面向B5G/6G应用的单板集成毫米波非对称全数字波束成形阵列

Qingqing Lin, Jun Xu, Kai Chen, Long Wang, Wei Li, Zhiqiang Yu, Guangqi Yang, Jianyi Zhou, Zhe Chen, Jixin Chen, Xiaowei Zhu, Wei Hong

工程(英文) ›› 2024, Vol. 41 ›› Issue (10) : 35-50.

PDF(7049 KB)
PDF(7049 KB)
工程(英文) ›› 2024, Vol. 41 ›› Issue (10) : 35-50. DOI: 10.1016/j.eng.2024.04.013
研究论文
Article

面向B5G/6G应用的单板集成毫米波非对称全数字波束成形阵列

作者信息 +

A Single-Board Integrated Millimeter-Wave Asymmetric Full-Digital Beamforming Array for B5G/6G Applications

Author information +
History +

Abstract

In this article, a single-board integrated millimeter-wave (mm-Wave) asymmetric full-digital beamforming (AFDBF) array is developed for beyond-fifth-generation (B5G) and sixth-generation (6G) communications. The proposed integrated array effectively addresses the challenge of arranging a large number of ports in a full-digital array by designing vertical connections in a three-dimensional space and successfully integrating full-digital transmitting (Tx) and receiving (Rx) arrays independently in a single board. Unlike the traditional symmetric array, the proposed asymmetric array is composed of an 8 × 8 Tx array arranged in a square shape and an 8 + 8 Rx array arranged in an L shape. The center-to-center distance between two adjacent elements is 0.54λ0 for both the Tx and Rx arrays, where λ0 is the free-space wavelength at 27 GHz. The proposed AFDBF array possesses a more compact structure and lower system hardware cost and power consumption compared with conventional brick-type full-digital arrays. In addition, the energy efficiency of the proposed AFDBF array outperforms that of a hybrid beamforming array. The measurement results indicate that the operating frequency band of the proposed array is 24.25-29.50 GHz. An eight-element linear array within the Tx array can achieve a scanning angle ranging from −47° to +47° in both the azimuth and the elevation planes, and the measured scanning range of each eight-element Rx array is -45° to +45°. The measured maximum effective isotropic radiated power (EIRP) of the eight-element Tx array is 43.2 dBm at 28.0 GHz (considering the saturation point). Furthermore, the measured error vector magnitude (EVM) is less than 3% when 64-quadrature amplitude modulation (QAM) waveforms are used.

Keywords

Full-digital beamforming array / Asymmetric structure / Single-board integrated / Beyond fifth-generation and sixth-generation / Millimeter-wave communication / Complex modulation / Printed circuit board / Vertical connection

引用本文

导出引用
Qingqing Lin, Jun Xu, Kai Chen. 用于B5G/6G技术的单板集成毫米波非对称全数字波束成形阵列. Engineering. 2024, 41(10): 35-50 https://doi.org/10.1016/j.eng.2024.04.013

