羧酸酯酶通过与脂肪酸合成酶结合治疗代谢功能障碍相关脂肪性肝炎

宋阳, 钟巍, 刘焯晞, 张雅婷, 官华宇, 谢茗旭, 夏芷君, 首第文, 周永健, 许鸿志, 于君, 张翔

工程(英文) ›› 2024, Vol. 41 ›› Issue (10) : 204-215.

PDF(9719 KB)
PDF(9719 KB)
工程(英文) ›› 2024, Vol. 41 ›› Issue (10) : 204-215. DOI: 10.1016/j.eng.2024.04.018
研究论文
Article

羧酸酯酶通过与脂肪酸合成酶结合治疗代谢功能障碍相关脂肪性肝炎

作者信息 +

Carboxyl Ester Lipase Protects Against Metabolic Dysfunction-Associated Steatohepatitis by Binding to Fatty Acid Synthase

Author information +
History +

Abstract

Carboxyl ester lipase (CEL), a pivotal enzyme involved in lipid metabolism, is recurrently mutated in obese mice. Here, we aimed to elucidate the functional significance, molecular mechanism, and therapeutic potential of CEL in metabolic dysfunction-associated steatohepatitis (MASH). Hepatocyte-specific carboxyl ester lipase gene (Cel) knockout (CelΔHEP) and wildtype (WT) littermates were fed with choline-deficient high-fat diet (CD-HFD) for 16 weeks, or methionine- and choline-deficient diet (MCD) for three weeks to induce MASH. Liquid chromatography-mass spectrometry and co-immunoprecipitation were employed to identify the downstream targets of CEL. CD-HFD/MCD-fed WT mice received intravenous injections of CEL-adeno-associated viral, serotype 8 (AAV8) to induce specific overexpression of CEL in the liver. We observed a decrease in CEL protein levels in MASH induced by CD-HFD or MCD in mice. CelΔHEP mice fed with CD-HFD or MCD exhibited pronounced hepatic steatosis, inflammation, lipid peroxidation, and liver injury compared to WT littermates, accompanied by increased hepatic nuclear factor kappa-light-chain-enhancer of activated B cell (NF-κB) activation. Consistently, Cel knockdown in mouse primary hepatocytes and AML12 cells aggravated lipid accumulation and inflammation, whereas CEL overexpression exerted the opposite effect. Mechanistically, CEL directly bound to fatty acid synthase (FASN), resulting in reduced FASN SUMOylation, which in turn promoted FASN degradation through the proteasome pathway. Furthermore, inhibition of FASN ameliorated hepatocyte lipid accumulation and inflammation induced by Cel knockdown in vivo and in vitro. Hepatocyte-specific CEL overexpression using AAV8-Cel significantly mitigated steatohepatitis in mice fed with CD-HFD or MCD. CEL protects against steatohepatitis development by directly interacting with FASN and suppressing its expression for de novo lipogenesis. CEL overexpression confers a therapeutic benefit in steatohepatitis.

Keywords

Metabolic dysfunction-associated steatohepatitis / Carboxyl ester lipase / Fatty acid synthase / De novo lipogenesis / Treatment

引用本文

导出引用
宋阳, 钟巍, 刘焯晞. 羧酸酯酶通过与脂肪酸合成酶结合治疗代谢功能障碍相关脂肪性肝炎. Engineering. 2024, 41(10): 204-215 https://doi.org/10.1016/j.eng.2024.04.018

