[1] |
S. Agarwal, S. Saha, V.K. Balla, A. Pal, A. Barui, S. Bodhak. Current developments in 3D bioprinting for tissue and organ regeneration—a review. Front Mech Eng, 6 (2020), Article 6589171
|
[2] |
I. Matai, G. Kaur, A. Seyedsalehi, A. McClinton, C.T. Laurencin. Progress in 3D bioprinting technology for tissue/organ regenerative engineering. Biomaterials, 226 (2020), Article 226119536
|
[3] |
A.K. Israni, D.A. Zaun, K. Gauntt, C.R. Schaffhausen, W.T. McKinney, J.M. Miller, et al. OPTN/SRTR 2021 annual data report: deceased organ donation. Am J Transplant, 23 (2) (2023), pp. S443-74
|
[4] |
C. Yu, J. Schimelman, P. Wang, K.L. Miller, X. Ma, S. You, et al. Photopolymerizable biomaterials and light-based 3D printing strategies for biomedical applications. Chem Rev, 120 (19) (2020), pp. 10695-10743
|
[5] |
J. Groll, T. Boland, T. Blunk, J.A. Burdick, D.W. Cho, P.D. Dalton, et al. Biofabrication: reappraising the definition of an evolving field. Biofabrication, 8 (1) (2016), Article 013001
|
[6] |
B. Zhang, Y. Luo, L. Ma, L. Gao, Y. Li, Q. Xue, et al. 3D bioprinting: an emerging technology full of opportunities and challenges. Biodes Manuf, 1 (1) (2018), pp. 12-13
|
[7] |
S.V. Murphy, A. Atala. Organ engineering-combining stem cells, biomaterials, and bioreactors to produce bioengineered organs for transplantation. BioEssays, 35 (3) (2013), pp. 163-172
|
[8] |
C.E. Murry, G. Keller. Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell, 132 (4) (2008), pp. 661-680
|
[9] |
J.R. Scalea, Y.S. Lee, E. Davila, J.S. Bromberg. Myeloid-derived suppressor cells and their potential application in transplantation. Transplantation, 102 (3) (2018), pp. 359-367
|
[10] |
H. Chandler, B. Lanske, A. Varela, M. Guillot, M. Boyer, J. Brown, et al. Abaloparatide, a novel osteoanabolic PTHRP analog, increases cortical and trabecular bone mass and architecture in orchiectomized rats by increasing bone formation without increasing bone resorption. Bone, 120 (2019), pp. 120148-120155
|
[11] |
Y. Luo, X. Wei, P. Huang. 3D bioprinting of hydrogel-based biomimetic microenvironments. J Biomed Mater Res B Appl Biomater, 107 (5) (2019), pp. 1695-1705
|
[12] |
S. Vijayavenkataraman, W.C. Yan, W.F. Lu, C.H. Wang, J.Y.H. Fuh. 3D bioprinting of tissues and organs for regenerative medicine. Adv Drug Deliv Rev, 132 (2018), pp. 132296-132332
|
[13] |
A. Arslan-Yildiz, R. El Assal, P. Chen, S. Guven, F. Inci, U. Demirci. Towards artificial tissue models: past, present, and future of 3D bioprinting. Biofabrication, 8 (1) (2016), Article 014103
|
[14] |
S. Santoni, S.G. Gugliandolo, M. Sponchioni, D. Moscatelli, B.M. Colosimo. 3D bioprinting: current status and trends—a guide to the literature and industrial practice. Biodes Manuf, 5 (1) (2022), pp. 14-42
|
[15] |
M. Dey, I. Ozbolat. 3D bioprinting of cells, tissues and organs. Sci Rep, 10 (1) (2020), p. 14023
|
[16] |
X. Li, B. Liu, B. Pei, J. Chen, D. Zhou, J. Peng, et al. Inkjet bioprinting of biomaterials. Chem Rev, 120 (19) (2020), pp. 10793-10833
|
[17] |
A. Schwab, R. Levato, M. D’Este, S. Piluso, D. Eglin, J. Malda. Printability and shape fidelity of bioinks in 3D bioprinting. Chem Rev, 120 (19) (2020), pp. 11028-11055
|
[18] |
C. Mota, S. Camarero-Espinosa, M.B. Baker, P. Wieringa, L. Moroni. Bioprinting: from tissue and organ development to in vitro models. Chem Rev, 120 (19) (2020), pp. 10547-10607
|
[19] |
H. Quan, T. Zhang, H. Xu, S. Luo, J. Nie, X. Zhu. Photocuring 3D printing technique and its challenges. Bioact Mater, 5 (1) (2020), pp. 110-115
|
[20] |
N.A. Chartrain, C.B. Williams, A.R. Whittington. A review on fabricating tissue scaffolds using vat photopolymerization. Acta Biomater, 74 (2018), pp. 7490-17111
|
[21] |
L. Rayleigh. On the instability of jets. Proc Lond Math Soc, 1 (1) (1878), pp. 4-13
|
[22] |
B. Derby. Inkjet printing of functional and structural materials: fluid property requirements, feature stability, and resolution. Annu Rev Mater Res, 40 (1) (2010), pp. 40395-40414
|
[23] |
T. Xu, J. Jin, C. Gregory, J.J. Hickman, T. Boland. Inkjet printing of viable mammalian cells. Biomaterials, 26 (1) (2005), pp. 93-99
|
[24] |
T. Xu, W. Zhao, J.M. Zhu, M.Z. Albanna, J.J. Yoo, A. Atala. Complex heterogeneous tissue constructs containing multiple cell types prepared by inkjet printing technology. Biomaterials, 34 (1) (2013), pp. 130-139
|
[25] |
T. Xu, C. Baicu, M. Aho, M. Zile, T. Boland. Fabrication and characterization of bio-engineered cardiac pseudo tissues. Biofabrication, 1 (3) (2009), Article 035001
|
[26] |
H. Saijo, K. Igawa, Y. Kanno, Y. Mori, K. Kondo, K. Shimizu, et al. Maxillofacial reconstruction using custom-made artificial bones fabricated by inkjet printing technology. J Artif Organs, 12 (3) (2009), pp. 12200-12205
|
[27] |
T. Xu, K.W. Binder, M.Z. Albanna, D. Dice, W. Zhao, J.J. Yoo, et al. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications. Biofabrication, 5 (1) (2012), Article 015001
|
[28] |
K. Arai, T. Yoshida, M. Okabe, M. Goto, T.A. Mir, C. Soko, et al. Fabrication of 3D-culture platform with sandwich architecture for preserving liver-specific functions of hepatocytes using 3D bioprinter. J Biomed Mater Res A, 105 (6) (2017), pp. 1583-1592
|
[29] |
R.E. Saunders, B. Derby. Inkjet printing biomaterials for tissue engineering: bioprinting. Int Mater Rev, 59 (8) (2014), pp. 430-448
|
[30] |
J. Malda, J. Visser, F.P. Melchels, T. Jüngst, W.E. Hennink, W.J. Dhert, et al. 25th anniversary article: engineering hydrogels for biofabrication. Adv Mater, 25 (36) (2013), pp. 5011-5028
|
[31] |
Pereira RF, Bártolo PJ. 3D bioprinting of photocrosslinkable hydrogel constructs. J Appl Polym Sci 2015 ;132(48):42458.
