W, Huang G, Zhen J, Li Y, Li T, et al. Berberine-based heterogeneous linear supramolecules neutralized the acute nephrotoxicity of aristolochic acid by the self-assembly strategy. ACS Appl Mater Interfaces 2021; 13(28):32729-42.
[150]
Wang Z, Lu J, Yuan Z, Pi W, Huang X, Lin X, et al. Natural carrier-free binary small molecule self-assembled hydrogel synergize antibacterial effects and promote wound healing by inhibiting virulence factors and alleviating the inflammatory response. Small 2023; 19(5):e2205528.
[151]
An J, Liu M, Din Z, Xie F, Cai J. Toward function starch nanogels by selfassembly of polysaccharide and protein: from synthesis to potential for polyphenol delivery. Int J Biol Macromol 2023; 247:125697.
[152]
Morrow BH, Payne GF, Shen J. PH-responsive self-assembly of polysaccharide through a rugged energy landscape. J Am Chem Soc 2015; 137(40):13024-30.
[153]
Liu Y, Yang R, Liu J, Meng D, Zhou Z, Zhang Y, et al. Fabrication, structure, and function evaluation of the ferritin based nano-carrier for food bioactive compounds. Food Chem 2019; 299:125097.
[154]
Yu B, Sun Z, Li X, Qv A, Sohail M, Li Y, et al. Research progress of novel drug delivery systems of Chinese medicine monomers based on natural silk fibroin: a mini-review. Curr Drug Deliv 2023; 20(3):211-22.
[155]
Zhu J, Li Z, Wu C, Fan G, Li T, Shen D, et al. Insight into the self-assembly behavior of a-zein by multi-spectroscopic and molecular simulations: an example of combination with the main component of jujube peel pigments— rutin. Food Chem 2023; 404:134684.
[156]
Zhou Q, Wang X, Li J, Wu YR, Wang W, Yu ZY, et al. Self-assembly and interaction mechanisms of edible dock protein and flavonoids regulated by the phenolic hydroxyl position. Food Chem 2023; 424:136383.
[157]
Huang Y, Li J, Liu Y, Gantumur MA, Sukhbaatar N, Zhao P, et al. Improving gas-water interface properties and bioactivities of a-lactalbumin induced by three structurally different saponins. Food Hydrocoll 2023; 138:108463.
[158]
Olesen NE, Westh P, Holm R. Displacement of drugs from cyclodextrin complexes by bile salts: a suggestion of an intestinal drug-solubilizing capacity from an in vitro model. J Pharm Sci 2016; 105(9):2640-7.
[159]
Pigliacelli C, Belton P, Wilde P, Qi S. Probing the molecular interactions between pharmaceutical polymeric carriers and bile salts in simulated gastrointestinal fluids using NMR spectroscopy. J Colloid Interface Sci 2019; 551:147-54.
[160]
Cui L, Sun E, Zhang Z, Tan XB, Wei YJ, Jin X, et al. Enhancement of epimedium fried with suet oil based on in vivo formation of self-assembled flavonoid compound nanomicelles. Molecules 2012; 17(11):12984-96.
[161]
Li X, Geng M. Probing the binding of procyanidin B3 to trypsin and pepsin: a multi-technique approach. Int J Biol Macromol 2016; 85:168-78.
[162]
Li X, Liu H, Wu X, Xu R, Ma X, Zhang C, et al. Exploring the interactions of naringenin and naringin with trypsin and pepsin: experimental and computational modeling approaches. Spectrochim Acta A Mol Biomol Spectrosc 2021; 258:119859.
[163]
Martinez-Gonzalez AI, Díaz-Sánchez ÁG, Vargas-Requena CL, et al. Polyphenolic compounds and digestive enzymes: in vitro non-covalent interactions. Molecules 2017;22(4):669.
[164]
Li M, Hagerman AE. Interactions between plasma proteins and naturally occurring polyphenols. Curr Drug Metab 2013; 14(4):432-45.
[165]
Jiao Q, Wang R, Jiang Y, Liu B. Study on the interaction between active components from traditional Chinese medicine and plasma proteins. Chem Cent J 2018; 12(1):48.
