[1] |
Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U. Network motifs: simple building blocks of complex networks. Science 2002; 298 (5594):824-7.
|
[2] |
Benson AR, Abebe R, Schaub MT, Jadbabaie A, Kleinberg J. Simplicial closure and higher-order link prediction. Proc Natl Acad Sci USA 2018; 115(48):E11221-30.
|
[3] |
Kelly FP. Reversibility and stochastic networks. Cambridge: Cambridge University Press; 2011.
|
[4] |
Gao Y, Feng Y, Ji S, Ji R. HGNN+: general hypergraph neural networks. IEEE Trans Pattern Anal Mach Intell 2022; 45(3):3181-99.
|
[5] |
Huang J, Liu X, Song Y. Hyper-path-based representation learning for hypernetworks. In: Proceedings of the 28th International Conference on Information & Knowledge Management; 2019 Nov 3-7; Beijing, China. New York City: Association for Computing Machinery; 2019. p. 449-58.
|
[6] |
Kim J, Oh S, Hong S. Transformers generalize deepsets and can be extended to graphs & hypergraphs. In: Ranzato M, Beygelzimer A, Dauphin Y, Liang PS, Vaughan JW, editors. Advances in neural information processing systems. New York City: NeurIPS; 2021.
|
[7] |
Vijaikumar M, Hada D, Shevade S. HyperTeNet:hypergraph and transformerbased neural network for personalized list continuation. In: Proceedings of the 2021 IEEE International Conference on Data Mining; 2021 Dec 7-10; Auckland, New Zealand. New York City: IEEE; 2021. p. 1210-5.
|
[8] |
Li Y, Chen H, Sun X, Sun Z, Li L, Cui L, et al. Hyperbolic hypergraphs for sequential recommendation. In: Proceedings of the 30th ACM International Conference on Information & Knowledge Management; 2021 Nov 1-5; Gold Coast, QLD, Australia. New York City: The Association for Computing Machinery; 2021. p. 988-97.
|
[9] |
Yu J, Yin H, Li J, Wang Q, Hung NQV, Zhang X, et al. Self-supervised multichannel hypergraph convolutional network for social recommendation. In: Proceedings of the Web Conference 2021; 2021 Apr 19-23; Ljubljana, Slovenia. New York City: The Association for Computing Machinery; 2021. p. 413-24.
|
[10] |
Zhang J, Gao M, Yu J, Guo L, Li J, Yin H. Double-scale self-supervised hypergraph learning for group recommendation. In: Proceedings of the 30th ACM International Conference on Information & Knowledge Management; 2021 Nov 1-5; Gold Coast, QLD, Australia. New York City: The Association for Computing Machinery; 2021. p. 2557-67.
|
[11] |
Huang S, Elhoseiny M, Elgammal AM, Yang D. Learning hypergraphregularized attribute predictors. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2015 Jun 7-12; Boston, MA, USA. New York City: IEEE; 2015. p. 409-17.
|
[12] |
Nagy L, Ruppert T, Löcklin A, Abonyi J. Hypergraph-based analysis and design of intelligent collaborative manufacturing space. J Manuf Syst 2022; 65:88-103.
|
[13] |
Fu Y, Hospedales TM, Xiang T, Gong S. Transductive multi-view zero-shot learning. IEEE Trans Pattern Anal Mach Intell 2015; 37(11):2332-45.
|
[14] |
Lin M, Li W, Lu S. Balanced influencemaximization in attributed social network based on sampling. In: Proceedings of the 13th International Conference on Web Search and Data Mining; 2020 Feb 3-7; Houston, TX, USA. New York City: The Association for Computing Machinery; 2020. p. 375-83.
|
[15] |
Sun X, Yin H, Liu B, Chen H, Cao J, Shao Y, et al. Heterogeneous hypergraph embedding for graph classification. In: Proceedings of the 14th ACM International Conference on Web Search and Data Mining; 2021 Mar 8-12; online. New York City: The Association for Computing Machinery; 2021. p. 725-33.
|
[16] |
Fang Y, Zheng Y. Metric learning based on attribute hypergraph. In: Proceedings of the 2017 IEEE International Conference on Image Processing; 2017 Sep 17-20; Beijing, China. New York City: IEEE; 2017. p. 3440-4.