|
[32] |
J. Jang, H.J. Park, S.W. Kim, H. Kim, J.Y. Park, S.J. Na, et al. 3D printed complex tissue construct using stem cell-laden decellularized extracellular matrix bioinks for cardiac repair. Biomaterials, 112 (2017), pp. 112264-112274
|
[33] |
R. Gaetani, P.A. Doevendans, C.H. Metz, J. Alblas, E. Messina, A. Giacomello, et al. Cardiac tissue engineering using tissue printing technology and human cardiac progenitor cells. Biomaterials, 33 (6) (2012), pp. 1782-1790
|
[34] |
B. Duan, E. Kapetanovic, L.A. Hockaday, J.T. Butcher. Three-dimensional printed trileaflet valve conduits using biological hydrogels and human valve interstitial cells. Acta Biomater, 10 (5) (2014), pp. 1836-1846
|
[35] |
K.A. Homan, D.B. Kolesky, M.A. Skylar-Scott, J. Herrmann, H. Obuobi, A. Moisan, et al. Bioprinting of 3D convoluted renal proximal tubules on perfusable chips. Sci Rep, 6 (1) (2016), p. 34845
|
[36] |
N.Y. Lin, K.A. Homan, S.S. Robinson, D.B. Kolesky, N. Duarte, A. Moisan, et al. Renal reabsorption in 3D vascularized proximal tubule models. Proc Natl Acad Sci, 116 (12) (2019), pp. 5399-5404
|
[37] |
D.G. Nguyen, J. Funk, J.B. Robbins, C. Crogan-Grundy, S.C. Presnell, T. Singer, et al. Bioprinted 3D primary liver tissues allow assessment of organ-level response to clinical drug induced toxicity in vitro. PLoS One, 11 (7) (2016), Article e0158674
|
[38] |
B. Duan, L.A. Hockaday, K.H. Kang, J.T. Butcher. 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. J Biomed Mater Res A, 101 (5) (2013), pp. 1255-1264
|
[39] |
R. Chang, J. Nam, W. Sun. Effects of dispensing pressure and nozzle diameter on cell survival from solid freeform fabrication-based direct cell writing. Tissue Eng Part A, 14 (1) (2008), pp. 41-48
|
[40] |
Q. Liang, F. Gao, Z. Zeng, J. Yang, M. Wu, C. Gao, et al. Coaxial scale-up printing of diameter-tunable biohybrid hydrogel microtubes with high strength, perfusability, and endothelialization. Adv Funct Mater, 30 (43) (2020), Article 2001485
|
[41] |
G. Gao, H. Kim, B.S. Kim, J.S. Kong, J.Y. Lee, B.W. Park, et al. Tissue-engineering of vascular grafts containing endothelium and smooth-muscle using triple-coaxial cell printing. Appl Phys Rev, 6 (4) (2019), Article 041402
|
[42] |
C. Mota, D. Puppi, F. Chiellini, E. Chiellini. Additive manufacturing techniques for the production of tissue engineering constructs. J Tissue Eng Regen Med, 9 (3) (2015), pp. 174-190
|
[43] |
X. Ma, X. Qu, W. Zhu, Y.S. Li, S. Yuan, H. Zhang, et al. Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting. Proc Natl Acad Sci, 113 (8) (2016), pp. 2206-2211
|
[44] |
J.F. Xing, M.L. Zheng, X.M. Duan. Two-photon polymerization microfabrication of hydrogels: an advanced 3D printing technology for tissue engineering and drug delivery. Chem Soc Rev, 44 (15) (2015), pp. 5031-5039
|
[45] |
Y. Sriphutkiat, S. Kasetsirikul, D. Ketpun, Y. Zhou. Cell alignment and accumulation using acoustic nozzle for bioprinting. Sci Rep, 9 (1) (2019), p. 17774
|
[46] |
V. Goranov, T. Shelyakova, R. De Santis, Y. Haranava, A. Makhaniok, A. Gloria, et al. 3D patterning of cells in magnetic scaffolds for tissue engineering. Sci Rep, 10 (1) (2020), p. 2289
|
[47] |
H. Tseng, J.A. Gage, T. Shen, W.L. Haisler, S.K. Neeley, S. Shiao, et al. A spheroid toxicity assay using magnetic 3D bioprinting and real-time mobile device-based imaging. Sci Rep, 5 (1) (2015), p. 13987
|
[48] |
E. Mirdamadi, J.W. Tashman, D.J. Shiwarski, R.N. Palchesko, A.W. Feinberg. Fresh 3D bioprinting a full-size model of the human heart. ACS Biomater Sci Eng, 6 (11) (2020), pp. 6453-6459
|
[49] |
S.V. Murphy, A. Atala. 3D bioprinting of tissues and organs. Nat Biotechnol, 32 (8) (2014), pp. 773-785
|
[50] |
D.F. Williams. On the mechanisms of biocompatibility. Biomaterials, 29 (20) (2008), pp. 2941-2953
|
[51] |
K. Nair, M. Gandhi, S. Khalil, K.C. Yan, M. Marcolongo, K. Barbee, et al. Characterization of cell viability during bioprinting processes. Biotechnol J, 4 (8) (2009), pp. 1168-1177
|
[52] |
S. You, Y. Xiang, H.H. Hwang, D.B. Berry, W. Kiratitanaporn, J. Guan, et al. High cell density and high-resolution 3D bioprinting for fabricating vascularized tissues. Sci Adv, 9 (8) (2023), Article eade7923
|
[53] |
M.M. Stevens, J.H. George. Exploring and engineering the cell surface interface. Science, 310 (5751) (2005), pp. 1135-1138
|
[54] |
D.E. Discher, P. Janmey, Y. Wang. Tissue cells feel and respond to the stiffness of their substrate. Science, 310 (5751) (2005), pp. 1139-1143
|
[55] |
U. Hersel, C. Dahmen, H. Kessler. RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials, 24 (24) (2003), pp. 4385-4415
|
[56] |
H. Lv, G. Deng, J. Lai, Y. Yu, F. Chen, J. Yao. Advances in 3D bioprinting of biomimetic and engineered meniscal grafts. Macromol Biosci, 23 (12) (2023), Article 2300199
