污水处理工程中的数字孪生技术

Ai-Jie Wang, Hewen Li, Zhejun He, Yu Tao, Hongcheng Wang, Min Yang, Dragan Savic, Glen T. Daigger, Nanqi Ren

工程(英文) ›› 2024, Vol. 36 ›› Issue (5) : 21-35.

PDF(1228 KB)
PDF(1228 KB)
工程(英文) ›› 2024, Vol. 36 ›› Issue (5) : 21-35. DOI: 10.1016/j.eng.2024.04.012
研究论文
Review

污水处理工程中的数字孪生技术

作者信息 +

Digital Twins for Wastewater Treatment: A Technical Review

Author information +
History +

Abstract

The digital twins concept enhances modeling and simulation through the integration of real-time data and feedback. This review elucidates the foundational elements of digital twins, covering their concept, entities, domains, and key technologies. More specifically, we investigate the transformative potential of digital twins for the wastewater treatment engineering sector. Our discussion highlights the application of digital twins to wastewater treatment plants (WWTPs) and sewage networks, hardware (i.e., facilities and pipes, sensors for water quality and activated sludge, hydrodynamics, and power consumption), and software (i.e., knowledge-based and data-driven models, mechanistic models, hybrid twins, control methods, and the Internet of Things). Furthermore, two cases are provided, followed by an assessment of current challenges in and perspectives on the application of digital twins in WWTPs. This review serves as an essential primer for wastewater engineers navigating the digital paradigm shift.

关键词

数字孪生 / 城市水系统 / 污水处理

Keywords

Digital twins / Urban water systems / Wastewater treatment

引用本文

导出引用
Ai-Jie Wang, Hewen Li, Zhejun He. 污水处理工程中的数字孪生技术. Engineering. 2024, 36(5): 21-35 https://doi.org/10.1016/j.eng.2024.04.012