|
[17] |
Bai S, Zhang F, Torr PH. Hypergraph convolution and hypergraph attention. Pattern Recognit 2021; 110:107637.
|
[18] |
Feng Y, You H, Zhang Z, Ji R, Gao Y. Hypergraph neural networks. Proc Conf AAAI Artif Intell 2019; 33(1):3558-65.
|
[19] |
Ji S, Feng Y, Ji R, Zhao X, Tang W, Gao Y. Dual channel hypergraph collaborative filtering. In: Proceedingsof the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining; Jul 6-10 2020. p. 2020; online. New York City: The Association for Computing Machinery; 2020-9.
|
[20] |
Huang J, Chen C, Ye F, Hu W, Zheng Z. Nonuniform hyper-network embedding with dual mechanism. Acm T Inform Syst 2020; 38(3):1-18.
|
[21] |
Zu C, Gao Y, Munsell B, Kim M, Peng Z, Zhu Y, et al. Identifying high order brain connectome biomarkers via learning on hypergraph. In:Proceedings of the 7th International Workshop on Machine Learning in Medical Imaging (MICCAI 2016); 2016 Oct 17; Athens, Greece. Berlin:Springer; 2016. p. 1-9.
|
[22] |
Klamt S, Haus UU, Theis F. Hypergraphs and cellular networks. PLOS Comput Biol 2009; 5(5):e1000385.
|
[23] |
Fang Q, Sang J, Xu C, Rui Y. Topic-sensitive influencer mining in interestbased social media networks via hypergraph learning. IEEE Trans Multimed 2014; 16(3):796-812.
|
[24] |
Agarwal S, Sawhney R, Thakkar M, Nakov P, Han J, Derr T. Think: temporal hypergraph hyperbolic network. In: Proceedings of the 2022 IEEE International Conference on Data Mining; 2022 Nov 28-Dec 1; Orlando, FL, USA. New York City: IEEE; 2022. p. 849-54.
|
[25] |
Li H, Wang J, Du X, Hu Z, Yang S. KBHN: a knowledge-aware bi-hypergraph network based on visual-knowledge features fusion for teaching image annotation. Inf Process Manage 2023; 60(1):103106.
|
[26] |
Bai J, Gong B, Zhao Y, Lei F, Yan C, Gao Y. Multi-scale representation learning on hypergraph for 3D shape retrieval and recognition. IEEE Trans Image Process 2021; 30:5327-38.
|
[27] |
Trung HT, Van Vinh T, Tam NT, Jo J, Yin H, Hung NQV. Learning holistic interactions in LBSNs with high-order, dynamic, and multi-role contexts. IEEE Trans Knowl Data Eng 2022; 35(5):5002-16.
|
[28] |
Yang D, Qu B, Yang J, Cudre-Mauroux P. Revisiting user mobility and social relationships in LBSNs:a hypergraph embedding approach. In: Proceedings of the World Wide Web Conference; 2019 May 13-17; San Francisco, CA, USA. New York City: The Association for Computing Machinery; 2019. p. 2147-57.
|
[29] |
Yang D, Qu B, Yang J, Cudre-Mauroux P. LBSN2Vec++: heterogeneous hypergraph embedding for location-based social networks. IEEE Trans Knowl Data Eng 2020; 34(4):1843-55.
|
[30] |
Zhu Y, Guan Z, Tan S, Liu H, Cai D, He X. Heterogeneous hypergraph embedding for document recommendation. Neurocomputing 2016; 216:150-62.
|
[31] |
Liu Q, Sun Y, Wang C, Liu T, Tao D. Elastic net hypergraph learning for image clustering and semi-supervised classification. IEEE Trans Image Process 2017; 26(1):452-63.
|
[32] |
Jin T, Yu Z, Gao Y, Gao S, Sun X, Li C. Robust ‘2-hypergraph and its applications. Inf Sci 2019; 501:708-23.
|
[33] |
Li Y, Zhang S, Cheng D, He W, Wen G, Xie Q. Spectral clustering based on hypergraph and self-re-presentation. Multimedia Tools Appl 2017; 76 (16):17559-76.
|
[34] |
He W, Cheng X, Hu R, Zhu Y, Wen G. Feature self-representation based hypergraph unsupervised feature selection via low-rank representation. Neurocomputing 2017; 253:127-34.