|
[57] |
A.C. Fonseca, F.P. Melchels, M.J. Ferreira, S.R. Moxon, G. Potjewyd, T.R. Dargaville, et al. Emulating human tissues and organs: a bioprinting perspective toward personalized medicine. Chem Rev, 120 (19) (2020), pp. 11093-11139
|
[58] |
L.K. Narayanan, P. Huebner, M.B. Fisher, J.T. Spang, B. Starly, R.A. Shirwaiker. 3D-bioprinting of polylactic acid (PLA) nanofiber-alginate hydrogel bioink containing human adipose-derived stem cells. ACS Biomater Sci Eng, 2 (10) (2016), pp. 1732-1742
|
[59] |
F. Xu, S. Moon, A. Emre, E. Turali, Y. Song, S. Hacking, et al. A droplet-based building block approach for bladder smooth muscle cell (SMC) proliferation. Biofabrication, 2 (1) (2010), Article 014105
|
[60] |
R. Gaetani, D.A. Feyen, V. Verhage, R. Slaats, E. Messina, K.L. Christman, et al. Epicardial application of cardiac progenitor cells in a 3D-printed gelatin/hyaluronic acid patch preserves cardiac function after myocardial infarction. Biomaterials, 61 (2015), pp. 61339-61348
|
[61] |
Q. Mao, Y. Wang, Y. Li, S. Juengpanich, W. Li, M. Chen, et al. Fabrication of liver microtissue with liver decellularized extracellular matrix (dECM) bioink by digital light processing (DLP) bioprinting. Mater Sci Eng C, 109 (2020), Article 109110625
|
[62] |
H. Lee, G.H. Yang, M. Kim, J. Lee, J. Huh, G. Kim. Fabrication of micro/nanoporous collagen/dECM/silk—fibroin biocomposite scaffolds using a low temperature 3D printing process for bone tissue regeneration. Mater Sci Eng C, 84 (2018), pp. 84140-84147
|
[63] |
Lian L, Xie M, Luo Z, Zhang Z, Maharjan S, Mu X, et al. Rapid volumetric bioprinting of decellularized extracellular matrix bioinks. Adv Mater 2024;e2304846.
|
[64] |
S.F. Badylak. The extracellular matrix as a biologic scaffold material. Biomaterials, 28 (25) (2007), pp. 3587-3593
|
[65] |
X. Yang, Y. Ma, X. Wang, S. Yuan, F. Huo, G. Yi, et al. A 3D-bioprinted functional module based on decellularized extracellular matrix bioink for periodontal regeneration. Adv Sci, 10 (5) (2023), Article e2205041
|
[66] |
D.M. Faulk, S.A. Johnson, L. Zhang, S.F. Badylak. Role of the extracellular matrix in whole organ engineering. J Cell Physiol, 229 (8) (2014), pp. 984-989
|
[67] |
J. Lou, D.J. Mooney. Chemical strategies to engineer hydrogels for cell culture. Nat Rev Chem, 6 (10) (2022), pp. 726-744
|
[68] |
E. Mancha Sánchez, J.C. Gómez-Blanco, E. López Nieto, J.G. Casado, A. Macías-García, M.A. Díaz Díez, et al. Hydrogels for bioprinting: a systematic review of hydrogels synthesis, bioprinting parameters, and bioprinted structures behavior. Front Bioeng Biotechnol, 8 (2020), p. 8776
|
[69] |
A.M. Jorgensen, J.J. Yoo, A. Atala. Solid organ bioprinting: strategies to achieve organ function. Chem Rev, 120 (19) (2020), pp. 11093-11127
|
[70] |
J. Zhu. Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering. Biomaterials, 31 (17) (2010), pp. 4639-4656
|
[71] |
I. Villanueva, C.A. Weigel, S.J. Bryant. Cell-matrix interactions and dynamic mechanical loading influence chondrocyte gene expression and bioactivity in PEG-RGD hydrogels. Acta Biomater, 5 (8) (2009), pp. 2832-2846
|
[72] |
A. Skardal, J. Zhang, G.D. Prestwich. Bioprinting vessel-like constructs using hyaluronan hydrogels crosslinked with tetrahedral polyethylene glycol tetracrylates. Biomaterials, 31 (24) (2010), pp. 6173-6181
|
[73] |
A.C. Daly, S.E. Critchley, E.M. Rencsok, D.J. Kelly. A comparison of different bioinks for 3D bioprinting of fibrocartilage and hyaline cartilage. Biofabrication, 8 (4) (2016), Article 045002
|
[74] |
G. Gao, A.F. Schilling, T. Yonezawa, J. Wang, G. Dai, X. Cui. Bioactive nanoparticles stimulate bone tissue formation in bioprinted three-dimensional scaffold and human mesenchymal stem cells. Biotechnol J, 9 (10) (2014), pp. 1304-1311
|
[75] |
W. Xu, X. Wang, Y. Yan, R. Zhang. A polyurethane-gelatin hybrid construct for manufacturing implantable bioartificial livers. J Bioact Compat Polym, 23 (5) (2008), pp. 409-422
|
[76] |
F.Y. Hsieh, H.H. Lin, S. Hsu. 3D bioprinting of neural stem cell-laden thermoresponsive biodegradable polyurethane hydrogel and potential in central nervous system repair. Biomaterials, 71 (2015), pp. 48-57
|
[77] |
H. Lee, D.W. Cho. One-step fabrication of an organ-on-a-chip with spatial heterogeneity using a 3D bioprinting technology. Lab Chip, 16 (14) (2016), pp. 2618-2625
|
[78] |
H.W. Kang, S.J. Lee, I.K. Ko, C. Kengla, J.J. Yoo, A. Atala. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol, 34 (3) (2016), pp. 312-319
|
[79] |
A. Lother, P. Kohl. The heterocellular heart: identities, interactions, and implications for cardiology. Basic Res Cardiol, 118 (1) (2023), p. 30
|
[80] |