参考文献

[1]
Z. Younossi, Q.M. Anstee, M. Marietti, T. Hardy, L. Henry, M. Eslam, et al. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol, 15 (1) (2018), pp. 11-20.
[2]
Z. Younossi, M. Stepanova, J.P. Ong, I.M. Jacobson, E. Bugianesi, A. Duseja, et al. Global nonalcoholic steatohepatitis C. Nonalcoholic steatohepatitis is the fastest growing cause of hepatocellular carcinoma in liver transplant candidates. Clin Gastroenterol Hepatol, 17 (4) (2019), pp. 748-55 e3.
[3]
A.C. Sheka, O. Adeyi, J. Thompson, B. Hameed, P.A. Crawford, S. Ikramuddin. Nonalcoholic steatohepatitis: a review. JAMA, 323 (12) (2020), pp. 1175-1183.
[4]
S.L. Friedman, B.A. Neuschwander-Tetri, M. Rinella, A.J. Sanyal. Mechanisms of NAFLD development and therapeutic strategies. Nat Med, 24 (7) (2018), pp. 908-922.
[5]
L.M. Camarota, L.A. Woollett, P.N. Howles. Reverse cholesterol transport is elevated in carboxyl ester lipase-knockout mice. FASEB J, 25 (4) (2011), pp. 1370-1377.
[6]
L. Li, W. Weng, E.H. Harrison, E.A. Fisher. Plasma carboxyl ester lipase activity modulates apolipoprotein B-containing lipoprotein metabolism in a transgenic mouse model. Metabolism, 57 (10) (2008), pp. 1361-1368.
[7]
S. Kahraman, E. Dirice, G. Basile, D. Diegisser, J. Alam, B.B. Johansson, et al. Abnormal exocrine-endocrine cell cross-talk promotes beta-cell dysfunction and loss in MODY8. Nat Metab, 4 (1) (2022), pp. 76-89.
[8]
A. Kodvawala, A.B. Ghering, W.S. Davidson, D.Y. Hui. Carboxyl ester lipase expression in macrophages increases cholesteryl ester accumulation and promotes atherosclerosis. J Biol Chem, 280 (46) (2005), pp. 38592-38598.
[9]
P. Burchardt, J. Zurawski, B. Zuchowski, T. Kubacki, D. Murawa, K. Wiktorowicz, et al. Low-density lipoprotein, its susceptibility to oxidation and the role of lipoprotein-associated phospholipase A2 and carboxyl ester lipase lipases in atherosclerotic plaque formation. Arch Med Sci, 9 (1) (2013), pp. 151-158.
[10]
D.Y. Hui, P.N. Howles. Carboxyl ester lipase: structure-function relationship and physiological role in lipoprotein metabolism and atherosclerosis. J Lipid Res, 43 (12) (2002), pp. 2017-2030.
[11]
J. Shen, H. Tsoi, Q. Liang, E.S. Chu, D. Liu, A.C. Yu, et al. Oncogenic mutations and dysregulated pathways in obesity-associated hepatocellular carcinoma. Oncogene, 35 (49) (2016), pp. 6271-6280.
[12]
C. Lebeaupin, D. Vallee, Y. Hazari, C. Hetz, E. Chevet, B. Bailly-Maitre. Endoplasmic reticulum stress signalling and the pathogenesis of non-alcoholic fatty liver disease. J Hepatol, 69 (4) (2018), pp. 927-947.
[13]
F. Marra, G. Svegliati-Baroni. Lipotoxicity and the gut-liver axis in NASH pathogenesis. J Hepatol, 68 (2) (2018), pp. 280-295.
[14]
F. Wang, X. Zhang, W. Liu, Y. Zhou, W. Wei, D. Liu, et al. Activated natural killer cell promotes nonalcoholic steatohepatitis through mediating JAK/STAT pathway. Cell Mol Gastroenterol Hepatol, 13 (1) (2022), pp. 257-274.
[15]
A. Floris, M. Mazarei, X. Yang, A.E. Robinson, J. Zhou, A. Barberis, et al. SUMOylation protects FASN against proteasomal degradation in breast cancer cells treated with grape leaf extract. Biomolecules, 10 (4) (2020), p. 529.
[16]
H. Wang, Y. Zhou, H. Xu, X. Wang, Y. Zhang, R. Shang, et al. Therapeutic efficacy of FASN inhibition in preclinical models of HCC. Hepatology, 76 (4) (2022), pp. 951-966.
[17]
D.H. Ipsen, J. Lykkesfeldt, P. Tveden-Nyborg. Molecular mechanisms of hepatic lipid accumulation in non-alcoholic fatty liver disease. Cell Mol Life Sci, 75 (18) (2018), pp. 3313-3327.
[18]
M. Eslam, L. Valenti, S. Romeo. Genetics and epigenetics of NAFLD and NASH: clinical impact. J Hepatol, 68 (2) (2018), pp. 268-279.