|
[35] |
Xi H. Data-driven optimization technologies for MaaS. In: ZhangH, SongX, ShibasakiR,editors. Big data and mobility as a service. Amsterdam: Elsevier; 2022.
|
[36] |
Yadati N, Nimishakavi M, Yadav P, Nitin V, Louis A, Talukdar P, et al. A new method for training graph convolutional networks on hypergraphs. In: Proceedingsof the 2019 Advances in Neural Information Processing Systems; Dec 8-14 2019. p. 2019; Vancouver, BC, Canada. New York City: NeurIPS; 1-12.
|
[37] |
Zhang J, Li F, Xiao X, Xu T, Rong Y, Huang J, et al. Hypergraph convolutional networks via equivalency between hypergraphs and undirected graphs. In: Proceedings of the 2022 ICML Workshop; 2022 Jul 17-23; Baltimore, MD, USA. San Diego: The International Conference on Machine Learning; 2022. p. 1-36.
|
[38] |
Yan J, Feng Y, Ying S, Gao Y. Hypergraph dynamic system. In: Proceedings of the 2024 International Conference on Learning Representations; 2024 May 7- 11; Vienna, Austria; 2024.
|
[39] |
Zhang R, Zou Y, Ma J. Hyper-SAGNN: a self-attention based graph neural network for hypergraphs. In: Proceedings of the 2020 International Conference on Learning Representations; 2020 Apr 26-May 1; online. Trier: the dblp computer science bibliography; 2020.
|
[40] |
Jiang J, Wei Y, Feng Y, Cao J, Gao Y. Dynamic hypergraph neural networks. In: Proceedings of the 28th International Joint Conference on Artificial Intelligence; 2019 Aug 10-16; Macao, China. San Francisco: International Joint Conferences on Artifical Intelligence; 2019. p. 2635-41.
|
[41] |
Dong Y, Sawin W, Bengio Y. HNHN: hypergraph networks with hyperedge neurons. In: Proceedings of the Graph Representation Learning and Beyond Workshop at ICML 2020; 2020 Jul 13-18; online. San Diego: The International Conference on Machine Learning; 2020. p. 1-11.
|
[42] |
Huang J, Yang J. UniGNN: a unified framework for graph and hypergraph neural networks. In: Proceedings of the 30th International Joint Conference on Artificial Intelligence; 2021 Aug 19-27; online. San Francisco: International Joint Conferences on Artifical Intelligence; 2021. p. 2563-9.
|
[43] |
Chien E, Pan C, Peng J, Milenkovic O. You are allset:a multiset function framework for hypergraph neural networks. In: Proceedings of the 10th International Conference on Learning Representations; 2022 Apr 25-29; online. Trier: the dblp computer science bibliography; 2022.
|
[44] |
Wang P, Yang S, Liu Y, Wang Z, Li P. Equivariant hypergraph diffusion neural operators. In: Proceedings of the 11th International Conference on Learning Representations; 2023 May 1-5; Kigali, Rwanda. Trier: the dblp computer science bibliography; 2023.
|
[45] |
Li M, Zhang Y, Li X, Zhang Y, Yin B. Hypergraph transformer neural networks. ACM Trans Knowl Discov Data 2023; 17(5):1-22.
|
[46] |
Kipf TN, Welling M. Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations; 2017 Apr 24-26; Toulon, France. Trier: the dblp computer science bibliography; 2017. p. 1-14.
|
[47] |
Feng Y, Han J, Ying S, Gao Y. Hypergraph isomorphism computation. IEEE Trans Pattern Anal Mach Intell. 2023; 46(5):3880-96.
|
[48] |
Feng Y, Luo Y, Ying S, Gao Y. LightHGNN: distilling hypergraph neural networks into MLPs for 100x faster inference. In: Proceedings of the 12th International Conference on Learning Representations; 2024 May 7-11; Vienna, Austria; 2024.
|
[49] |
Jiang Y, Wang R, Feng J, Jin J, Liang S, Li Z, et al. Explainable deep hypergraph learning modeling the peptide secondary structure prediction. Adv Sci 2023; 10(11):2206151.