A. Simon-Chica, E.M. Wülfers, P. Kohl. Nonmyocytes as electrophysiological contributors to cardiac excitation and conduction. Am J Physiol Heart Circ Physiol, 325 (3) (2023), pp. H475-H491
|
[81] |
M. Alonzo, R. El Khoury, N. Nagiah, V. Thakur, M. Chattopadhyay, B. Joddar. 3D biofabrication of a cardiac tissue construct for sustained longevity and function. ACS Appl Mater Interfaces, 14 (19) (2022), pp. 21800-21813
|
[82] |
J. Bliley, J. Tashman, M. Stang, B. Coffin, D. Shiwarski, A. Lee, et al. Fresh 3D bioprinting a contractile heart tube using human stem cell-derived cardiomyocytes. Biofabrication, 14 (2) (2022), Article 024106
|
[83] |
A.C. Daly, M.D. Davidson, J.A. Burdick. 3D bioprinting of high cell-density heterogeneous tissue models through spheroid fusion within self-healing hydrogels. Nat Commun, 12 (1) (2021), p. 753
|
[84] |
C.S. Ong, P. Yesantharao, C.Y. Huang, G. Mattson, J. Boktor, T. Fukunishi, et al. 3D bioprinting using stem cells. Pediatr Res, 83 (1) (2018), pp. 223-231
|
[85] |
A. Sharma, S. Sances, M.J. Workman, C.N. Svendsen. Multi-lineage human iPSC-derived platforms for disease modeling and drug discovery. Cell Stem Cell, 26 (3) (2020), pp. 309-329
|
[86] |
M.W. Nicholson, C.Y. Ting, D.Z. Chan, Y.C. Cheng, Y.C. Lee, C.C. Hsu, et al. Utility of iPSC-derived cells for disease modeling, drug development, and cell therapy. Cells, 11 (11) (2022), p. 1853
|
[87] |
J.T. Wolfe, W. He, M.S. Kim, H.L. Liang, A. Shradhanjali, H. Jurkiewicz, et al. 3D-bioprinting of patient-derived cardiac tissue models for studying congenital heart disease. Front Cardiovasc Med, 10 (2023), Article 101162731
|
[88] |
D.G. Hwang, Y. Jo, M. Kim, U. Yong, S. Cho, Y. Choi, et al. A 3D bioprinted hybrid encapsulation system for delivery of human pluripotent stem cell-derived pancreatic islet-like aggregates. Biofabrication, 14 (1) (2021), Article 014101
|
[89] |
S. Romanazzo, S. Nemec, I. Roohani. iPSC bioprinting: where are we at?. Materials, 12 (15) (2019), p. 2453
|
[90] |
S. Cho, D.E. Discher, K.W. Leong, G. Vunjak-Novakovic, J.C. Wu. Challenges and opportunities for the next generation of cardiovascular tissue engineering. Nat Methods, 19 (9) (2022), pp. 1064-1071
|
[91] |
C.J. Bashor, I.B. Hilton, H. Bandukwala, D.M. Smith, O. Veiseh. Engineering the next generation of cell-based therapeutics. Nat Rev Drug Discov, 21 (9) (2022), pp. 655-675
|
[92] |
Y. Kagoya, T. Guo, B. Yeung, K. Saso, M. Anczurowski, C.H. Wang, et al. Genetic ablation of HLA Class I, Class II, and the T-cell receptor enables allogeneic T cells to be used for adoptive T-cell therapy. Cancer Immunol Res, 8 (7) (2020), pp. 926-936
|
[93] |
J. Lee, J.H. Sheen, O. Lim, Y. Lee, J. Ryu, D. Shin, et al. Abrogation of HLA surface expression using CRISPR/Cas 9 genome editing: a step toward universal T cell therapy. Sci Rep, 10 (1) (2020), p. 17753
|
[94] |
T. Deuse, X. Hu, A. Gravina, D. Wang, G. Tediashvili, C. De, et al. Hypoimmunogenic derivatives of induced pluripotent stem cells evade immune rejection in fully immunocompetent allogeneic recipients. Nat Biotechnol, 37 (3) (2019), pp. 252-258
|
[95] |
X. Han, M. Wang, S. Duan, P.J. Franco, J.H.R. Kenty, P. Hedrick, et al. Generation of hypoimmunogenic human pluripotent stem cells. Proc Natl Acad Sci, 116 (21) (2019), pp. 10441-10446
|
[96] |
T. Deuse, G. Tediashvili, X. Hu, A. Gravina, A. Tamenang, D. Wang, et al. Hypoimmune induced pluripotent stem cell-derived cell therapeutics treat cardiovascular and pulmonary diseases in immunocompetent allogeneic mice. Proc Natl Acad Sci, 118 (28) (2021), Article e2022091118
|
[97] |
E. Yoshihara, C. O’Connor, E. Gasser, Z. Wei, T.G. Oh, T.W. Tseng, et al. Immune-evasive human islet-like organoids ameliorate diabetes. Nature, 586 (7830) (2020), pp. 606-611
|
[98] |
M. Sykes, D.H. Sachs. Progress in xenotransplantation: overcoming immune barriers. Nat Rev Nephrol, 18 (12) (2022), pp. 745-761
|
[99] |
A.M. Galow, T. Goldammer, A. Hoeflich. Xenogeneic and stem cell-based therapy for cardiovascular diseases: genetic engineering of porcine cells and their applications in heart regeneration. Int J Mol Sci, 21 (24) (2020), p. 9686
|
[100] |
L.L. Jiang, H. Li, L. Liu. Xenogeneic stem cell transplantation: research progress and clinical prospects. World J Clin Cases, 9 (16) (2021), pp. 3826-3837
|
[101] |
C.P. Huang, C.C. Chen, C.R. Shyr. Xenogeneic cell therapy provides a novel potential therapeutic option for cancers by restoring tissue function, repairing cancer wound and reviving antitumor immune responses. Cancer Cell Int, 18 (1) (2018), pp. 1-7
|
[102] |
C.P. Huang, C.Y. Yang, C.R. Shyr. Utilizing xenogeneic cells as a therapeutic agent for treating diseases. Cell Transplant, 30 (2021), Article 3009636897211011995
|
[103] |