参考文献

[1]
M.W. Grieves . Product lifecycle management: the new paradigm for enterprises. Int J Prod Dev, 2 (1,2) ( 2005), pp. 71- 84
[2]
Pang C , Wu D , Dai WB , Mikola A , Karhela TA , Vyatkin V . Software-defined decentralized domestic wastewater treatment:1st milestone. In: Proceedings of the IECON the 46 th Annual Conference of the IEEE Industrial Electronics Society; 2020 Oct 18-21 2020. p . 2020: ; Singapore. New York City: IEEE; 3841- 6.
[3]
Sierla S , Azangoo M , Fay A , Vyatkin V , Papakonstantinou N . Integrating 2D and 3D Digital Plant Information towards automatic generation of digital twins. In: Proceedings of the 2020 IEEE 29th International Symposium on Industrial Electronics ISIE ; Jun 17-19 2020. p . 2020 ; Delft, the Netherlands. New York City: IEEE; 460- 7.
[4]
R. Laubenbacher , J.P. Sluka , J.A. Glazier . Using digital twins in viral infection. Science, 371 ( 6534) ( 2021), pp. 1105- 1106
[5]
S.Y. Park , C.H. Park , D.H. Choi , J.K. Hong , D.Y. Lee . Bioprocess digital twins of mammalian cell culture for advanced biomanufacturing. Curr Opin Chem Eng, 33 ( 2021), p. 100702
[6]
P. Bauer , B. Stevens , W. Hazeleger . A digital twin of Earth for the green transition. Nat Clim Chang, 11 ( 2) ( 2021), pp. 80- 83
[7]
G. Bhatti , H. Mohan , S.R. Raja . Towards the future of smart electric vehicles: digital twin technology. Renew Sustain Energy Rev, 141 ( 2021), p. 110801
[8]
A. Koulouris , N. Misailidis , D. Petrides . Applications of process and digital twin models for production simulation and scheduling in the manufacturing of food ingredients and products. Food Bioprod Process, 126 ( 2021), pp. 317- 333
[9]
F. Moretta , E. Rizzo , F. Manenti , G. Bozzano . Enhancement of anaerobic digestion digital twin through aerobic simulation and kinetic optimization for co-digestion scenarios. Bioresour Technol, 341 ( 2021), p. 125845
[10]
G. White , A. Zink , L. Codeca , S. Clarke . A digital twin smart city for citizen feedback. Cities, 110 ( 2021), p. 103064
[11]
H.B. Duan , F. Tian . The development of standardized models of digital twin. IFAC-PapersOnLine, 53 ( 5) ( 2020), pp. 726- 731
[12]
H.M. Ramos , A. Kuriqi , M. Besharat , E. Creaco , E. Tasca , O.E. Coronado-Hernández , et al.. Smart water grids and digital twin for the management of system efficiency in water distribution networks. Water, 15 ( 6) ( 2023), p. 1129
[13]
Ramos HM , Kuriqi A , Coronado-Hernández OE , López-Jiménez PA , Pérez-Sánchez M . Are digital twins improving urban-water systems efficiency and sustainable development goals? Urban Water J. In press.
[14]
Delbrugger T , Lenz LT , Losch D , Rossmann J . A navigation framework for digital twins of factories based on building information modeling. In: Proceedings of the 2017 22nd IEEE International Conference on Emerging Technologies and Factory Automation Etfa ; 2017 Sep 12- 15 ; Limassol, Cyprus. New York City: IEEE; 2017.
[15]
Ross R . Integrated vehicle health management in aerospace structures. In: Yuan FG , editor. Structural health monitoring (SHM) in aerospace structures. Amsterdam: Elsevier; 2016. p. 3- 31.
[16]
Glaessgen E , Stargel D . The digital twin paradigm for future NASA and US Air Force vehicles. In: Proceedings of the 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference; 2012 Apr 23-26; Honolulu, HI, USA. Reston: American Institute of Aeronautics and Astronautics; 2012. p. 1818.
[17]
M. Grieves . Digital twin: manufacturing excellence through virtual factory replication. White paper ( 2014)
[18]
Maybury MT . Air force global horizons. In: US Air force representation ; 2013 Apr 24; Washington, DC, USA.
[19]
General Electric Digital Solutions. Predix platform-digital twin [Internet]. Cincinnati: General Electric Company; [cited 2024 Apr 7].
[20]
What is a digital twin [Internet]? Zurich: PTC. Inc.; [cited 2024 Apr 6].
[21]
Grieves M , Vickers J . Digital twin:mitigating unpredictable, undesirable emergent behavior in complex systems. In: Transdisciplinary perspectives on complex systems. Berlin: Springer; 2017. p. 85- 113.
[22]
R. Stark , T. Damerau. Digital twin . S. Chatti , T. Tolio ( Eds.), CIRP encyclopedia of production engineering, Springer, Berlin ( 2019), pp. 1- 8
[23]
International Organization for Standardization (ISO). ISO 23247- 1: 2021 Automation systems and integration—digital twin framework for manufacturing—part 1:overview and general principles. ISO standard. Geneva: ISO; 2021.
[24]
M. Kivela , A. Arenas , M. Barthelemy , J.P. Gleeson , Y. Moreno , M.A. Porter . Multilayer networks. J Complex Netw, 2 ( 3) ( 2014), pp. 203- 271
[25]
Mohammadi A , Jahromi MG , Khademi H , Alighanbari A , Hamzavi B , Ghanizadeh M , et al. Understanding kid's digital twin. In:Proceedings of the International Conference on Information and Knowledge Engineering (ICKE 2018), the Steering Committee of the World Congress in Computer Science, Computer; 2018 Jan 6- 8 ; Osaka, Japan. Las Vegas: CSREA Press; 2018. p. 41- 6.
[26]
Verdouw C , Kruize JW . Digital twins in farm management: illustrations from the FIWARE accelerators SmartAgriFood and Fractals. In:Proceedings of the 7th Asian-Australasian Conference on Precision Agriculture Digital; 2017 Oct 16- 18; Hamilton, New Zealand. Genève: Zenodo; 2017. p. 16- 8.