[166]
Tezcaner A, Baran ET, Keskin D. Nanoparticles based on plasma proteins for drug delivery applications. Curr Pharm Des 2016; 22(22):3445-54.
[167]
Mayer EA, Nance K, Chen S. The gut-brain axis. Annu Rev Med 2022; 73(1):439-53.
[168]
Chen Z, Venkat P, Seyfried D, Chopp M, Yan T, Chen J. Brain-heart interaction: cardiac complications after stroke. Circ Res 2017; 121(4):451-68.
[169]
Manea MM, Comsa M, Minca A, Dragos D, Popa C. Brain-heart axis. J Med Life 2015; 8(3):266-71.
[170]
Pavlovsky L, Friedman A. Pathogenesis of stress-associated skin disorders: exploring the brain-skin axis. Curr Probl Dermatol 2007; 35:136-45.
[171]
Marek-Jozefowicz L, Czajkowski R, Borkowska A, Nedoszytko B, Żmijewski MA, Cubała WJ, et al. The brain-skin axis in psoriasis. Int J Mol Sci 2022; 23(2):669.
[172]
Marsland BJ, Trompette A, Gollwitzer ES. The gut-lung axis in respiratory disease. Ann Am Thorac Soc 2015; 12(Suppl 2):S150-6.
[173]
Hashimoto Y, Eguchi A, Wei Y, Shinno-Hashimoto H, Fujita Y, Ishima T, et al. Antibiotic-induced microbiome depletion improves LPS-induced acute lung injury via gut-lung axis. Life Sci 2022; 307:120885.
[174]
Simbrunner B, Trauner M, Reiberger T. Therapeutic aspects of bile acid signalling in the gut-liver axis. Aliment Pharmacol Ther 2021; 54(10):1243-62.
[175]
Ticinesi A, Lauretani F, Tana C, Nouvenne A, Ridolo E, Meschi T. Exercise and immune system as modulators of intestinal microbiome. Exerc Immunol Rev 2019; 25:84-95.
[176]
Mancin L, Wu GD, Paoli A. Gut microbiota-bile acid-skeletal muscle axis. Trends Microbiol 2023; 31(3):254-69.
[177]
Tu Y, Yang R, Xu X, Zhou X. The microbiota-gut-bone axis and bone health. J Leukoc Biol 2021; 110(3):525-37.
[178]
He Y, Chen Y. The potential mechanism of the microbiota-gut-bone axis in osteoporosis: a review. Osteoporos Int 2022; 33(12):2495-506.
[179]
Evenepoel P, Poesen R, Meijers B. The gut-kidney axis. Pediatr Nephrol 2017; 32(11):2005-14.
[180]
Chen YY, Chen DQ, Chen L, Liu JR, Vaziri ND, Guo Y, et al. Microbiomemetabolome reveals the contribution of gut-kidney axis on kidney disease. J Transl Med 2019; 17(1):5.
[181]
Cannata-Andía JB, Martín-Carro B, Martín-Vírgala J, Rodríguez-Carrio J, Bande-Fernández JJ, Alonso-Montes C, et al. Chronic kidney disease-mineral and bone disorders: pathogenesis and management. Calcif Tissue Int 2021; 108(4):410-22.
[182]
Massy ZA, Drueke TB. A new player in the kidney-bone axis: regulation of fibroblast growth factor-23 by renal glycerol-3-phosphate. Kidney Int 2020; 98(5):1074-6.
[183]
Rathi S, Kumar P. Drug-induced liver injury—types and phenotypes. N Engl J Med 2019; 381(14):1395-6.
[184]
Pan X, Zhou J, Chen Y, Xie X, Rao C, Liang J, et al. Classification, hepatotoxic mechanisms, and targets of the risk ingredients in traditional Chinese medicine-induced liver injury. Toxicol Lett 2020; 323:48-56.
[185]
Wang Z, Xu G, Wang H, Zhan X, Gao Y, Chen N, et al. Icariside II, a main compound in Epimedii Folium, induces idiosyncratic hepatotoxicity by enhancing NLRP 3 inflammasome activation. Acta Pharm Sin B 2020; 10 (9):1619-33.