|
[50] |
Dotson A, Chen C, Lindsly S, Cicalo A, Dilworth S, Ryan C, et al. Deciphering multi-way interactions in the human genome. Nat Commun 2022; 13:5498.
|
[51] |
Saifuddin KM, Bumgardner B, Tanvir F, Akbas E. HyGNN:drug-drug interaction prediction via hypergraph neural network. In: Proceedings of the 2023 IEEE 39th International Conference on Data Engineering; 2023 Apr 3-7; Acaheim, CA, USA. New York City: IEEE; 2023. p. 1503-16.
|
[52] |
Nguyen DA, Nguyen CH, Mamitsuka H. Central-smoothing hypergraph neural networks for predicting drug-drug interactions. IEEE Trans Neural Netw Learn Syst. In press.
|
[53] |
Vinas R, Joshi CK, Georgiev D, Lin P, Dumitrascu B, Gamazon ER, et al. Hypergraph factorization for multi-tissue gene expression imputation. Nat Mach Intell 2023; 5:739-53.
|
[54] |
Bakht B, Javed S, AlMarzouqi H, Khandoker A, Werghi N. Colorectal cancer tissue classification using semi-supervised hypergraph convolutional network. In: Proceedings of the 2021 IEEE 18th International Symposium on Biomedical Imaging; 2021 Apr 13-16; Nice, France. New York City: IEEE; 2021. p. 1306-9.
|
[55] |
Zhang R, Zhou T, Ma J. Multiscale and integrative single-cell Hi-C analysis with Higashi. Nat Biotechnol 2022; 40(2):254-61.
|
[56] |
Di D, Zhang J, Lei F, Tian Q, Gao Y. Big-hypergraph factorization neural network for survival prediction from whole slide image. IEEE Trans Image Process 2022; 31:1149-60.
|
[57] |
Di D, Zou C, Feng Y, Zhou H, Ji R, Dai Q, et al. Generating hypergraph-based high-order representations of whole-slide histopathological images for survival prediction. IEEE Trans Pattern Anal Mach Intell 2022; 45(5):5800-15.
|
[58] |
Ji J, Ren Y, Lei M. FC-HAT: hypergraph attention network for functional brain network classification. Inf Sci 2022; 608:1301-16.
|
[59] |
Xiao L, Wang J, Kassani PH, Zhang Y, Bai Y, Stephen JM, et al. Multihypergraph learning-based brain functional connectivity analysis in fMRI data. IEEE Trans Med Imaging 2019; 39(5):1746-58.
|
[60] |
Song X, Wu K, Chai L. Brain network analysis of schizophrenia patients based on hypergraph signal processing. IEEE Trans Image Process 2023; 32:30.
|
[61] |
Pan J, Lei B, Shen Y, Liu Y, Feng Z, Wang S. Characterization multi-modal connectivity of brain network by hypergraph GAN for Alzheimer’s disease analysis. In: Proceedings of the 4th Chinese Conference on Pattern Recognition and Computer Vision; 2021 Dec 19-21; Zhuhai, China. Berlin: Springer; 2021. p. 467-78.
|
[62] |
Fan J, Fang L, Wu J, Guo Y, Dai Q. From brain science to artificial intelligence. Engineering 2020; 6(3):248-52.
|
[63] |
Wang M, Shao W, Huang S, Zhang D. Hypergraph-regularized multi-modal learning by graph diffusion for imaging genetics based Alzheimer’s disease diagnosis. Med Image Anal 2023; 89:102883.
|
[64] |
Jiao CN, Gao YL, Yu N, Liu JX, Qi LY. Hyper-graph regularized constrained NMF for selecting differentially expressed genes and tumor classification. IEEE J Biomed Health Inform 2020; 24(10):3002-11.
|
[65] |
Sun L, Rao Y, Zhang X, Lan Y, Yu S. MS-HGAT: memory-enhanced sequential hypergraph attention network for information diffusion prediction. Proc Conf AAAI Artif Intell 2022; 36(4):4156-64.
|
[66] |
Xia L, Huang C, Xu Y, Zhao J, Yin D, Huang J. Hypergraph contrastive collaborative filtering. In: Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval; 2022 Jul 11-15; Madrid, Spain. New York City: Association for Computing Machinery; 2022. p. 70-9.