[27]
T. Hofmann . Integrating nature, people, and technology to tackle the global agri-food challenge. J Agric Food Chem, 65 ( 20) ( 2017), pp. 4007- 4008
[28]
D. Jones , C. Snider , A. Nassehi , J. Yon , B. Hicks . Characterising the digital twin: a systematic literature review. CIRO J Manuf Sci Technol, 29 ( 2020), pp. 36- 52
[29]
Abstract entity [Internet]. San Mateo: IXL Learning; [cited 2024 Apr 7].
[30]
J.R. Harrison , Z. Lin , G.R. Carroll , K.M. Carley . Simulation modeling in organizational and management research. Acad Manage Rev, 32 ( 4) ( 2007), pp. 1229- 1245
[31]
D.L. Christian . The Tao of Democracy using co-intelligence to create a world that works for all. Communities, 121 ( 2003), p. 58
[32]
Maleka YN , Kharbouch A , El Khoukhi H , Bakhouya M , de Florio V , El Ouadghiri D , et al. On the use of IoT and big data technologies for real-time monitoring and data processing. In:Proceedings of the 8th International Conference on Emerging Ubiquitous Systems and Pervasive Networks (Euspn 2017)/7th International Conference on Current and Future Trends of Information and Communication Technologies in Healthcare (Icth-2017)/Affiliated Workshops 113; 2017 Sep 18-20; Lund, Sweden; 2017. p. 429- 34.
[33]
F. Tao , Q.L. Qi , L.H. Wang , A.Y.C. Nee . Digital twins and cyber-physical systems toward smart manufacturing and Industry 4.0: correlation and comparison. Engineering, 5 ( 4) ( 2019), pp. 653- 661
[34]
R.F. Falk , N.B. Miller . A primer for soft modeling. University of Akron Press, Akron ( 1992)
[35]
B. Curtis , M.I. Kellner , J. Over. Process modeling. Commun ACM, 35 ( 9) ( 1992), pp. 75- 90
[36]
Maria A . Introduction to modeling and simulation. In:Proceedings of the 29th Conference on Winter Simulation; 1997 Dec 7- 10 ; Atlanta, GA, USA. Washington, DC: IEEE; 1997. p. 7- 13.
[37]
T. Funkhouser , M. Kazhdan , P. Shilane , P. Min , W. Kiefer , A. Tal , et al.. Modeling by example. ACM Trans Graph, 23 ( 3) ( 2004), pp. 652- 663
[38]
Q.L. Qi , F. Tao , T.L. Hu , N. Anwer , A. Liu , Y.L. Wei , et al.. Enabling technologies and tools for digital twin. J Manuf Syst, 58 ( 2021), pp. 3- 21
[39]
S. Azhar . Building information modeling (BIM): trends, benefits, risks, and challenges for the AEC industry. Leadership Manage Eng, 11 ( 3) ( 2011), pp. 241- 252
[40]
D. Kiritsis , A. Bufardi , P. Xirouchakis . Research issues on product lifecycle management and information tracking using smart embedded systems. Adv Eng. Inform, 17 (3,4) ( 2003), pp. 189- 202
[41]
F.P. Brooks . What’s real about virtual reality?. IEEE Comput Graph Appl, 19 ( 6) ( 1999), pp. 16- 27
[42]
J. Carmigniani , B. Furht , M. Anisetti , P. Ceravolo , E. Damiani , M. Ivkovic . Augmented reality technologies, systems and applications. Multimedia Tools Appl, 51 ( 1) ( 2011), pp. 341- 377
[43]
R.T. Azuma . A survey of augmented reality. Presence-Virtual Aug Real, 6 ( 4) ( 1997), pp. 355- 385
[44]
Speicher M , Hall BD , Nebeling M . What is mixed reality? In: Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems; 2019 May 4-9; Glasgow, UK. New York City: Association for Computing Machinery; 2019. p. 1- 15.
[45]
J.Y. Lee . A study on metaverse hype for sustainable growth. Int J Adv Smart Converg, 10 ( 3) ( 2021), pp. 72- 80 Korean
[46]
P. Bratley , B.L. Fox , L.E. Schrage . A guide to simulation. Springer Science & Business Media, Berlin ( 2011)
[47]
Ingalls RG . Introduction to simulation. In: Proceedings of the 2011 Winter Simulation Conference (WSC); 2011 Dec 11-14; Phoenix, AZ, USA. New York City: IEEE; 2011. p. 1374- 88.
[48]
Blochwitz T , Otter M , Arnold M , Bausch C , Clauß C , Elmqvist H , et al. The functional mockup interface for tool independent exchange of simulation models. In: Proceedings of the 8th International Modelica Conference; 2011 Mar 20-22; Dresden, Germany. Linköping: Linköping University Press; 2011. p. 105- 14.
[49]
Margaria T , Schieweck A . The digital thread in Industry 4.0. In: Proceedings of the International Conference on Integrated Formal Methods ; Dec 2-6 2019 ; Bergen, Norway. Berlin: Springer: 2019. p. 324.
[50]
Gould LS . What are digital twins and digital threads [Internet]? Cincinnati: Gardner Business Media, Inc.; 2018 Jan 23
[ 2014 Apr 7 ]
[51]
A.L. Ramos , J.V. Ferreira , J. Barceló . Model-based systems engineering: an emerging approach for modern systems. IEEE Trans Syst Man Cybern C, 42 ( 1) ( 2012), pp. 101- 111
[52]
A.W. Wymore . Model-based systems engineering. CRC Press, Boca Raton ( 2018)
[53]
J.A. Estefan . Survey of model-based systems engineering (MBSE) methodologies. Incose MBSE Focus Group, 25 ( 8) ( 2007), pp. 1- 12
[54]
Y. He , J.C. Guo , X.L. Zheng . From surveillance to digital twin challenges and recent advances of signal processing for the industrial Internet of Things. IEEE Signal Process Mag, 35 ( 5) ( 2018), pp. 120- 129
[55]
C.M. Roberts . Radio frequency identification (RFID). Comput Secur, 25 ( 1) ( 2006), pp. 18- 26
[56]
P.K. Enge . The global positioning system: signals, measurements, and performance. Int J Wirel Inf Netw, 1 ( 2) ( 1994), pp. 83- 105
[57]