参考文献

[1]
W. Hong, Z.H. Jiang, C. Yu, D.B. Hou, H. Wang, C. Guo, et al. The role of millimeter-wave technologies in 5G/6G wireless communications. IEEE J Microw, 1 (1) (2021), pp. 101-122.
[2]
C.X. Wang, X. You, X. Gao, X. Zhu, Z. Li, C. Zhang, et al. On the road to 6G: visions, requirements, key technologies, and testbeds. IEEE Commun Surv Tut, 25 (2) (2023), pp. 905-947.
[3]
W. Chen, X. Lin, J. Lee, A. Toskala, S. Sun, C.F. Chiasserini, et al. 5G-advanced toward 6G: past, present, and future. IEEE J Sel Area Comm, 41 (6) (2023), pp. 1592-1619.
[4]
W. Saad, M. Bennis, M.Z. Chen. A vision of 6G wireless systems: applications, trends, technologies, and open research problems. IEEE Netw, 34 (3) (2020), pp. 134-142.
[5]
W. Hong, Z.H. Jiang, C. Yu, J. Zhou, P. Chen, Z. Yu, et al. Multibeam antenna technologies for 5G wireless communications. IEEE Trans Antennas Propag, 65 (12) (2017), pp. 6231-6249.
[6]
K.M. Luk, B.Y. Duan. Advanced antennas push forward wireless connectivity. Engineering, 11 (4) (2022), pp. 1-2.
[7]
T. Tataria, M.F. Shafi, A.F. Molisch, M. Dohler, H. Sjöland, F. Tufvesson. 6G wireless systems: vision, requirements, challenges, insights, and opportunities. Proc IEEE, 109 (7) (2021), pp. 1166-1199.
[8]
B. Yang, Z. Yu, J. Lan, R. Zhang, J. Zhou, W. Hong. Digital beamforming-based massive MIMO transceiver for 5G millimeter-wave communications. IEEE Trans Microw Theory Tech, 66 (7) (2018), pp. 3403-3418.
[9]
S. Wang, G.M. Rebeiz. Dual-band 28- and 39-GHz phased arrays for multistandard 5G applications. IEEE Trans Microw Theory Tech, 71 (1) (2023), pp. 339-349.
[10]
Y. Yin, B. Ustundag, K. Kibaroglu, M. Sayginer, G.M. Rebeiz. Wideband 23.5-29.5-GHz phased arrays for multistandard 5G applications and carrier aggregation. IEEE Trans Microw Theory Tech, 69 (1) (2021), pp. 235-247.
[11]
H. Wang. Overview of future antenna design for mobile terminals. Engineering, 11 (4) (2022), pp. 12-14.
[12]
B. Duan. Evolution and innovation of antenna systems for beyond 5G and 6G. Front Inform Technol Electron Eng, 21 (1) (2020), pp. 1-3.
[13]
O. Kazan, Z. Hu, L. Li, A. Alhamed, G.M. Rebeiz. An 8-channel 5-33-GHz transmit phased array beamforming IC with 10.8-14.7-dBm Psat for C-, X-, Ku-, and Ka-band SATCOM. IEEE Trans Microw Theory Tech, 71 (5) (2023), pp. 2029-2039.
[14]
R. Klimovich, S. Jameson, E. Socher. W-band endfire 2D phased-array transmitter based on ×9 CMOS active multiplier chips. IEEE Trans Antennas Propag, 68 (12) (2020), pp. 7893-7904.
[15]
E. Arnieri, L. Boccia, G. Amendola, S. Glisic, C. Mao, S. Gao, et al. An integrated radar tile for digital beamforming X-/Ka-band synthetic aperture radar instruments. IEEE Trans Microw Theory Tech, 67 (3) (2019), pp. 1197-1206.
[16]
C.X. Mao, S. Gao, C. Tienda, T. Rommel, A. Patyuchenko, M. Younis, et al. X/Ka-band dual-polarized digital beamforming synthetic aperture radar. IEEE Trans Microw Theory Tech, 65 (11) (2017), pp. 4400-4407.
[17]
S. Shahramian, M.J. Holyoak, A. Singh, Y. Baeyens. A fully integrated 384-element, 16-tile, W-band phased array with self-alignment and self-test. IEEE J Solid State Circuits, 54 (9) (2019), pp. 2419-2434.
[18]
B. Sadhu, A. Paidimarri, D.X. Liu, M. Yeck, C. Ozdag, Y. Tojo, et al. A 24-30-GHz 256-element dual-polarized 5G phased array using fast on-chip beam calculators and magnetoelectric dipole antennas. IEEE J Solid State Circuits, 57 (12) (2022), pp. 3599-3616.
[19]
K. Kibaroglu, M. Sayginer, T. Phelps, G.M. Rebeiz. A 64-element 28-GHz phased-array transceiver with 52-dBm EIRP and 8-12-Gb/s 5G link at 300 meters without any calibration. IEEE Trans Microw Theory Tech, 66 (12) (2018), pp. 5796-5811.
[20]
S.H. Wu, L.K. Chiu, J.W. Wang. Reconfigurable hybrid beamforming for dual-polarized mmWave MIMO channels: stochastic channel modeling and architectural adaptation methods. IEEE Trans Commun, 66 (2) (2018), pp. 741-755.
[21]
P. Taghikhani, K. Buisman, C. Fager. Hybrid beamforming transmitter modeling for millimeter-wave MIMO applications. IEEE Trans Microw Theory Tech, 68 (11) (2020), pp. 4740-4752.