M. Xie, M. Fussenegger. Designing cell function: assembly of synthetic gene circuits for cell biology applications. Nat Rev Mol Cell Biol, 19 (8) (2018), pp. 507-525
|
[104] |
P.B. Hellwarth, Y. Chang, A. Das, P.Y. Liang, X. Lian, N.A. Repina, et al. Optogenetic-mediated cardiovascular differentiation and patterning of human pluripotent stem cells. Adv Genet, 2 (3) (2021), Article e202100011
|
[105] |
I. Legnini, L. Emmenegger, A. Zappulo, A. Rybak-Wolf, R. Wurmus, A.O. Martinez, et al. Spatiotemporal, optogenetic control of gene expression in organoids. Nat Methods, 20 (10) (2023), pp. 1544-1552
|
[106] |
D. Kalhori, N. Zakeri, M. Zafar-Jafarzadeh, L. Moroni, M. Solati-Hashjin. Cardiovascular 3D bioprinting: a review on cardiac tissue development. Bioprinting, 28 (2022), p. e00221
|
[107] |
M. Li, H. Wu, Y. Yuan, B. Hu, N. Gu. Recent fabrications and applications of cardiac patch in myocardial infarction treatment. View, 3 (2) (2022), Article 20200153
|
[108] |
Y.S. Zhang, A. Arneri, S. Bersini, S.R. Shin, K. Zhu, Z. Goli-Malekabadi, et al. Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Biomaterials, 110 (2016), pp. 11045-11059
|
[109] |
J.H. Ahrens, S.G. Uzel, M. Skylar-Scott, M.M. Mata, A. Lu, K.T. Kroll, et al. Programming cellular alignment in engineered cardiac tissue via bioprinting anisotropic organ building blocks. Adv Mater, 34 (26) (2022), Article 2200217
|
[110] |
T.J. Hinton, Q. Jallerat, R.N. Palchesko, J.H. Park, M.S. Grodzicki, H.J. Shue, et al. Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. Sci Adv, 1 (9) (2015), Article e1500758
|
[111] |
B.P. Oropeza, J.R. Adams, M.E. Furth, J. Chessa, T. Boland. Bioprinting of decellularized porcine cardiac tissue for large-scale aortic models. Front Bioeng Biotechnol, 10 (2022), Article 10855186
|
[112] |
M.B. Immohr, H.L. Teichert, A.F. dos Santos, V. Schmidt, Y. Sugimura, S.J. Bauer, et al. Three-dimensional bioprinting of ovine aortic valve endothelial and interstitial cells for the development of multicellular tissue engineered tissue constructs. Bioengineering, 10 (7) (2023), p. 787
|
[113] |
J. Liu, J. He, J. Liu, X. Ma, Q. Chen, N. Lawrence, et al. Rapid 3D bioprinting of in vitro cardiac tissue models using human embryonic stem cell-derived cardiomyocytes. Bioprinting, 13 (2019), p. e00040
|
[114] |
S. Chikae, A. Kubota, H. Nakamura, A. Oda, A. Yamanaka, T. Akagi, et al. Bioprinting 3D human cardiac tissue chips using the pin type printer ‘microscopic painting device’ and analysis for cardiotoxicity. Biomed Mater, 16 (2) (2021), Article 025017
|
[115] |
R. Gaebel, N. Ma, J. Liu, J. Guan, L. Koch, C. Klopsch, et al. Patterning human stem cells and endothelial cells with laser printing for cardiac regeneration. Biomaterials, 32 (35) (2011), pp. 9218-9230
|
[116] |
N. Noor, A. Shapira, R. Edri, I. Gal, L. Wertheim, T. Dvir. 3D printing of personalized thick and perfusable cardiac patches and hearts. Adv Sci, 6 (11) (2019), Article 1900344
|
[117] |
D. Bejleri, M.J. Robeson, M.E. Brown, J. Hunter, J.T. Maxwell, B.W. Streeter, et al. In vivo evaluation of bioprinted cardiac patches composed of cardiac-specific extracellular matrix and progenitor cells in a model of pediatric heart failure. Biomater Sci, 10 (2) (2022), pp. 444-456
|
[118] |
P. Zhou, W.T. Pu. Recounting cardiac cellular composition. Am Heart Assoc, 118 (3) (2016), pp. 368-370
|
[119] |
M. Litviňuková, C. Talavera-López, H. Maatz, D. Reichart, C.L. Worth, E.L. Lindberg, et al. Cells of the adult human heart. Nature, 588 (7838) (2020), pp. 466-472
|
[120] |
M. Yadid, H. Oved, E. Silberman, T. Dvir. Bioengineering approaches to treat the failing heart: from cell biology to 3D printing. Nat Rev Cardiol, 19 (2) (2022), pp. 83-99
|
[121] |
F. Maiullari, M. Costantini, M. Milan, V. Pace, M. Chirivì, S. Maiullari, et al. A multi-cellular 3D bioprinting approach for vascularized heart tissue engineering based on HUVECs and iPSC-derived cardiomyocytes. Sci Rep, 8 (1) (2018), p. 13532
|
[122] |
E. Karbassi, A. Fenix, S. Marchiano, N. Muraoka, K. Nakamura, X. Yang, et al. Cardiomyocyte maturation: advances in knowledge and implications for regenerative medicine. Nat Rev Cardiol, 17 (6) (2020), pp. 341-359
|
[123] |
P. Kerscher, J.A. Kaczmarek, S.E. Head, M.E. Ellis, W.J. Seeto, J. Kim, et al. Direct production of human cardiac tissues by pluripotent stem cell encapsulation in gelatin methacryloyl. ACS Biomater Sci Eng, 3 (8) (2017), pp. 1499-1509
|
[124] |
A. Tijore, S.A. Irvine, U. Sarig, P. Mhaisalkar, V. Baisane, S. Venkatraman. Contact guidance for cardiac tissue engineering using 3D bioprinted gelatin patterned hydrogel. Biofabrication, 10 (2) (2018), Article 025003
|
[125] |