M. Armbrust , A. Fox , R. Griffith , A.D. Joseph , R. Katz , A. Konwinski , et al.. A view of cloud computing. Commun ACM, 53 ( 4) ( 2010), pp. 50- 58
[58]
Bonomi F , Milito R , Zhu J , Addepalli S . Fog computing and its role in the internet of things. In: Proceedings of the 1st edition of the MCC Workshop on Mobile Cloud Computing; 2012 Aug 17; Helsinki, Finland. New York City: Association for Computing Machinery; 2012. p. 13- 6.
[59]
W.S. Shi , J. Cao , Q. Zhang , Y.H.Z. Li , L.Y. Xu . Edge computing: vision and challenges. IEEE Internet Things J, 3 ( 5) ( 2016), pp. 637- 646
[60]
Definition of big data [Internet]. Stamford: Gartner, Inc.; [cited 2024 Apr 7].
[61]
M.I. Jordan , T.M. Mitchell . Machine learning: trends, perspectives, and prospects. Science, 349 ( 6245) ( 2015), pp. 255- 260
[62]
Zheng ZB , Xie SA , Dai HN , Chen XP , Wang HM . An overview of blockchain technology:architecture, consensus, and future trends. In: Proceedings of the 2017 IEEE 6th International Congress on Big Data (Bigdata Congress 2017); 2017 Jun 25-30; Honolulu, HI, USA. New York City: IEEE; 2017. p. 557- 64.
[63]
F. Tao , W. Liu , M. Zhang , T. Hu , Q. Qi , H. Zhang , et al.. Five-dimension digital twin model and its ten applications. Comput Integr Manuf Syst, 25 ( 1) ( 2019), pp. 1- 18 Chinese
[64]
B.G. Plósz , J. Climent , C.T. Griffin , S. Chiva , R. Mukherjee , E. Penkarski-Rodon , et al.. Hindered and compression solid settling functions—sensor data collection, practical model identification and validation. Water Res, 184 ( 2020), p. 116129
[65]
S.I. Abou-Elela , O. Hamdy , O. El Monayeri . Modeling and simulation of hybrid anaerobic/aerobic wastewater treatment system. Int J Environ Sci Technol, 13 ( 5) ( 2016), pp. 1289- 1298
[66]
J.H. Kim , B.M. Cho , Y.S. Kim , Y.S. Choi , K.Y. Kim , J.H. Kim , et al.. Optimization of a single-channel pump impeller for wastewater treatment. Int J Fluid Mach Syst, 9 ( 4) ( 2016), pp. 370- 381
[67]
S.B. Ma , S. Kim , J.H. Kim . Optimization design of a two-vane pump for wastewater treatment using machine-learning-based surrogate modeling. Processes, 8 ( 9) ( 2020), p. 1170
[68]
A.B. Lozano Avilés , F. del Cerro Velázquez , M. Llorens Pascual Del Riquelme . Methodology for energy optimization in wastewater treatment plants. Phase II: reduction of air requirements and redesign of the biological aeration installation. Water, 12 ( 4) ( 2020), p. 1143
[69]
Červinka M . Computational study of sludge pump design with vortex impeller. In:Proceedings of the 18th International Conference on Engineering Mechanics; 2012 May 14- 17 ; Svratka, Czech Republic. Prague: Institute of Theoretical and Applied Mechanics, Academy of Sciences of the Czech Republic; 2012. p. 191- 201.
[70]
Xu WX , Yuan JP . Structure reverse design and abrasion-resistant performance of submersible mixer’s impeller based on 3D solid model. Mater Sci Eng 2011;(179,180): 625- 9.
[71]
Liu YZ , Zhang WT , Cui XM , Zhang GD , Wang GX . City pipe network intelligent service based on GIS and internet of things. In: Proceedings of the 2014 7th International Conference on Intelligent Computation Technology and Automation ICICTA ; Oct 25-26 2014. p . 2014 ; Changsha, China. New York City: IEEE; 936- 9.
[72]
H.C. Wu , G.R. Huang , Q.Q. Meng , M.Z. Zhang , L.C. Li . Deep tunnel for regulating combined sewer overflow pollution and flood disaster: a case study in Guangzhou City, China. Water, 8 ( 8) ( 2016), p. 329
[73]
C. Sun , B. Parellada , J. Feng , V. Puig , G. Cembrano . Factors influencing the stormwater quality model of sewer networks and a case study of Louis Fargue urban catchment in Bordeaux, France. Water Sci Technol, 81 ( 10) ( 2020), pp. 2232- 2243
[74]
Fedorov S , Feskova A , Asaul V . Digital simulation of sewer networks and structures operation in ANSYS CFX to increase energy efficiency. In:Proceedings of the International Conference on Digital Technologies in Logistics and Infrastructure (ICDTLI 2019); 2019 Apr 4- 5 ; Petersburg, Russia. Paris: Atlantis Press; 2019. p. 358- 61.
[75]
Nie S . 3D BIM-GIS for underground network management [dissertation]. Enschede: University of Twente; 2019.
[76]
Pang LY , Lan GW , Tao YY . Design and implementation of 3D urban underground pipe network system. In: Proceedings of the 5th International Conference on Environmental Science and Civil Engineering ( ESCE 2019 ; Apr 13-14 China. 2019 ; Nanching, Philadelphia: Institute of Physics Publishing (IOP); 2019.
[77]
W. Kruszynski , J. Dawidowicz , D. Andraka , J. Tomaszewska . Application and digital implementation GIS data to computer modeling of the sanitary sewage network in Podlaskie Voivodship. Ekon Śr, 2 ( 65) ( 2018), pp. 99- 107
[78]
K.K. Kuok , E. Chen , P.C. Chiu . Integration of IR4.0 with Geospacial SuperMap GIS and InfoWorks ICM. Solid State Technol, 63 ( 6) ( 2020), pp. 201651- 201662
[79]
S. Geetha , S. Gouthami . Internet of Things enabled real time water quality monitoring system. Smart Water, 2 ( 1) ( 2016), pp. 1- 19
[80]
H.M. Yasin , S.R. Zeebaree , M.A. Sadeeq , S.Y. Ameen , I.M. Ibrahim , R.R. Zebari , et al.. IoT and ICT based smart water management, monitoring and controlling system: a review. Asian J Res Comput Sci, 8 ( 2) ( 2021), pp. 42- 56
[81]
