[1] |
W. Yao, J. Yu, Y. Yang, N. Chen, S. Jin, Y. Hu, et al. Understanding travel behavior adjustment under COVID-19. Commun Transp Res, 2 (2022), Article 100068.
|
[2] |
S.G. Borjigin, Q. He, D.A. Niemeier.COVID-19 transmission in U.S. transit buses: a scenario-based approach with agent-based simulation modeling (ABSM). Commun Transp Res, 3 (2023), Article 100090.
|
[3] |
Li Y, Yu R, Shahabi C, Liu Y. Diffusion convolutional recurrent neural network: data-driven traffic forecasting. 2017. arXiv:1707.01926.
|
[4] |
Zhang J, Zheng Y, Qi D. Deep spatio-temporal residual networks for citywide crowd flows prediction. In:Proceedings of the AAAI-17: 31st AAAI conference on artificial intelligence; 2017 Feb 4-9; San Francisco, CA, USA. Washington, DC: Association for the Advancement of Artificial Intelligence (AAAI); 2017.
|
[5] |
L. Zhao, Y. Song, C. Zhang, Y. Liu, P. Wang, T. Lin, et al. T-GCN: a temporal graph convolutional network for traffic prediction. IEEE Trans Intell Transp Syst, 21 (9) (2020), pp. 3848-3858.
|
[6] |
W. Jiang, Z. Ma, H.N. Koutsopoulos. Deep learning for short-term origin-destination passenger flow prediction under partial observability in urban railway systems. Neural Comput Appl, 34 (2022), pp. 4813-4830.
|
[7] |
P. Noursalehi, H.N. Koutsopoulos, J.H. Zhao. Dynamic origin-destination prediction in urban rail systems: a multi-resolution spatio-temporal deep learning approach. IEEE Trans Intell Transp Syst, 23 (6) (2022), pp. 5106-5115.
|
[8] |
J. Zhang, H. Che, F. Chen, W. Ma, Z. He. Short-term origin-destination demand prediction in urban rail transit systems: a channel-wise attentive split-convolutional neural network method. Transp Res Part C Emerg Technol, 124 (2021), Article 102928.
|
[9] |
Liu L, Zhu Y, Li G, Wu Z, Bai L, Lin L. Online metro origin-destination prediction via heterogeneous information aggregation. 2022. arXiv:2107.00946v5.
|
[10] |
G. Zhu, J. Ding, Y. Wei, Y. Yi, S.S.D. Xu, E.Q. Wu. Two-stage OD flow prediction for emergency in urban rail transit. IEEE Trans Intell Transp Syst, 25 (1) (2023), pp. 920-928.
|
[11] |
L. Liu, Z. Qiu, G. Li, Q. Wang, W. Ouyang, L. Lin. Contextualized spatial-temporal network for taxi origin-destination demand prediction. IEEE Trans Intell Transp Syst, 20 (10) (2019), pp. 3875-3887.
|
[12] |
X.X. Zou, S.Y. Zhang, C.H. Zhang, J.J.Q. Yu, E. Chung. Long-term origin-destination demand prediction with graph deep learning. IEEE Trans Big Data, 8 (6) (2021), pp. 1481-1495.
|
[13] |
M. Van der Voort, M. Dougherty, S. Watson. Combining kohonen maps with arima time series models to forecast traffic flow. Transp Res Part C Emerg Technol, 4 (5) (1996), pp. 307-318.
|
[14] |
M.C. Tan, S.C. Wong, J.M. Xu, Z.R. Guan, P. Zhang. An aggregation approach to short-term traffic flow prediction. IEEE Trans Intell Transp Syst, 10 (1) (2009), pp. 60-69.
|
[15] |
M. Ni, Q. He, J. Gao. Forecasting the subway passenger flow under event occurrences with social media. IEEE Trans Intell Transp Syst, 18 (6) (2016), pp. 1623-1632.
|
[16] |
M. Castro-Neto, Y.S. Jeong, M.K. Jeong, L.D. Han. Online-SVR for short-term traffic flow prediction under typical and atypical traffic conditions. Expert Syst Appl, 36 (3) (2009), pp. 6164-6173.