[186]
Gao Y, Xu G, Ma L, Shi W, Wang Z, Zhan X, et al. Icariside I specifically facilitates ATP or nigericin-induced NLRP 3 inflammasome activation and causes idiosyncratic hepatotoxicity. Cell Commun Signal 2021; 19(1):19.
[187]
Qu L, Liang X, Tian G, Zhang G, Wu Q, Huang X, et al. Efficacy and safety of mulberry twig alkaloids tablet for the treatment of type 2 diabetes: a multicenter, randomized, double-blind, double-dummy, and parallel controlled clinical trial. Diabetes Care 2021; 44(6):1324-33.
[188]
Liu S, Yi Z, Liang Z. Traditional Chinese medicine and separation science. J Sep Sci 2008; 31(11):2113-37.
[189]
Zhao HY, Jiang JG. Application of chromatography technology in the separation of active components from nature derived drugs. Mini Rev Med Chem 2010; 10(13):1223-34.
[190]
Zhang Y, Yu J, Zhang W, Wang Y, He Y, Zhou S, et al. An integrated evidencebased targeting strategy for determining combinatorial bioactive ingredients of a compound herbal medicine Qishen Yiqi dripping pills. J Ethnopharmacol 2018; 219:288-98.
[191]
Xing X, Sun M, Guo Z, Zhao Y, Cai Y, Zhou P, et al. Functional annotation map of natural compounds in traditional Chinese medicines library: TCMs with myocardial protection as a case. Acta Pharm Sin B 2023; 13(9):3802-16.
[192]
Feunang YD, Eisner R, Knox C, Chepelev L, Hastings J, Owen G, et al. ClassyFire: automated chemical classification with a comprehensive, computable taxonomy. J Cheminform 2016; 8:8.
[193]
Schäfer T, Kriege N, Humbeck L, Klein K, Koch O, Mutzel P. Scaffold hunter: a comprehensive visual analytics framework for drug discovery. J Cheminform 2017; 9(1):9.
[194]
Koch MA, Schuffenhauer A, Scheck M, Wetzel S, Casaulta M, Odermatt A, et al. Charting biologically relevant chemical space: a structural classification of natural products (SCONP). Proc Natl Acad Sci USA 2005; 102(48):17272-7.
[195]
Hong J, Wang L, Zhang S, Xie F. Characteristic analysis and similarity calculation of molecular compounds of traditional Chinese medicine. In: DSIT 2020: Proceedings of the 3rd International Conference on Data Science and Information Technology; 2020 Jul 24-26; Xiamen, China. New York City: Association for Computing Machinery; 2020. p. 83-92.
[196]
Wang P, Li K, Tao Y, Li D, Zhang Y, Xu H, et al. TCM-ADMEpred: a novel strategy for poly-pharmacokinetics prediction of traditional Chinese medicine based on single constituent pharmacokinetics, structural similarity, and mathematical modeling. J Ethnopharmacol 2019; 236:277-87.
[197]
Wang Y, Shi X, Li L, Efferth T, Shang D. The impact of artificial intelligence on traditional Chinese medicine. Am J Chin Med 2021; 49(6):1297-314.
[198]
Tian Z, Wang D, Sun X, Fan Y, Guan Y, Zhang N, et al. Current status and trends of artificial intelligence research on the four traditional Chinese medicine diagnostic methods: a scientometric study. Ann Transl Med 2023; 11(3):145.
[199]
Tian D, Chen W, Xu D, Xu L, Xu G, Guo Y, et al. A review of traditional Chinese medicine diagnosis using machine learning: inspection, auscultationolfaction, inquiry, and palpation. Comput Biol Med 2024; 170:108074.
[200]
Wang Y, Jafari M, Tang Y, Tang J. Predicting meridian in Chinese traditional medicine using machine learning approaches. PLOS Comput Biol 2019; 15(11):e1007249.
[201]
Zhang J, Fang Y, Shao X, Chen H, Zhang N, Fan X. The future of molecular studies through the lens of large language models. J Chem Inf Model 2024; 64(3):563-6.