[19]
A. Verine, N. Bruneau, A. Valette, J. Le Petit-Thevenin, E. Pasqualini, D. Lombardo.Immunodetection and molecular cloning of a bile-salt-dependent lipase isoform in HepG2 cells. Biochem J, 342 (Pt1) (1999), pp. 179-187.
[20]
V.B. Kumar, T. Sasser, J.B. Mandava, H. al Sadi, C. Spilburg. Identification of 5′ flanking sequences that affect human pancreatic cholesterol esterase gene expression. Biochem Cell Biol, 75 (3) (1997), pp. 247-254.
[21]
J.A. Kissel, R.N. Fontaine, C.W. Turck, H.L. Brockman, D.Y. Hui. Molecular cloning and expression of cDNA for rat pancreatic cholesterol esterase. Biochim Biophys Acta, 1006 (2) (1989), pp. 227-236.
[22]
C.A. Hornick, D.Y. Hui, J.G. DeLamatre. A role for retrosomes in intracellular cholesterol transport from endosomes to the plasma membrane. Am J Physiol, 273 (3 Pt 1) (1997), pp. C1075-C1081.
[23]
R.W. Mahley, Z.S. Ji. Remnant lipoprotein metabolism: key pathways involving cell-surface heparan sulfate proteoglycans and apolipoprotein E. J Lipid Res, 40 (1) (1999), pp. 1-16.
[24]
F. Li, Y. Huang, D.Y. Hui.Bile salt stimulated cholesterol esterase increases uptake of high density lipoprotein-associated cholesteryl esters by HepG2 cells. Biochemistry, 35 (21) (1996), pp. 6657-6663.
[25]
N. Bruneau, D. Lombardo, M. Bendayan. Participation of GRP94-related protein in secretion of pancreatic bile salt-dependent lipase and in its internalization by the intestinal epithelium. J Cell Sci, 111 (Pt17) (1998), pp. 2665-2679.
[26]
W. Weng, L. Li, A.M. van Bennekum, S.H. Potter, E.H. Harrison, W.S. Blaner, et al. Intestinal absorption of dietary cholesteryl ester is decreased but retinyl ester absorption is normal in carboxyl ester lipase knockout mice. Biochemistry, 38 (13) (1999), pp. 4143-4149.
[27]
M. Vesterhus, H. Raeder, A.J. Kurpad, D. Kawamori, A. Molven, R.N. Kulkarni, et al. Pancreatic function in carboxyl-ester lipase knockout mice. Pancreatology, 10 (4) (2010), pp. 467-476.
[28]
X. Wei, H. Song, L. Yin, M.G. Rizzo, R. Sidhu, D.F. Covey, et al. Fatty acid synthesis configures the plasma membrane for inflammation in diabetes. Nature, 539 (7628) (2016), pp. 294-298.
[29]
G.Y. Lee, H. Jang, J.H. Lee, J.Y. Huh, S. Choi, J. Chung, et al. PIASy-mediated sumoylation of SREBP1c regulates hepatic lipid metabolism upon fasting signaling. Mol Cell Biol, 34 (6) (2014), pp. 926-938.
[30]
S. Stein, V. Lemos, P. Xu, H. Demagny, X. Wang, D. Ryu, et al. Impaired SUMOylation of nuclear receptor LRH-1 promotes nonalcoholic fatty liver disease. J Clin Invest, 127 (2) (2017), pp. 583-592.
[31]
D.H. Kim, Z. Xiao, S. Kwon, X. Sun, D. Ryerson, D. Tkac, et al. A dysregulated acetyl/SUMO switch of FXR promotes hepatic inflammation in obesity. EMBO J, 34 (2) (2015), pp. 184-199.
[32]
E.E. Powell, V.W. Wong, M. Rinella. Non-alcoholic fatty liver disease. Lancet, 397 (10290) (2021), pp. 2212-2224.
[33]
S. Maestro, N.D. Weber, N. Zabaleta, R. Aldabe, G. Gonzalez-Aseguinolaza. Novel vectors and approaches for gene therapy in liver diseases. JHEP Rep, 3 (4) (2021), Article 100300.
[34]
C.M. Upchurch, S. Yeudall, C.M. Pavelec, D. Merk, J. Greulich, M. Manjegowda, et al. Targeting oxidized phospholipids by AAV-based gene therapy in mice with established hepatic steatosis prevents progression to fibrosis. Sci Adv, 8 (28) (2022), Article eabn0050.
[35]
M. Weber, P. Mera, J. Casas, J. Salvador, A. Rodriguez, S. Alonso, et al. Liver CPT1A gene therapy reduces diet-induced hepatic steatosis in mice and highlights potential lipid biomarkers for human NAFLD. FASEB J, 34 (9) (2020), pp. 11816-11837.
PDF(9719 KB)

Accesses

Citation

Detail

段落导航
相关文章

/