|
[17] |
P. Högberg. Estimation of parameters in models for traffic prediction: a non-linear regression approach. Transp Res, 10 (4) (1976), pp. 263-265.
|
[18] |
H. Sun, H.X. Liu, H. Xiao, R.R. He, B. Ran. Use of local linear regression model for short-term traffic forecasting. Transp Res Rec, 1836 (1) (2003), pp. 143-150.
|
[19] |
Z. Zheng, D. Su. Short-term traffic volume forecasting: a k-nearest neighbor approach enhanced by constrained linearly sewing principle component algorithm. Transp Res Part C Emerg Technol, 43 (2014), pp. 143-157.
|
[20] |
M.W. Li, W.C. Hong, H.G. Kang. Urban traffic flow forecasting using Gauss-SVR with cat mapping, cloud model and PSO hybrid algorithm. Neurocomputing, 99 (2013), pp. 230-240.
|
[21] |
W.C. Hong. Traffic flow forecasting by seasonal SVR with chaotic simulated annealing algorithm. Neurocomputing, 74 (12-13) (2011), pp. 2096-2107.
|
[22] |
P. Cai, Y. Wang, G. Lu, P. Chen, C. Ding, J. Sun. A spatiotemporal correlative k-nearest neighbor model for short-term traffic multistep forecasting. Transp Res Part C Emerg Technol, 62 (2016), pp. 21-34.
|
[23] |
G. Lin, A. Lin, D. Gu. Using support vector regression and k-nearest neighbors for short-term traffic flow prediction based on maximal information coefficient. Inf Sci, 608 (2022), pp. 517-531.
|
[24] |
A.M. Avila, I. Mezić. Data-driven analysis and forecasting of highway traffic dynamics. Nat Commun, 11 (2020), p. 2090.
|
[25] |
Y. Lv, Y. Duan, W. Kang, Z. Li, F.Y. Wang. Traffic flow prediction with big data: a deep learning approach. IEEE Trans Intell Transp Syst, 16 (2) (2014), pp. 865-873.
|
[26] |
Y. Liu, Z. Liu, R. Jia. DeepPF: a deep learning based architecture for metro passenger flow prediction. Transp Res Part C Emerg Technol, 101 (2019), pp. 18-34.
|
[27] |
L. Liu, R.C. Chen. A novel passenger flow prediction model using deep learning methods. Transp Res Part C Emerg Technol, 84 (2017), pp. 74-91.
|
[28] |
N.G. Polson, V.O. Sokolov. Deep learning for short-term traffic flow prediction. Transp Res Part C Emerg Technol, 79 (2017), pp. 1-17.
|
[29] |
J. Guo, Z. Xie, Y. Qin, L. Jia, Y. Wang. Short-term abnormal passenger flow prediction based on the fusion of SVR and LSTM. IEEE Access, 7 (2019), pp. 42946-42955.
|
[30] |
Y. Jing, H. Hu, S. Guo, X. Wang, F. Chen. Short-term prediction of urban rail transit passenger flow in external passenger transport hub based on LSTM-LGB-DRS. IEEE Trans Intell Transp Syst, 22 (7) (2021), pp. 4611-4621.
|
[31] |
J. An, L. Fu, M. Hu, W. Chen, J. Zhan. A novel fuzzy-based convolutional neural network method to traffic flow prediction with uncertain traffic accident information. IEEE Access, 7 (2019), pp. 20708-20722.
|
[32] |
Y. Liu, C. Lyu, X. Liu, Z. Liu. Automatic feature engineering for bus passenger flow prediction based on modular convolutional neural network. IEEE Trans Intell Transp Syst, 22 (4) (2021), pp. 2349-2358.
|
[33] |
B. Du, H. Peng, S. Wang, M.Z.A. Bhuiyan, L. Wang, Q. Gong, et al. Deep irregular convolutional residual LSTM for urban traffic passenger flows prediction. IEEE Trans Intell Transp Syst, 21 (3) (2020), pp. 972-985.