[202]
Zhou L, Liu S, Li C, Sun Y, Zhang Y, Li Y, et al. Natural language processing algorithms for normalizing expressions of synonymous symptoms in traditional Chinese medicine. Evid Based Complement Alternat Med 2021; 2021:6676607.
[203]
Zhang H, Ni W, Li J, Zhang J. Artificial intelligence-based traditional Chinese medicine assistive diagnostic system: validation study. J Med Internet Res 2020; 8(6):e17608.
[204]
Yuan L, Yang L, Zhang S, Xu Z, Qin J, Shi Y, et al. Development of a tongue image-based machine learning tool for the diagnosis of gastric cancer: a prospective multicentre clinical cohort study. EClinicalMedicine 2023; 57:101834.
[205]
Pan Y, Zhang H, Chen Y, Gong X, Yan J, Zhang H. Applications of hyperspectral imaging technology combined with machine learning in quality control of traditional Chinese medicine from the perspective of artificial intelligence: a review. Crit Rev Anal Chem 2023:1-15.
[206]
Weng H, Chen J, Ou A, Lao Y. Leveraging representation learning for the construction and application of a knowledge graph for traditional Chinese medicine: framework development study. JMIR Med Inform 2022; 10(9):e38414.
[207]
Li D, Qu J, Tian Z, Mou Z, Zhang L, Zhang X. Knowledge-based recurrent neural network for TCM cerebral palsy diagnosis. Evid Based Complement Alternat Med 2022; 2022:7708376.
[208]
Zhao X, Wang Y, Li P, Xu J, Sun Y, Qiu M, et al. The construction of a TCM knowledge graph and application of potential knowledge discovery in diabetic kidney disease by integrating diagnosis and treatment guidelines and real-world clinical data. Front Pharmacol 2023; 14:1147677.
[209]
Jin Y, Ji W, Zhang W, He X, Wang X, Wang X. A KG-enhanced multi-graph neural network for attentive herb recommendation. IEEE/ACM Trans Comput Biol Bioinformatics 2022; 19(5):2560-71.
[210]
Li D, Hu J, Zhang L, Li L, Yin Q, Shi J, et al. Deep learning and machine intelligence: new computational modeling techniques for discovery of the combination rules and pharmacodynamic characteristics of traditional Chinese medicine. Eur J Pharmacol 2022; 933:175260.
[211]
Dong X, Zheng Y, Shu Z, Chang K, Xia J, Zhu Q, et al. TCMPR: TCM prescription recommendation based on subnetwork term mapping and deep learning. BioMed Res Int 2022; 2022:4845726.
[212]
Xiong W, Zhu Y, Zeng Q, Du J, Wang K, Luo J, et al. Dose-effect relationship analysis of TCM based on deep Boltzmann machine and partial least squares. Math Biosci Eng 2023; 20(8):14395-413.
[213]
Liang J, Zheng Y, Tong X, Yang N, Dai S. In silico identification of anti-SARSCoV- 2 medicinal plants using cheminformatics and machine learning. Molecules 2022; 28(1):208.
[214]
He S, Yi Y, Hou D, Fu X, Zhang J, Ru X, et al. Identification of hepatoprotective traditional Chinese medicines based on the structure-activity relationship, molecular network, and machine learning techniques. Front Pharmacol 2022; 13:969979.
[215]
Li X, Yao Y, Chen M, Ding H, Liang C, Lv L, et al. Comprehensive evaluation integrating omics strategy and machine learning algorithms for consistency of calculus bovis from different sources. Talanta 2022; 237:122873.
[216]
Zhang S, Yang K, Liu Z, Lai X, Yang Z, Zeng J, et al. DrugAI: a multi-view deep learning model for predicting drug-target activating/inhibiting mechanisms. Brief Bioinform 2023; 24(1):bbac526.
[217]
Wang Z, Li L, Song M, Yan J, Shi J, Yao Y. Evaluating the traditional Chinese medicine (TCM) officially recommended in China for COVID-19 using ontology-based side-effect prediction framework (OSPF) and deep learning. J Ethnopharmacol 2021; 272:113957.
[218]
Liu Z, Luo C, Fu D, Gui J, Zheng Z, Qi L, et al. A novel transfer learning model for traditional herbal medicine prescription generation from unstructured resources and knowledge. Artif Intell Med 2022; 124:102232.