Q. Plana , J. Alferes , K. Fuks , T. Kraft , T. Maruejouls , E. Torfs , et al.. Towards a water quality database for raw and validated data with emphasis on structured metadata. Water Qual Res J Can, 54 ( 1) ( 2019), pp. 1- 9
[82]
H. Jindal , S. Saxena , S.S. Kasana . Sewage water quality monitoring framework using multi-parametric sensors. Wirel Pers Commun, 97 ( 1) ( 2017), pp. 881- 913
[83]
R. Martínez , N. Vela , A. El Aatik , E. Murray , P. Roche , J.M. Navarro . On the use of an iot integrated system for water quality monitoring and management in wastewater treatment plants. Water, 12 ( 4) ( 2020), p. 1096
[84]
A. Tokos , C. Bartha , M. Jipa , D.D. Micu , I. Lingvay . SCADA systems for wastewater treatment plants. Automatica, 69 ( 3) ( 2021), pp. 39- 45
[85]
Randhawa S , Sandha SS , Srivastava B . A multi-sensor process for in-situ monitoring of water pollution in rivers or lakes for high-resolution quantitative and qualitative water quality data. In:Proceedings of the 2016 IEEE Intl Conference on Computational Science and Engineering (CSE) and IEEE Intl Conference on Embedded and Ubiquitous Computing (EUC) and 15th Intl Symposium on Distributed Computing and Applications for Business Engineering (DCABES); 2016 Aug 24-26; Paris, France. New York City: IEEE; 2016. p. 122- 9.
[86]
S.M. Wang , Z.J. Zhang , Z.L. Ye , X.J. Wang , X.Y. Lin , S.H. Chen . Application of environmental internet of things on water quality management of urban scenic river. Int J Sustain Dev World Ecol, 20 ( 3) ( 2013), pp. 216- 222
[87]
M.R. Ross , S.N. Topp , A.P. Appling , X. Yang , C. Kuhn , D. Butman , et al.. AquaSat: a data set to enable remote sensing of water quality for inland waters. Water Resour Res, 55 ( 11) ( 2019), pp. 10012- 10025
[88]
W.Y. Sean , Y.Y. Chu , L.L. Mallu , J.G. Chen , H.Y. Liu . Energy consumption analysis in wastewater treatment plants using simulation and SCADA system: case study in northern Taiwan. J Clean Prod, 276 ( 2020), p. 124248
[89]
P.M. Kumar , C.S. Hong . Internet of Things for secure surveillance for sewage wastewater treatment systems. Environ Res, 203 ( 2022), p. 111899
[90]
B. Szeląg , J. Drewnowski , G. Lagod , D. Majerek , E. Dacewicz , F. Fatone . Soft sensor application in identification of the activated sludge bulking considering the technological and economical aspects of smart systems functioning. Sensors, 20 ( 7) ( 2020), p. 1941
[91]
Y.P. Sun , K. He , Q.D. Yin , S. Echigo , G.X. Wu , Y.T. Guan . Determination of quorum-sensing signal substances in water and solid phases of activated sludge systems using liquid chromatography-mass spectrometry. J Environ Sci, 69 ( 2018), pp. 85- 94
[92]
H.Z. Mao , F. Wang , F.Y. Mao , Y. Chi , S.Y. Lu , K.F. Cen . Measurement of water content and moisture distribution in sludge by 1H nuclear magnetic resonance spectroscopy . Dry Technol, 34 ( 3) ( 2016), pp. 267- 274
[93]
Liukkonen M , Nikolskaya E , Selin J , Hiltunen Y . Water content analysis of sludge using NMR relaxation data and independent component analysis. In:Proceedings of the 9th EUROSIM Congress on Modelling and Simulation (EUROSIM 2016)/the 57th SIMS Conference on Simulation and Modelling SIMS 2016; 2016 Sep 12-16; Oulu, Finland. Linköping: Linköping University; 2016. p. 317- 20.
[94]
T. Matko , J. Chew , J. Wenk , J. Chang , J. Hofman . Computational fluid dynamics simulation of two-phase flow and dissolved oxygen in a wastewater treatment oxidation ditch. Process Saf Environ Prot, 145 ( 2021), pp. 340- 353
[95]
M. Elhalwagy , R. Biabani , G. Bertanza , B. Wisdom , J. Goldman-Torres , J. McQuarrie , et al.. Mechanistic modeling of peracetic acid wastewater disinfection using computational fluid dynamics: integrating solids settling with microbial inactivation kinetics. Water Res, 201 ( 2021), p. 117355
[96]
S. Sandhibigraha , S. Sasmal , T.K. Bandyopadhyay , B. Bhunia . Computational fluid dynamics analysis of flow through immobilized catalyzed packed bed reactor for removal of 4-chlorophenol from wastewater. Environ Eng Res, 25 ( 6) ( 2020), pp. 878- 889
[97]
S.D.A. Rohma , A. Yulistyorini , A.A. Permanasari . Computational fluid dynamics simulation for an optimal wastewater flow in anaerobic baffled reactor: effect of water velocity and pipe diameter. AIP Conf Proc, 2447 ( 2021), p. 030030
[98]
D. Dapelo , J. Bridgeman . Euler-Lagrange computational fluid dynamics simulation of a full-scale unconfined anaerobic digester for wastewater sludge treatment. Adv Eng Softw, 117 ( 2018), pp. 153- 169
[99]
A.K. Saini , K. Paritosh , A.K. Singh , V. Vivekanand . CFD approach for pumped-recirculation mixing strategy in wastewater treatment: minimizing power consumption, enhancing resource recovery in commercial anaerobic digester. J Water Process Eng, 40 ( 2021), p. 101777
[100]
V. Hormann , H.W. Fischer . A simple compartment model for the dynamical behavior of medically derived 131I in a municipal wastewater treatment plant . Environ Sci Technol, 52 ( 16) ( 2018), pp. 9235- 9242
[101]
Ng GMH . Modeling of an urban radiocesium pathway from catchment to wastewater treatment sludge [Internet]. Corvallis: Oregon State University; 2019 Sep 15
[ 2024 Apr 7 ]
[102]