|
[34] |
C. Chen, Y. Liu, L. Chen, C. Zhang. Bidirectional spatial-temporal adaptive transformer for urban traffic flow forecasting. IEEE Trans Neural Netw Learn Syst, 34 (10) (2022), pp. 6913-6925.
|
[35] |
Yu B, Yin H, Zhu Z. Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting. 2017. arXiv:1709.04875.
|
[36] |
A. Ali, Y. Zhu, M. Zakarya. Exploiting dynamic spatio-temporal graph convolutional neural networks for citywide traffic flows prediction. Neural Netw, 145 (2022), pp. 233-247.
|
[37] |
M. Lv, Z. Hong, L. Chen, T. Chen, T. Zhu, S. Ji. Temporal multi-graph convolutional network for traffic flow prediction. IEEE Trans Intell Transp Syst, 22 (6) (2021), pp. 3337-3348.
|
[38] |
B. Yu, Y. Lee, K. Sohn. Forecasting road traffic speeds by considering area-wide spatio-temporal dependencies based on a graph convolutional neural network (GCN). Transp Res Part C Emerg Technol, 114 (2020), pp. 189-204.
|
[39] |
H. Peng, B. Du, M. Liu, M. Liu, S. Ji, S. Wang, et al. Dynamic graph convolutional network for long-term traffic flow prediction with reinforcement learning. Inf Sci, 578 (2021), pp. 401-416.
|
[40] |
Wu Z, Pan S, Long G, Jiang J, Zhang C. Graph WaveNet for deep spatial-temporal graph modeling. 2019. arXiv:1906.00121.
|
[41] |
J. Wang, Y. Zhang, Y. Wei, Y. Hu, X. Piao, B. Yin. Metro passenger flow prediction via dynamic hypergraph convolution networks. IEEE Trans Intell Transp Syst, 22 (12) (2021), pp. 7891-7903.
|
[42] |
S. Reza, M.C. Ferreira, J.J.M. Machado, J.M.R.S. Tavares, J.J.M. Machado, J.M.R.S. Tavares. A multi-head attention-based transformer model for traffic flow forecasting with a comparative analysis to recurrent neural networks. Expert Syst Appl, 202 (2022), Article 117275.
|
[43] |
X. Ye, S. Fang, F. Sun, C. Zhang, S. Xiang. Meta graph transformer: a novel framework for spatial-temporal traffic prediction. Neurocomputing, 491 (2022), pp. 544-563.
|
[44] |
H. Zhang, Y. Zou, X. Yang, H. Yang. A temporal fusion transformer for short-term freeway traffic speed multistep prediction. Neurocomputing, 500 (2022), pp. 329-340.
|
[45] |
H. Yan, X. Ma, Z. Pu. Learning dynamic and hierarchical traffic spatiotemporal features with transformer. IEEE Trans Intell Transp Syst, 23 (11) (2022), pp. 22386-22399.
|
[46] |
Y. Xie, J. Niu, Y. Zhang, F. Ren. Multisize patched spatial-temporal transformer network for short- and long-term crowd flow prediction. IEEE Trans Intell Transp Syst, 23 (11) (2022), pp. 21548-21568.
|
[47] |
Xu M, Dai W, Liu C, Gao X, Lin W, Qi GJ, et al. Spatial-temporal transformer networks for traffic flow forecasting. 2020. arXiv:2001.02908.
|
[48] |
K.F. Chu, A.Y.S. Lam, V.O.K. Li. Deep multi-scale convolutional LSTM network for travel demand and origin-destination predictions. IEEE Trans Intell Transp Syst, 21 (8) (2020), pp. 3219-3232.
|
[49] |
Hu J, Yang B, Guo C, Jensen CS, Xiong H. Stochastic origin-destination matrix forecasting using dual-stage graph convolutional, recurrent neural networks. In: Proceedings of the 2020 IEEE 36th International Conference on Data Engineering (ICDE-2020); 2020 Apr 20-24; Dallas, TX, USA. New York City: IEEE; 2020. p. 1417-28.