Y.J. Shin, R.T. Shafranek, J.H. Tsui, J. Walcott, A. Nelson, D.H. Kim. 3D bioprinting of mechanically tuned bioinks derived from cardiac decellularized extracellular matrix. Acta Biomater, 119 (2021), pp. 75-88
|
[126] |
C.S. Ong, T. Fukunishi, H. Zhang, C.Y. Huang, A. Nashed, A. Blazeski, et al. Biomaterial-free three-dimensional bioprinting of cardiac tissue using human induced pluripotent stem cell derived cardiomyocytes. Sci Rep, 7 (1) (2017), p. 4566
|
[127] |
E. Yeung, T. Fukunishi, Y. Bai, D. Bedja, I. Pitaktong, G. Mattson, et al. Cardiac regeneration using human-induced pluripotent stem cell-derived biomaterial-free 3D-bioprinted cardiac patch in vivo. J Tissue Eng Regen Med, 13 (11) (2019), pp. 2031-2039
|
[128] |
L. Polonchuk, L. Surija, M.H. Lee, P. Sharma, C.L.C. Ming, F. Richter, et al. Towards engineering heart tissues from bioprinted cardiac spheroids. Biofabrication, 13 (4) (2021), Article 045009
|
[129] |
F. Triposkiadis, G. Giamouzis, K.D. Boudoulas, G. Karagiannis, J. Skoularigis, H. Boudoulas, et al. Left ventricular geometry as a major determinant of left ventricular ejection fraction: physiological considerations and clinical implications. Eur J Heart Fail, 20 (3) (2018), pp. 436-444
|
[130] |
J. Liu, K. Miller, X. Ma, S. Dewan, N. Lawrence, G. Whang, et al. Direct 3D bioprinting of cardiac microtissues mimicking native myocardium. Biomaterials, 256 (2020), Article 256120204
|
[131] |
Y. Tsukamoto, T. Akagi, M. Akashi. Vascularized cardiac tissue construction with orientation by layer-by-layer method and 3D printer. Sci Rep, 10 (1) (2020), p. 5484
|
[132] |
W. Zhu, X. Qu, J. Zhu, X. Ma, S. Patel, J. Liu, et al. Direct 3D bioprinting of prevascularized tissue constructs with complex microarchitecture. Biomaterials, 124 (2017), pp. 124106-124115
|
[133] |
Y. Fang, W. Sun, T. Zhang, Z. Xiong. Recent advances on bioengineering approaches for fabrication of functional engineered cardiac pumps: a review. Biomaterials, 280 (2022), Article 280121298
|
[134] |
X. Cui, T. Boland. Human microvasculature fabrication using thermal inkjet printing technology. Biomaterials, 30 (31) (2009), pp. 6221-6227
|
[135] |
M.J. Ainsworth, N. Chirico, M. de Ruijter, A. Hrynevich, I. Dokter, J.P. Sluijter, et al. Convergence of melt electrowriting and extrusion-based bioprinting for vascular patterning of a myocardial construct. Biofabrication, 15 (3) (2023), Article 035025
|
[136] |
B. Lu, M. Ye, J. Xia, Z. Zhang, Z. Xiong, T. Zhang. Electrical stimulation promotes the vascularization and functionalization of an engineered biomimetic human cardiac tissue. Adv Healthc Mater, 12 (19) (2023), Article 2300607
|
[137] |
C.B. Pinnock, E.M. Meier, N.N. Joshi, B. Wu, M.T. Lam. Customizable engineered blood vessels using 3D printed inserts. Methods, 99 (2016), pp. 9920-9927
|
[138] |
Y. Liu, Y. Zhang, T. Mei, H. Cao, Y. Hu, W. Jia, et al. hESCs-derived early vascular cell spheroids for cardiac tissue vascular engineering and myocardial infarction treatment. Adv Sci, 9 (9) (2022), Article 2104299
|
[139] |
Y. Yu, Y. Zhang, J.A. Martin, I.T. Ozbolat. Evaluation of cell viability and functionality in vessel-like bioprintable cell-laden tubular channels. J Biomech Eng, 135 (9) (2013), Article 091011
|
[140] |
A. Elalouf. Immune response against the biomaterials used in 3D bioprinting of organs. Transpl Immunol, 69 (2021), Article 69101446
|
[141] |
L. Hockaday, K. Kang, N. Colangelo, P. Cheung, B. Duan, E. Malone, et al. Rapid 3D printing of anatomically accurate and mechanically heterogeneous aortic valve hydrogel scaffolds. Biofabrication, 4 (3) (2012), Article 035005
|
[142] |
E.L. Maxson, M.D. Young, C. Noble, J.L. Go, B. Heidari, R. Khorramirouz, et al. In vivo remodeling of a 3D-bioprinted tissue engineered heart valve scaffold. Bioprinting, 16 (2019), p. e00059
|
[143] |
A. Lee, A. Hudson, D. Shiwarski, J. Tashman, T. Hinton, S. Yerneni, et al. 3D bioprinting of collagen to rebuild components of the human heart. Science, 365 (6452) (2019), pp. 482-487
|
[144] |
A.R. Crawford, X.Z. Lin, J.M. Crawford. The normal adult human liver biopsy: a quantitative reference standard. Hepatology, 28 (2) (1998), pp. 323-331
|
[145] |
E. Trefts, M. Gannon, D.H. Wasserman. The liver. Curr Biol, 27 (21) (2017), pp. R1147-R1151
|
[146] |
T. Ikegami, Y. Maehara. 3D printing of the liver in living donor liver transplantation. Nat Rev Gastroenterol Hepatol, 10 (12) (2013), pp. 697-698
|
[147] |
K. Duval, H. Grover, L.H. Han, Y. Mou, A.F. Pegoraro, J. Fredberg, et al. Modeling physiological events in 2D vs 3D cell culture. Physiology, 32 (4) (2017), pp. 266-277
|
[148] |
A. Zeigerer, A. Wuttke, G. Marsico, S. Seifert, Y. Kalaidzidis, M. Zerial. Functional properties of hepatocytes in vitro are correlated with cell polarity maintenance. Exp Cell Res, 350 (1) (2017), pp. 242-252