|
[67] |
Rafferty J, Lee A, Bennett E, Lyons J, Jalali-Najafabadi F, Dhafari TB, et al. Analysis of disease clusters and patient outcomes in people with multiple long term conditions using hypergraphs. Int J Popul Data Sci 2022; 7(3).
|
[68] |
Cai D, Sun C, Song M, Zhang B, Hong S, Li H. Hypergraph contrastive learning for electronic health records. In: Proceedings of the 2022 SIAM International Conference on Data Mining; 2022 Apr 28-30; Alexandria, VA, USA. Philadelphia: Society for Industrial and Applied Mathematics; 2022. p. 127-35.
|
[69] |
Zhu Y, Huang G, Xu X, Ji Y, Shen F. Selective hypergraph convolutional networks for skeleton-based action recognition. In: Proceedings of the 2022 International Conference on Multimedia Retrieval; 2022 Jun 27-30; Newark, NJ, USA. New York City: Association for Computing Machinery; 2022. p. 518- 26.
|
[70] |
Lu Z, Peng Y, Ip HH. Spectral learning of latent semantics for action recognition. In: Proceedings of the 2011 International Conference on Computer Vision; 2011 Nov 6-13; Barcelona, Spain. New York City: IEEE; 2011. p. 1503-10.
|
[71] |
Hu X, Wei D, Wang Z, Shen J, Ren H. Hypergraph video pedestrian reidentification based on posture structure relationship and action constraints. Pattern Recognit 2021; 111:107688.
|
[72] |
Lv X, Wang X, Wang Q, Yu J. 4D light field segmentation from light field super-pixel hypergraph representation. IEEE Trans Vis Comput Graph 2020; 27(9):3597-610.
|
[73] |
Zhang X, Ma R, Zou C, Zhang M, Zhao X, Gao Y. View-aware geometrystructure joint learning for single-view 3D shape reconstruction. IEEE Trans Pattern Anal Mach Intell 2021; 44(10):6546-61.
|
[74] |
Wang Y, Yan C, Feng Y, Du S, Dai Q, Gao Y. STORM: structure-based overlap matching for partial point cloud registration. IEEE Trans Pattern Anal Mach Intell 2022; 45(1):1135-49.
|
[75] |
Yao R, Du S, Cui W, Ye A, Wen F, Zhang H, et al. Hunter: exploring high-order consistency for point cloud registration with severe outliers. IEEE Trans Pattern Anal Mach Intell 2023; 45(12):14760-76.
|
[76] |
Gao Y, Wang M, Tao D, Ji R, Dai Q. 3D object retrieval and recognition with hypergraph analysis. IEEE Trans Image Process 2012; 21(9):4290-303.
|
[77] |
Hao X, Li J, Guo Y, Jiang T, Yu M. Hypergraph neural network for skeletonbased action recognition. IEEE Trans Image Process 2021; 30:2263-75.
|
[78] |
Harrod S. Modeling network transition constraints with hypergraphs. Transport Sci 2011; 45(1):81-97.
|
[79] |
Luo X, Peng J, Liang J. Directed hypergraph attention network for traffic forecasting. IET Intell Transp Syst 2022; 16(1):85-98.
|
[80] |
Wang J, Zhang Y, Wei Y, Hu Y, Piao X, Yin B. Metro passenger flow prediction via dynamic hypergraph convolution networks. IEEE Trans Intell Transp Syst 2021; 22(12):7891-903.
|
[81] |
Rajesh K, Ramaswamy V, Kannan K, Arunkumar N. Satellite cloud image classification for cyclone prediction using dichotomous logistic regression based fuzzy hypergraph model. Future Gener Comput Syst 2019; 98:688-96.
|
[82] |
Liu ZY, Liu JW. Hypergraph attentional convolutional neural network for salient object detection. Vis Comput 2023; 39(7):2881-907.
|
[83] |
Pearcy N, Crofts JJ, Chuzhanova N. Hypergraph models of metabolism. Int J Biol Vet Agric Food Eng 2014; 8(8):752-6.
|
[84] |
Kajino H. Molecular hypergraph grammar with its application to molecular optimization. In: Proceedings of the ICML 2019: 36th International Conference on Machine Learning; 2019 Jun 10-15; Long Beach, CA, USA. Trier: the dblp computer science bibliography; 2019. p. 3183-91.