|
[50] |
X. Yao, Y. Gao, D. Zhu, E. Manley, J. Wang, Y. Liu. Spatial origin-destination flow imputation using graph convolutional networks. IEEE Trans Intell Transp Syst, 22 (12) (2021), pp. 7474-7484.
|
[51] |
J. Ke, X. Qin, H. Yang, Z. Zheng, Z. Zhu, J. Ye. Predicting origin-destination ride-sourcing demand with a spatio-temporal encoder-decoder residual multi-graph convolutional network. Transp Res Part C Emerg Technol, 122 (2021), Article 102858.
|
[52] |
Z. Huang, D. Wang, Y. Yin, X. Li. A spatiotemporal bidirectional attention-based ride-hailing demand prediction model: a case study in Beijing during COVID-19. IEEE Trans Intell Transp Syst, 23 (12) (2022), pp. 25115-25126.
|
[53] |
Z. Huang, W. Zhang, D. Wang, Y. Yin. A GAN framework-based dynamic multi-graph convolutional network for origin-destination-based ride-hailing demand prediction. Inf Sci, 601 (2022), pp. 129-146.
|
[54] |
M. Qurashi, Q.L. Lu, G. Cantelmo, C. Antoniou. Dynamic demand estimation on large scale networks using principal component analysis: the case of non-existent or irrelevant historical estimates. Transp Res Part C Emerg Technol, 136 (2022), Article 103504.
|
[55] |
M. Qurashi, T. Ma, E. Chaniotakis, C. Antoniou. PC-SPSA: employing dimensionality reduction to limit SPSA search noise in DTA model calibration. IEEE Trans Intell Transp Syst, 21 (4) (2020), pp. 1635-1645.
|
[56] |
J. Zhang, F. Chen, Y. Guo, X. Li. Multi-graph convolutional network for short-term passenger flow forecasting in urban rail transit. IET Intell Transp Syst, 14 (10) (2020), pp. 1210-1217.
|
[57] |
Kipf TN, Welling M. Semi-supervised classification with graph convolutional networks. 2016. arXiv:1609.02907.
|
[58] |
Shi X, Chen Z, Wang H, Yeung DY, Wong WK, Woo WC, Convolutional LSTM network:a machine learning approach for precipitation nowcasting. In: Proceedings of the 28th International Conference on Neural Information Processing Systems; 2015 Dec 7-12; Montreal, QC, Canada. New York City: Association for Computing Machinery (ACM); 2015. p. 802-10.
|
[59] |
H. Zheng, F. Lin, X. Feng, Y. Chen. A hybrid deep learning model with attention-based Conv-LSTM networks for short-term traffic flow prediction. IEEE Trans Intell Transp Syst, 22 (11) (2021), pp. 6910-6920.
|
[60] |
X. Lu, C. Ma, Y. Qiao. Short-term demand forecasting for online car-hailing using Conv-LSTM networks. Physica A, 570 (2021), Article 125838.
|
[61] |
Y. Li, S. Chai, G. Wang, X. Zhang, J. Qiu. Quantifying the uncertainty in long-term traffic prediction based on PI-ConvLSTM network. IEEE Trans Intell Transp Syst, 23 (11) (2022), pp. 20429-20441.
|
[62] |
Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Aidan N, et al. Attention is all you need. Proceedings of the 31st Conference on Neural Information Processing Systems NIPS 2017; 2017 Dec 4-9; Long Beach CA, USA. Online: NeurIPS Proceedings; 2017.
|
[63] |
Y. Chen, Y. Lv, X. Wang, L. Li, F.Y. Wang. Detecting traffic information from social media texts with deep learning approaches. IEEE Trans Intell Transp Syst, 20 (8) (2019), pp. 3049-3058.
|
[64] |
W. Yao, S. Qian. From twitter to traffic predictor: next-day morning traffic prediction using social media data. Transp Res Part C Emerg Technol, 124 (2021), Article 102938.
|
[65] |
H. Zhou, S. Zhang, J. Peng, S. Zhang, J. Li, H. Xiong, et al. Informer: beyond efficient transformer for long sequence time-series forecasting. Proc Conf AAAI Artif Intell, 35 (12) (2021), pp. 11106-11115.
|