D. Olivet , J. Valls , M.À. Gordillo , À. Freixó , A. Sánchez . Application of residence time distribution technique to the study of the hydrodynamic behaviour of a full-scale wastewater treatment plant plug-flow bioreactor. J Chemical Technol Biotechnol, 80 ( 4) ( 2005), pp. 425- 432
[103]
M. Zeng , A. Soric , J.H. Ferrasse , N. Roche . Interpreting hydrodynamic behaviour by the model of stirred tanks in series with exchanged zones: preliminary study in lab-scale trickling filters. Environ Technol, 34 ( 18) ( 2013), pp. 2571- 2578
[104]
F. Harrou , T.Y. Cheng , Y. Sun , T. Leiknes , N. Ghaffour . A data-driven soft sensor to forecast energy consumption in wastewater treatment plants: a case study. IEEE Sens J, 21 ( 4) ( 2021), pp. 4908- 4917
[105]
T.Y. Cheng , F. Harrou , F. Kadri , Y. Sun , T. Leiknes . Forecasting of wastewater treatment plant key features using deep learning-based models: a case study. IEEE Access, 8 ( 2020), pp. 184475- 184485
[106]
J.F. De Canete , P. del Saz-Orozco , J. Gómez-de-Gabriel , R. Baratti , A. Ruano , I. Rivas-Blanco . Control and soft sensing strategies for a wastewater treatment plant using a neuro-genetic approach. Comput Chem Eng, 144 ( 2021), p. 107146
[107]
W. Rauch , J.L. Bertrand-Krajewski , P. Krebs , O. Mark , W. Schilling , M. Schütze , et al.. Deterministic modelling of integrated urban drainage systems. Water Sci Technol, 45 ( 3) ( 2002), pp. 81- 94
[108]
M.A.P. Cechinel , J. Neves , J.V.R. Fuck , R.C. de Andrade , N. Spogis , H.G. Riella , et al.. Enhancing wastewater treatment efficiency through machine learning-driven effluent quality prediction: a plant-level analysis. J Water Process Eng, 58 ( 2024), p. 104758
[109]
R. Muoio , L. Palli , I. Ducci , E. Coppini , E. Bettazzi , D. Daddi , et al.. Optimization of a large industrial wastewater treatment plant using a modeling approach: a case study. J Environ Manage, 249 ( 2019), p. 109436
[110]
Kovács R , Takács I , Benke J . Facilitating biofilm reactor modelling with an easy-to-use spreadsheet-based tool designed for process engineers. In: Proceedings of the IWA Biofilm Conference; May 28-31 2013 ; Paris, France. London: IWA Publishing; 2013.
[111]
D. Kirchem , M.Á. Lynch , V. Bertsch , E. Casey . Modelling demand response with process models and energy systems models: potential applications for wastewater treatment within the energy-water nexus. Appl Energy, 260 ( 2020), p. 114321
[112]
K.B. Newhart , R.W. Holloway , A.S. Hering , T.Y. Cath . Data-driven performance analyses of wastewater treatment plants: a review. Water Res, 157 ( 2019), pp. 498- 513
[113]
A.V. Santos , A.R.A. Lin , M.C.S. Amaral , S.M.A.C. Oliveira. Improving control of membrane fouling on membrane bioreactors: a data-driven approach. Chem Eng J, 426 ( 2021), p. 131291
[114]
A. Trubetskaya , W. Horan , P. Conheady , K. Stockil , S. Merritt , S. Moore . A methodology for assessing and monitoring risk in the industrial wastewater sector. Water Resour Ind, 25 ( 2021), p. 100146
[115]
J. Zhou , F.N. Huang , W.H. Shen , Z. Liu , J.P. Corriou , P. Seferlis . Sub-period division strategies combined with multiway principle component analysis for fault diagnosis on sequence batch reactor of wastewater treatment process in paper mill. Process Saf Environ Prot, 146 ( 2021), pp. 9- 19
[116]
S.U. AL-Kordy , B.H. Khudair . Effluent quality assessment of sewage treatment plant using principal component analysis and cluster analysis. J Eng, 27 ( 4) ( 2021), pp. 79- 95
[117]
H.B. Liu , J. Yang , Y.C. Zhang , C. Yang . Monitoring of wastewater treatment processes using dynamic concurrent kernel partial least squares. Process Saf Environ Prot, 147 ( 2021), pp. 274- 282
[118]
C. Yang , Y.C. Zhang , M.Z. Huang , H.B. Liu . Adaptive dynamic prediction of effluent quality in wastewater treatment processes using partial least squares embedded with relevance vector machine. J Clean Prod, 314 ( 2021), p. 128076
[119]
Saleh H. Al. Wastewater pollutants modeling using artificial neural networks. J Ecol Eng, 22 ( 7) ( 2021), pp. 35- 45
[120]
S.H. Park , J. Koo . Application of transfer function ARIMA modeling for the sedimentation process on water treatment plant. Int J Control Autom, 8 ( 10) ( 2015), pp. 135- 144
[121]
P. Sharma , S. Sood , S.K. Mishra . Development of multiple linear regression model for biochemical oxygen demand (BOD) removal efficiency of different sewage treatment technologies in Delhi, India. Sustain Water Resour Manag, 6 ( 2) ( 2020), p. 29
[122]
A. Mansour-Bahmani , A.H. Haghiabi , Z. Shamsi , A. Parsaie . Predictive modeling the discharge of urban wastewater using artificial intelligent models (case study: Kerman city). Model Earth Syst Environ, 7 ( 3) ( 2021), pp. 1917- 1925
[123]
I. Mishima , S. Masuda , T. Kakimoto , K. Ikeda , K. Watanabe , C. Maruo , et al.. Assessment of nitrous oxide production in eutrophicated rivers with inflow of treated wastewater based on investigation and statistical analysis. Environ Monit Assess, 193 ( 2) ( 2021), p. 93
[124]
M. Henze , W. Gujer , T. Mino , M. van Loosedrecht . Activated sludge models ASM1, ASM2, ASM2d and ASM3. IWA Publishing, London ( 2006)
[125]