|
[149] |
D. Mooney, L. Hansen, J. Vacanti, R. Langer, S. Farmer, D. Ingber. Switching from differentiation to growth in hepatocytes: control by extracellular matrix. J Cell Physiol, 151 (3) (1992), pp. 497-505
|
[150] |
F. Berthiaume, P.V. Moghe, M. Toner, M.L. Yarmush. Effect of extracellular matrix topology on cell structure, function, and physiological responsiveness: hepatocytes cultured in a sandwich configuration. FASEB J, 10 (13) (1996), pp. 1471-1484
|
[151] |
D. Kang, G. Hong, S. An, I. Jang, W.S. Yun, J.H. Shim, et al. Bioprinting of multiscaled hepatic lobules within a highly vascularized construct. Small, 16 (13) (2020), Article 1905505
|
[152] |
X. Wang, Y. Yan, Y. Pan, Z. Xiong, H. Liu, J. Cheng, et al. Generation of three-dimensional hepatocyte/gelatin structures with rapid prototyping system. Tissue Eng, 12 (1) (2006), pp. 83-90
|
[153] |
B. Grigoryan, S. Paulsen, D. Corbett, D. Sazer, C. Fortin, A. Zaita, et al. Functional intravascular topologies and multivascular networks within biocompatible hydrogels. Science, 464 (80) (2019), pp. 458-464
|
[154] |
D. Wang, Y. Guo, J. Zhu, F. Liu, Y. Xue, Y. Huang, et al. Hyaluronic acid methacrylate/pancreatic extracellular matrix as a potential 3D printing bioink for constructing islet organoids. Acta Biomater, 165 (2023), pp. 86-101
|
[155] |
B.K. Cole, R.E. Feaver, B.R. Wamhoff, A. Dash. Non-alcoholic fatty liver disease (NAFLD) models in drug discovery. Expert Opin Drug Discov, 13 (2) (2018), pp. 193-205
|
[156] |
R. Chang, K. Emami, H. Wu, W. Sun. Biofabrication of a three-dimensional liver micro-organ as an in vitro drug metabolism model. Biofabrication, 2 (4) (2010), Article 045004
|
[157] |
N.S. Bhise, V. Manoharan, S. Massa, A. Tamayol, M. Ghaderi, M. Miscuglio, et al. A liver-on-a-chip platform with bioprinted hepatic spheroids. Biofabrication, 8 (1) (2016), Article 014101
|
[158] |
L.M. Norona, D.G. Nguyen, D.A. Gerber, S.C. Presnell, M. Mosedale, P.B. Watkins. Bioprinted liver provides early insight into the role of Kupffer cells in TGF-β1 and methotrexate-induced fibrogenesis. PLoS One, 14 (1) (2019), Article e0208958
|
[159] |
L. Sun, H. Yang, Y. Wang, X. Zhang, B. Jin, F. Xie, et al. Application of a 3D bioprinted hepatocellular carcinoma cell model in antitumor drug research. Front Oncol, 10 (2020), p. 10878
|
[160] |
S. Hassan, E. Gomez-Reyes, E. Enciso-Martinez, K. Shi, J.G. Campos, O.Y.P. Soria, et al. Tunable and compartmentalized multimaterial bioprinting for complex living tissue constructs. ACS Appl Mater Interfaces, 14 (46) (2022), pp. 51602-51618
|
[161] |
S. Maji, M. Lee, J. Lee, J. Lee, H. Lee. Development of lumen-based perfusable 3D liver in vitro model using single-step bioprinting with composite bioinks. Mater Today Bio, 21 (2023), Article 21100723
|
[162] |
W. Jia, P.S. Gungor-Ozkerim, Y.S. Zhang, K. Yue, K. Zhu, W. Liu, et al. Direct 3D bioprinting of perfusable vascular constructs using a blend bioink. Biomaterials, 106 (2016), pp. 10658-10668
|
[163] |
A. Hakim, O. Usmani. Structure of the lower respiratory tract. Reference module in biomedical sciences, Elsevier, Oxon (2014)
|
[164] |
K. Horsfield, W. Gordon, W. Kemp, S. Phillips. Growth of the bronchial tree in man. Thorax, 42 (5) (1987), pp. 383-388
|
[165] |
N. Berend, A. Rynell, H. Ward. Structure of a human pulmonary acinus. Thorax, 46 (2) (1991), pp. 117-121
|
[166] |
H. Ward, T. Nicholas. Alveolar Type I and Type II cells. Aust N Z J Med, 14 (s5) (1984), pp. 731-734
|
[167] |
Z. Galliger, C.D. Vogt, A. Panoskaltsis-Mortari. 3D bioprinting for lungs and hollow organs. Transl Res, 211 (2019), pp. 19-34
|
[168] |
I.D. Derman, Y.P. Singh, S. Saini, M. Nagamine, D. Banerjee, I.T. Ozbolat. Bioengineering and clinical translation of human lung and its components. Adv Biol, 7 (4) (2023), Article 2200267
|
[169] |
I.G. Kim, S.A. Park, S.H. Lee, J.S. Choi, H. Cho, S.J. Lee, et al. Transplantation of a 3D-printed tracheal graft combined with iPS cell-derived MSCs and chondrocytes. Sci Rep, 10 (1) (2020), p. 4326
|
[170] |
D. Kang, J.A. Park, W. Kim, S. Kim, H.R. Lee, W.J. Kim, et al. All-inkjet-printed 3D alveolar barrier model with physiologically relevant microarchitecture. Adv Sci, 8 (10) (2021), Article 2004990
|
[171] |
D. Kang, Y. Lee, W. Kim, H.R. Lee, S. Jung. 3D pulmonary fibrosis model for antifibrotic drug discovery by inkjet-bioprinting. Biomed Mater, 18 (1) (2022), Article 015024
|
[172] |
N.N. da Rosa, J.M. Appel, A.C. Irioda, B.F. Mogharbel, N.B. de Oliveira, M.C. Perussolo, et al. Three-dimensional bioprinting of an in vitro lung model. Int J Mol Sci, 24 (6) (2023), p. 5852
|
[173] |