|
[85] |
Liu M, Zhang J, Yap PT, Shen D. View-aligned hypergraph learning for Alzheimer’s disease diagnosis with incomplete multi-modality data. Med Image Anal 2017; 36:123-34.
|
[86] |
Shao W, Peng Y, Zu C, Wang M, Zhang D, Initiative ADN, et al. Hypergraph based multi-task feature selection for multi-modal classification of Alzheimer’s disease. Comput Med Imaging Graph 2020; 80:101663.
|
[87] |
Rajesh K, Sarala D, Venkataraman V, Kannan K. Hypergraph-based algorithm for segmentation of weather satellite imagery. Indian J Sci Technol 2016; 9 (36):36.
|
[88] |
Li X, Li Y, Shen C, Dick A, Van Den Hengel A. Contextual hypergraph modeling for salient object detection. In: Proceedings of the 2013 IEEE International Conference on Computer Vision;2013 Dec 1-8; Sydney, NSW, Australia. New York City: IEEE; 2013. p. 3328-35.
|
[89] |
Liang Z, Chi Z, Fu H, Feng D. Salient object detection using content-sensitive hypergraph representation and partitioning. Pattern Recognit 2012; 45 (11):3886-901.
|
[90] |
Sawhney R, Agarwal S, Wadhwa A, Shah RR. Spatiotemporal hypergraph convolution network for stock movement forecasting. In: Proceedings of the 2020 IEEE International Conference on Data Mining; 2020 Nov 17-20; Sorrento, Italy. New York City: IEEE; 2020. p. 482-91.
|
[91] |
Sawhney R, Agarwal S, Wadhwa A, Derr T, Shah RR. Stock selection via spatiotemporal hypergraph attention network: a learning to rank approach. Proc Conf AAAI Artif Intell 2021; 35(1):497-504.
|
[92] |
Ma X, Zhao T, Guo Q, Li X, Zhang C. Fuzzy hypergraph network for recommending top-k profitable stocks. Inf Sci 2022; 613:239-55.
|
[93] |
Li X, Cui C, Cao D, Du J, Zhang C. Hypergraph-based reinforcement learning for stock portfolio selection. In: Proceedings of the 2022 IEEE International Conference on Acoustics, Speech and Signal Processing; 2022 May 22-27; online. New York City: IEEE; 2022. p. 4028-32.
|
[94] |
He Y, Tai W, Zhou F, Yang Y. Exploring hypergraph of earnings call for risk prediction. Proc Conf AAAI Artif Intell 2023; 37(13):16226-7.
|
[95] |
Konstantinova EV, Skorobogatov VA. Application of hypergraph theory in chemistry. Discrete Math 2001; 235(1-3):365-83.
|
[96] |
Jost R, Mulas R. Mulas, Hypergraph Laplace operators for chemical reaction networks. Adv Math 2019; 351:870-96.
|
[97] |
Yadati N, Nitin V, Nimishakavi M, Yadav P, Louis A, Talukdar P. NHP:neural hypergraph link prediction. In: Proceedings of the 29th ACM International Conference on Information& Knowledge Management; 2020Oct 19-23; online. New York City: Association for Computing Machinery; 2020. p. 1705-14.
|
[98] |
Xia L, Zheng P, Huang X, Liu C. A novel hypergraph convolution networkbased approach for predicting the material removal rate in chemical mechanical planarization. J Intell Manuf 2022; 33(8):2295-306.
|
[99] |
Wu T, Ling Q. Self-supervised heterogeneous hypergraph network for knowledge tracing. Inf Sci 2023; 624:200-16.
|
[100] |
Feng Y, Zhang Z, Zhao X, Ji R, Gao Y. GVCNN:group-view convolutional neural networks for 3D shape recognition. In: Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2018 Jun 18-23; Salt Lake City, UT, USA. New York City: IEEE; 2018.
|
[101] |
iMoonLab. DeepHypergraph (DHG) [Internet]. San Francisco: GitHub, Inc; c2024 [cited 2024 Apr 12]. Available from: https://github.com/iMoonLab/DeepHypergraph.
|
[102] |
Hutter F, Kotthoff L, Vanschoren J. Automated machine learning:methods, systems, challenges. Cham: Springer Nature; 2019.
|