U. Jeppson , M.N. Pons , I. Nopens , J. Alex , J.B. Copp , K.V. Gernaey , et al.. Benchmark simulation model No 2: general protocol and exploratory case studies. Water Sci Technol, 56 ( 8) ( 2007), pp. 67- 78
[126]
D.J. Batstone , J. Keller , I. Angelidaki , S. Kalyuzhnyi , S. Pavlostathis , A. Rozzi , et al.. The IWA anaerobic digestion model No 1 (ADM1). Water Sci Technol, 45 ( 10) ( 2002), pp. 65- 73
[127]
Rosen C , Jeppson U . Aspects on ADM1 implementation within the BSM2 framework. Report. Lund: Lund University; 2006 Nov.
[128]
B. Lin , B. Recke , J.K. Knudsen , S.B. Jørgensen . A systematic approach for soft sensor development. Comput Chem Eng, 31 (5,6) ( 2007), pp. 419- 425
[129]
H. Haimi , M. Mulas , F. Corona , R. Vahala . Data-derived soft-sensors for biological wastewater treatment plants: an overview. Environ Model Softw, 47 ( 2013), pp. 88- 107
[130]
X. Wu , Y. Yang , G. Wu , J. Mao , T. Zhou . Simulation and optimization of a coking wastewater biological treatment process by activated sludge models (ASM). J Environ Manage, 165 ( 2016), pp. 235- 242
[131]
F. Polesel , H.R. Andersen , S. Trapp , B.G. Plosz . Removal of antibiotics in biological wastewater treatment systems—a critical assessment using the activated sludge modeling framework for xenobiotics (ASM-X). Environ Sci Technol, 50 ( 19) ( 2016), pp. 10316- 10334
[132]
Pierre KC , Tejada-Martinez AE , Pirasaci T , Rathore K , Driscoll A , Cogswell K , et al. Development of a computational fluid dynamics (CFD) model of a full-scale oxidation ditch incorporating activated sludge model (ASM)-1.In:Proceedings of the World Environmental and Water Resources Congress 2020: Water, Wastewater, and Stormwater and Water Desalination and Reuse; 2020 May 17- 21 ; Henderson, NV, USA. Reston: American Society of Civil Engineers; 2020. p. 225- 36.
[133]
J.C.B. Bijos , R.W. Pessoa , K.P. Esquerre . Prediction of dissolved methane loss in anaerobically treated effluent based on ADM 1 and equilibrium conditions. Comput Aided Chem Eng, 44 ( 2018), pp. 1807- 1812
[134]
M. Mulas , F. Corona , H. Haimi , L. Sundell , M. Heinonen , R. Vahala . Nitrate estimation in the denitrifying post-filtration unit of a municipal wastewater treatment plant: the Viikinmaki case. Water Sci Technol, 65 ( 8) ( 2012), pp. 1521- 1529
[135]
F. Hernández-del-Olmo , E. Gaudioso , N. Duro , R. Dormido . Machine learning weather soft-sensor for advanced control of wastewater treatment plants. Sensors, 19 ( 14) ( 2019), p. 3139
[136]
S.S. Yang , X.L. Yu , M.Q. Ding , L. He , G.L. Cao , L. Zhao , et al.. Simulating a combined lysis-cryptic and biological nitrogen removal system treating domestic wastewater at low C/N ratios using artificial neural network. Water Res, 189 ( 2021), p. 116576
[137]
W.W. Yan , R.C. Xu , K.D. Wang , T. Di , Z. Jiang . Soft sensor modeling method based on semisupervised deep learning and its application to wastewater treatment plant. Ind Eng Chem Res, 59 ( 10) ( 2020), pp. 4589- 4601
[138]
G.M. Wang , Q.S. Jia , M.C. Zhou , J. Bi , J.F. Qiao . Soft-sensing of wastewater treatment process via deep belief network with event-triggered learning. Neurocomputing, 436 ( 2021), pp. 103- 113
[139]
J. Wu , H. Cheng , Y. Liu , D. Huang , L. Yuan , L. Yao . Learning soft sensors using time difference-based multi-kernel relevance vector machine with applications for quality-relevant monitoring in wastewater treatment. Environ Sci Pollut Res Int, 27 ( 23) ( 2020), pp. 28986- 28999
[140]
P. Chang , Z. Li . Over-complete deep recurrent neutral network based on wastewater treatment process soft sensor application. Appl Soft Comput, 105 ( 2021), p. 107227
[141]
W. Wang , C.H. Yang , J. Han , W.T. Li , Y.G. Li . A soft sensor modeling method with dynamic time-delay estimation and its application in wastewater treatment plant. Biochem Eng J, 172 ( 2021), p. 108048
[142]
L. Corominas , X. Flores-Alsina , L. Snip , P.A. Vanrolleghem . Comparison of different modeling approaches to better evaluate greenhouse gas emissions from whole wastewater treatment plants. Biotechnol Bioeng, 109 ( 11) ( 2012), pp. 2854- 2863
[143]
A. Mottet , I. Ramirez , H. Carrère , S. Déléris , F. Vedrenne , J. Jimenez , et al.. New fractionation for a better bioaccessibility description of particulate organic matter in a modified ADM1 model. Chem Eng J, 228 ( 2013), pp. 871- 881
[144]
M. Arnell Performance assessment of wastewater treatment plants: multi-objective analysis using plant-wide models [dissertation], Lund University, Lund ( 2016)
[145]
Munoz C , Rojas D , Antileo C . Design and development of a soft-sensor for ammonia degradation and nitrite accumulation in an activated sludge reactor. In: Proceedings of the 2005 International Conference on Industrial Electronics and Control Applications; 2005 Nov 29-Dec 2; Piscataway, NJ, USA. New York City: IEEE; 2005. p. 1- 6.
[146]
A. Balakrishnan , S.B.K. Kanchinadham , C. Kalyanaraman . Assessment on biodegradability prediction of tannery wastewater using EPI Suite BIOWIN model. Environ Monit Assess, 192 ( 11) ( 2020), p. 732
[147]
P. Izadi , P. Izadi , A. Eldyasti . Development of long-term dynamic BioWin® model simulation for ANAMMOX UASB micro-granular process. Chemosphere, 286 (Pt 3) ( 2022), p. 131859
[148]