[22]
B. Yang, Z. Yu, R. Zhang, J. Zhou, W. Hong. Local oscillator phase shifting and harmonic mixing-based high-precision phased array for 5G millimeter-wave communications. IEEE Trans Microw Theory Tech, 67 (7) (2019), pp. 3162-3173.
[23]
C. Guo, W. Hong, L. Tian, Z.H. Jiang, J. Zhou, J. Chen, et al. Design and implementation of a full-digital beamforming array with nonreciprocal Tx/Rx beam patterns. IEEE Antennas Wirel Propag Lett, 19 (11) (2020), pp. 1978-1982.
[24]
Hong W, Zhou J, Chen J, Jiang Z, Yu C, Guo C.Asymmetric full-digital beamforming mmWave massive MIMO systems for B5G/6G wireless communications. In: Proceedings of Asia-Pacific Microwave Conference; 2020 Dec 8-11; Hong Kong, China. New York City: IEEE; 2020. p. 31-2.
[25]
D.C. Kim, S.J. Park, T.W. Kim, L. Minz, S.O. Park. Fully digital beamforming receiver with a real-time calibration for 5G mobile communication. IEEE Trans Antennas Propag, 67 (6) (2019), pp. 3809-3819.
[26]
L. Kuai, J. Chen, Z.H. Jiang, C. Yu, C. Guo, Y. Yu, et al. A N260 band 64 channel millimeter wave full-digital multi-beam array for 5G massive MIMO applications. IEEE Access, 8 (2020), pp. 47640-47653.
[27]
C. Guo, L. Tian, Z.H. Jiang, W. Hong. A self-calibration method for 5G full-digital TDD beamforming systems using an embedded transmission line. IEEE Trans Antennas Propag, 69 (5) (2021), pp. 2648-2659.
[28]
X. Yang, S. Jin, G.Y. Li, X. Li. Asymmetrical uplink and downlink transceivers in massive MIMO systems. IEEE Trans Veh Technol, 70 (11) (2021), pp. 11632-11647.
[29]
J. Lu, J. Zhang, S. Cai, B. Li, X. Zhu, W. Hong. Downlink wideband channel estimation for asymmetrical full-digital system. IEEE Wirel Commun Lett, 11 (9) (2022), pp. 1830-1834.
[30]
R.C. Hansen. Phase array antennas. Wiley, New York City (1998).
[31]
S. Mumtaz, J. Rodriguez, L. Dai. mmWave massive mimo: a paradigm for 5G. Academic, San Diego (2016).
[32]
S. Haykin.Communication systems. ( 4th ed.), Wiley, New York City (2004).
[33]
S. Han, I. Chih-Lin, Z. Xu, C. Rowell. Large-scale antenna systems with hybrid analog and digital beamforming for millimeter wave 5G. IEEE Commun Mag, 53 (1) (2015), pp. 186-194.
[34]
S. Yang, Z. Yu, J. Zhou. A low-loss broadband planar transition from ground coplanar waveguide to substrate-integrated coaxial line. IEEE Microw Wirel Compon Lett, 31 (11) (2021), pp. 1191-1194.
[35]
Y. Shao, X.C. Li, L.S. Wu, J.F. Mao. A wideband millimeter-wave substrate integrated coaxial line array for high-speed data transmission. IEEE Trans Microw Theory Tech, 65 (8) (2017), pp. 2789-2800.
[36]
V. Rathi, G. Kumar, K.P. Ray. Improved coupling for aperture coupled microstrip antennas. IEEE Trans Antennas Propag, 44 (8) (1996), pp. 1196-1198.
[37]
Z.F. Ding, S.Q. Xiao, C.R. Liu, M.C. Tang, C. Zhang, B.Z. Wang. Design of a broadband, wide-beam hollow cavity multilayer antenna for phased array applications. IEEE Antennas Wirel Propag Lett, 15 (2016), pp. 1040-1043.
[38]
A. Clavin, D. Huebner, F. Kilburg. An improved element for use in array antennas. IEEE Trans Antennas Propag, 22 (4) (1974), pp. 521-526.
[39]
G. Yang, J. Li, J. Yang, S.G. Zhou. A wide beamwidth and wideband magnetoelectric dipole antenna. IEEE Trans Antennas Propag, 66 (12) (2018), pp. 6724-6733.
[40]
B. Feng, L. Li, K.L. Chung, Y. Li. Wideband widebeam dual circularly polarized magnetoelectric dipole antenna/array with meta-columns loading for 5G and beyond. IEEE Trans Antennas Propag, 69 (1) (2021), pp. 219-228.
[41]
K. Itoh, D.K. Cheng. A novel slots-and-monopole antenna with a steerable cardioid pattern. IEEE Trans Aerosp Electron Syst, 8 (2) (1972), pp. 130-134.
[42]
Q. Gu. RF system design of transceivers for wireless communications. Springer, New York City (2005).
[43]
Y. Hua, T.K. Sarkar, D.D. Weiner. An L-shaped array for estimating 2-D directions of wave arrival. IEEE Trans Antennas Propag, 39 (2) (1991), pp. 143-146.
PDF(7049 KB)

Accesses

Citation

Detail

段落导航
相关文章

/