[219]
Gao P, Nasution AK, Yang S, Chen Z, Ono N, Kanaya S, et al. On finding natural antibiotics based on TCM formulae. Methods 2023; 214:35-45.
[220]
Liu K, Chen X, Ren Y, Liu C, Lv T, Liu Y, et al. Multi-target-based polypharmacology prediction (mTPP): an approach using virtual screening and machine learning for multi-target drug discovery. Chem Biol Interact 2022; 368:110239.
[221]
Ma ZW, Tang JW, Liu QH, Mou JY, Qiao R, Du Y, et al. Identification of geographic origins of Morus alba linn. through surfaced enhanced Raman spectrometry and machine learning algorithms. J Biomol Struct Dyn 2023; 41(23):14285-98.
[222]
Yang B, Bao W, Hong S. Alzheimer-compound identification based on data fusion and forgeNet_SVM. Front Aging Neurosci 2022; 14:931729.
[223]
Chen Z, Zhao M, You L, Zheng R, Jiang Y, Zhang X, et al. Developing an artificial intelligence method for screening hepatotoxic compounds in traditional Chinese medicine and Western medicine combination. Chin Med 2022; 17(1):58.
[224]
Sun J, Ni Q, Jiang F, Liu B, Wang J, Zhang L, et al. Discovery and validation of traditional Chinese and Western medicine combination antirheumatoid arthritis drugs based on machine learning (random forest model). BioMed Res Int 2023; 2023:6086388.
[225]
Niu Q, Li H, Tong L, Liu S, Zong W, Zhang S, et al. TCMFP: a novel herbal formula prediction method based on network target’s score integrated with semi-supervised learning genetic algorithms. Brief Bioinform 2023; 24(3):bbad102.
[226]
Liu J, Huang Q, Yang X, Ding C. HPE-GCN: predicting efficacy of tonic formulae via graph convolutional networks integrating traditionally defined herbal properties. Methods 2022; 204:101-9.
[227]
Li JT, Wei YW, Wang MY, Yan CX, Ren X, Fu XJ. Antibacterial activity prediction model of traditional Chinese medicine based on combined datadriven approach and machine learning algorithm: constructed and validated. Front Microbiol 2021; 12:763498.
[228]
Zhang H, Zhang J, Ni W, Jiang Y, Liu K, Sun D, et al. Transformer- and generative adversarial network-based inpatient traditional Chinese medicine prescription recommendation: development study. JMIR Med Inform 2022; 10(5):e35239.
[229]
Yang S, Shen Y, Lu W, Yang Y, Wang H, Li L, et al. Evaluation and identification of the neuroprotective compounds of Xiaoxuming decoction by machine learning: a novel mode to explore the combination rules in traditional Chinese medicine prescription. BioMed Res Int 2019; 2019:6847685.
[230]
Sun M, She S, Chen H, Cheng J, Ji W, Wang D, et al. Prediction model for synergistic anti-tumor multi-compound combinations from traditional Chinese medicine based on extreme gradient boosting, targets and gene expression data. J Bioinform Comput Biol 2022; 20(3):2250016.
[231]
He S, Ye T, Wang R, Zhang C, Zhang X, Sun G, et al. An in silico model for redicting drug-induced hepatotoxicity. Int J Mol Sci 2019; 20(8):1897.
[232]
Zhu S, Liu Q, Qiu S, Dai J, Gao X. DNA barcoding: an efficient technology to authenticate plant species of traditional Chinese medicine and recent advances. Chin Med 2022; 17(1):112.
[233]
Azadnia R, Al-Amidi MM, Mohammadi H, Cifci MA, Daryab A, Cavallo E. An AI based approach for medicinal plant identification using deep CNN based on global average pooling. Agronomy 2022; 12(11):2723.
[234]
McGibbon M, Shave S, Dong J, Gao Y, Houston DR, Xie J, et al. From intuition to AI: evolution of small molecule representations in drug discovery. Brief Bioinform 2023; 25(1):bbad422.
[235]
Yang Q, Ji H, Lu H, Zhang Z. Prediction of liquid chromatographic retention time with graph neural networks to assist in small molecule identification. Anal Chem 2021; 93(4):2200-6.