C. Moragaspitiya , J. Rajapakse , W. Senadeera , I. Ali . Simulation of dynamic behaviour of a biological wastewater treatment plant in south east Queensland, Australia using bio-win software. Eng J, 21 ( 3) ( 2017), pp. 1- 22
[149]
X.H. Cheng , Z.W. Guo , Y. Shen , K.P. Yu , X. Gao . Knowledge and data-driven hybrid system for modeling fuzzy wastewater treatment process. Neural Comput Appl, 35 ( 2021), pp. 7185- 7206
[150]
B. Xie , Y.W. Ma , J.Q. Wan , Y. Wang , Z.C. Yan , L. Liu , et al.. Modeling and multi-objective optimization for ANAMMOX process under COD disturbance using hybrid intelligent algorithm. Environ Sci Pollut Res Int, 25 ( 21) ( 2018), pp. 20956- 20967
[151]
H.T. Nguyen , U. Safder , X.Q.N. Nguyen , C. Yoo . Multi-objective decision-making and optimal sizing of a hybrid renewable energy system to meet the dynamic energy demands of a wastewater treatment plant. Energy, 191 ( 2020), p. 116570
[152]
C. Vlad , M. Sbarciog , M. Barbu , S. Caraman , A.V. Wouwer . Indirect control of substrate concentration for a wastewater treatment process by dissolved oxygen tracking. Control Eng Appl Inf, 14 ( 1) ( 2012), pp. 37- 47
[153]
I. Pisa , A. Morell , J.L. Vicario , R. Vilanova . Denoising autoencoders and LSTM-based artificial neural networks data processing for its application to internal model control in industrial environments—the wastewater treatment plant control case. Sensors, 20 ( 13) ( 2020), p. 3743
[154]
X.J. Du , J.L. Wang , V. Jegatheesan , G.H. Shi . Dissolved oxygen control in activated sludge process using a neural network-based adaptive PID algorithm. Appl Sci, 8 ( 2) ( 2018), p. 261
[155]
I. Santín , M. Barbu , C. Pedret , R. Vilanova . Control strategies for nitrous oxide emissions reduction on wastewater treatment plants operation. Water Res, 125 ( 2017), pp. 466- 477
[156]
A. Nair , V.M. Cristea , P.S. Agachi , M. Brehar . Model calibration and feed-forward control of the wastewater treatment plant—case study for CLUJ-Napoca WWTP. Water Environ J, 32 ( 2) ( 2018), pp. 164- 172
[157]
Petre E , Sulea-Iorgulescu C , Selisteanu D , Mehedinteanu S . Mathematical modelling and control for an activated sludge process in a wastewater treatment plant. In: Proceedings of the 2019 20th International Carpathian Control Conference ( ICCC 2019 ; May 26-29 2019. p . 2019 ; Krakow-Wieliczka, Poland. New York City: IEEE; 803- 8.
[158]
Petre E , Selişteanu D , Şulea-Iorgulescu C , Mehedinţeanu S . Multivariable adaptive control strategy for an activated sludge process inside a wastewater treatment plant. In: Proceedings of the 2020 21st International Carpathian Control Conference ( ICCC 2020; Oct 27-29 2020. p . 2020 ; High Tatras, Slovakia. New York City: IEEE; 1- 6.
[159]
H.G. Han , J.C. Zhang , S.L. Du , H.Y. Sun , J.F. Qiao . Robust optimal control for anaerobic-anoxic-oxic reactors. Sci China Technol Sci, 64 ( 7) ( 2021), pp. 1485- 1499
[160]
P.A. Stentoft , T. Munk-Nielsen , J.K. Moller , H. Madsen , B. Valverde-Perez , P.S. Mikkelsen , et al.. Prioritize effluent quality, operational costs or global warming?—Using predictive control of wastewater aeration for flexible management of objectives in WRRFs. Water Res, 196 ( 2021), p. 116960
[161]
M.A. Al-Obaidi , C. Kara-Zaitri , I.M. Mujtaba . Simulation and sensitivity analysis of spiral wound reverse osmosis process for the removal of dimethylphenol from wastewater using 2-D dynamic model. J Clean Prod, 193 ( 2018), pp. 140- 157
[162]
L.D. Hansen , M. Veng , P. Durdevic . Compressor scheduling and pressure control for an alternating aeration activated sludge process—a simulation study validated on plant data. Water, 13 ( 8) ( 2021), p. 1037
[163]
A. Bernardelli , S. Marsili-Libelli , A. Manzini , S. Stancari , G. Tardini , D. Montanari , et al.. Real-time model predictive control of a wastewater treatment plant based on machine learning. Water Sci Technol, 81 ( 11) ( 2020), pp. 2391- 2400
[164]
S.S. Kumar , K. Latha . A supervisory fuzzy logic control scheme to improve effluent quality of a wastewater treatment plant. Water Sci Technol, 84 (10,11) ( 2021), pp. 3415- 3424
[165]
W.R. Zeng , Z.W. Guo , Y. Shen , A.K. Bashir , K.P. Yu , Y.D. Al-Otaibi , et al.. Data-driven management for fuzzy sewage treatment processes using hybrid neural computing. Neural Comput Appl, 35 ( 2021), pp. 23781- 23794
[166]
Siemens accelerates digitalization of China’s water industry with ecosystem synergy [Internet]. Beijing: Siemens Ltd., China; 2021 Apr 28
[ 2024 Apr 7 ]
[167]
Building Nosedo WWTP system’s resilience with Hubgrade digital solution [Internet]. Hong Kong: Veolia; [cited 2024 Apr 7].
[168]
W. Zhang , F. Ma , M. Ren , F.Q. Yang . Application with Internet of Things technology in the municipal industrial wastewater treatment based on membrane bioreactor process. Appl Water Sci, 11 ( 3) ( 2021), p. 52
[169]
Ajgaonkar BV . Internet of things (IOT) system for preventing heavily polluted water from entering water treatment plant, carries out wireless transmission of sensor data with help of microcontroller, and sends all data to database of website. Maharashtra: Mesbro Technologies Private Ltd.; 2021.
PDF(1228 KB)

Accesses

Citation

Detail

段落导航
相关文章

/