[236]
Buterez D, Janet JP, Kiddle SJ, Oglic D, Lió P. Transfer learning with graph neural networks for improved molecular property prediction in the multifidelity setting. Nat Commun 2024; 15(1):1517.
[237]
Jia Q, He Q, Yao L, Li M, Lin J, Tang Z, et al. Utilization of physiologically based pharmacokinetic modeling in pharmacokinetic study of natural medicine: an overview. Molecules 2022; 27(24):8670.
[238]
Mullowney MW, Duncan KR, Elsayed SS, Garg N, van der Hooft JJJ, Martin NI, et al. Artificial intelligence for natural product drug discovery. Nat Rev Drug Discov 2023; 22(11):895-916.
[239]
Mastropietro A, Giuseppe P, Jürgen B. Learning characteristics of graph neural networks predicting protein-ligand affinities. Nat Mach Intell 2023; 12 (5):1427-36.
[240]
Zhang P, Wang B, Li S. Network-based cancer precision prevention with artificial intelligence and multi-omics. Sci Bull 2023; 68(12):1219-22.
[241]
Subramanian M, Wojtusciszyn A, Favre L, Boughorbel S, Shan J, Letaief KB, et al. Precision medicine in the era of artificial intelligence: implications in chronic disease management. J Transl Med 2020; 18(1):472.
[242]
Tian S, Wang J, Li Y, Li D, Xu L, Hou T. The application of in silico druglikeness predictions in pharmaceutical research. Adv Drug Deliv Rev 2015; 86:2-10.
[243]
Lin Z, Wang S, Liu Z, Liu B, Xie L, Zhou J. Exploring anti-osteoporosis medicinal herbs using cheminformatics and deep learning approaches. Comb Chem High Throughput Screen 2023; 26(9):1802-11.
[244]
Lee BK, Mayhew EJ, Sanchez-Lengeling B, Wei JN, Qian WW, Little KA, et al. A principal odor map unifies diverse tasks in olfactory perception. Science 2023; 381(6661):999-1006.
[245]
Gautam V, Gupta R, Gupta D, Ruhela A, Mittal A, Mohanty SK, et al. DeepGraphh: AI-driven web service for graph-based quantitative structure- activity relationship analysis. Brief Bioinform 2022; 23(5):bbac288.
[246]
Morehouse NJ, Clark TN, McMann EJ, van Santen JA, Haeckl FPJ, Gray CA, et al. Annotation of natural product compound families using molecular networking topology and structural similarity fingerprinting. Nat Commun 2023; 14(1):308.
[247]
Li Z, He X. Physiologically based in vitro models to predict the oral dissolution and absorption of a solid drug delivery system. Curr Drug Metab 2015; 16(9):777-806.
[248]
Grimstein M, Yang Y, Zhang X, Grillo J, Huang SM, Zineh I, et al. Physiologically based pharmacokinetic modeling in regulatory science: an update from the U.S. Food and Drug Administration’s office of clinical pharmacology. J Pharm Sci 2019; 108(1):21-5.
[249]
Mo Y, Yang Y, Zeng J, Ma W, Guan Y, Guo J, et al. Enhancing the biopharmacological characteristics of asperosaponin VI: unveiling dynamic self-assembly phase transitions in the gastrointestinal environment. Int J Nanomedicine 2023; 18:7335-58.
[250]
Yang B, Wu X, Zeng J, Song J, Qi T, Yang Y, et al. A multi-component nano-codelivery system utilizing Astragalus polysaccharides as carriers for improving biopharmaceutical properties of Astragalus flavonoids. Int J Nanomedicine 2023; 18:6705-24.
[251]
Li ZQ, Tian S, Gu H, Wu Z, Nyagblordzro M, Feng G, et al. In vitro-in vivo predictive dissolution-permeation-absorption dynamics of highly permeable drug extended-release tablets via drug dissolution/absorption simulating system and pH alteration. AAPS PharmSciTech 2018; 19(4):1882-93.
PDF(5151 KB)

Accesses

Citation

Detail

段落导航
相关文章

/