W.L. Ng, T.C. Ayi, Y.C. Liu, S.L. Sing, W.Y. Yeong, B.H. Tan. Fabrication and characterization of 3D bioprinted triple-layered human alveolar lung models. Int J Bioprinting, 7 (2) (2021), p. 332
|
[174] |
L. Horváth, Y. Umehara, C. Jud, F. Blank, A. Petri-Fink, B. Rothen-Rutishauser. Engineering an in vitro air-blood barrier by 3D bioprinting. Sci Rep, 5 (1) (2015), p. 7974
|
[175] |
P.S. Leung. The renin-angiotensin system: current research progress in the pancreas. Springer, Berlin (2010)
|
[176] |
S.J. Lee, J.B. Lee, Y.W. Park, D.Y. Lee.3D bioprinting for artificial pancreas organ. Biomimetic medical materials: from nanotechnology to 3D bioprinting, Springer, Berlin (2018), pp. 355-374
|
[177] |
Z. Wang, Z. Jiang, R. Lu, L. Kou, Y.Z. Zhao, Q. Yao. Formulation strategies to provide oxygen-release to contrast local hypoxia for transplanted islets. Eur J Pharm Biopharm, 187 (2023), pp. 130-140
|
[178] |
H. Komatsu, D. Kang, L. Medrano, A. Barriga, D. Mendez, J. Rawson, et al. Isolated human islets require hyperoxia to maintain islet mass, metabolism, and function. Biochem Biophys Res Commun, 470 (3) (2016), pp. 534-538
|
[179] |
M. Farina, A. Ballerini, D.W. Fraga, E. Nicolov, M. Hogan, D. Demarchi, et al. 3D printed vascularized device for subcutaneous transplantation of human islets. Biotechnol J, 12 (9) (2017), Article 1700169
|
[180] |
J. Song, J.R. Millman. Economic 3D-printing approach for transplantation of human stem cell-derived β-like cells. Biofabrication, 9 (1) (2016), Article 015002
|
[181] |
J. Kim, M. Kim, D.G. Hwang, I.K. Shim, S.C. Kim, J. Jang. Pancreatic tissue-derived extracellular matrix bioink for printing 3D cell-laden pancreatic tissue constructs. J Vis Exp, 154 (2019), p. e60434
|
[182] |
J. Kim, I.K. Shim, D.G. Hwang, Y.N. Lee, M. Kim, H. Kim, et al. 3D cell printing of islet-laden pancreatic tissue-derived extracellular matrix bioink constructs for enhancing pancreatic functions. J Mater Chem B Mater Biol Med, 7 (10) (2019), pp. 1773-1781
|
[183] |
M. Klak, M. Wszoła, A. Berman, A. Filip, A. Kosowska, J. Olkowska-Truchanowicz, et al. Bioprinted 3D bionic scaffolds with pancreatic islets as a new therapy for Type 1 diabetes—analysis of the results of preclinical studies on a mouse model. J Funct Biomater, 14 (7) (2023), p. 371
|
[184] |
M. Klak, P. Kowalska, T. Dobrzański, G. Tymicki, P. Cywoniuk, M. Gomółka, et al. Bionic organs: shear forces reduce pancreatic islet and mammalian cell viability during the process of 3D bioprinting. Micromachines, 12 (3) (2021), p. 304
|
[185] |
E. Di Piazza, E. Pandolfi, I. Cacciotti, A. Del Fattore, A.E. Tozzi, A. Secinaro, et al. Bioprinting technology in skin, heart, pancreas and cartilage tissues: progress and challenges in clinical practice. Int J Environ Res Public Health, 18 (20) (2021), p. 10806
|
[186] |
D. Hakobyan, C. Medina, N. Dusserre, M.L. Stachowicz, C. Handschin, J.C. Fricain, et al. Laser-assisted 3D bioprinting of exocrine pancreas spheroid models for cancer initiation study. Biofabrication, 12 (3) (2020), Article 035001
|
[187] |
B. Huang, X. Wei, K. Chen, L. Wang, M. Xu. Bioprinting of hydrogel beads to engineer pancreatic tumor-stroma microtissues for drug screening. Int J Bioprinting, 9 (3) (2023), p. 676
|
[188] |
M. Lovett, K. Lee, A. Edwards, D.L. Kaplan. Vascularization strategies for tissue engineering. Tissue Eng Part B Rev, 15 (3) (2009), pp. 353-370
|
[189] |
J.J. Kim, L. Hou, N.F. Huang. Vascularization of three-dimensional engineered tissues for regenerative medicine applications. Acta Biomater, 41 (2016), pp. 4117-4126
|
[190] |
R. Pimentel, S.K. Ko, C. Caviglia, A. Wolff, J. Emnéus, S.S. Keller, et al. Three-dimensional fabrication of thick and densely populated soft constructs with complex and actively perfused channel network. Acta Biomater, 65 (2018), pp. 65174-65184
|
[191] |
M. Sarker, S. Naghieh, N. Sharma, X. Chen. 3D biofabrication of vascular networks for tissue regeneration:a report on recent advances. J Pharm Anal, 8 (5) (2018), pp. 277-296
|
[192] |
Y. Zhang, D. Li, Y. Liu, L. Peng, D. Lu, P. Wang, et al. 3D-bioprinted anisotropic bicellular living hydrogels boost osteochondral regeneration via reconstruction of cartilage-bone interface. Innovation, 5 (1) (2024), Article 100542
|
[193] |
Michalopoulos G K. Liver regeneration. In: The liver:biology and pathobiology. 6th ed. Hoboken, NJ: Wiley; 2020. p. 566-84.
|
[194] |
P.S. Gungor-Ozkerim, I. Inci, Y.S. Zhang, A. Khademhosseini, M.R. Dokmeci. Bioinks for 3D bioprinting: an overview. Biomater Sci, 6 (5) (2018), pp. 915-946
|
[195] |
B.S. Kim, S. Das, J. Jang, D.W. Cho. Decellularized extracellular matrix-based bioinks for engineering tissue- and organ-specific microenvironments. Chem Rev, 120 (19) (2020), pp. 10608-10661
|
[196] |
H. Jiang, X. Li, T. Chen, Y. Liu, Q. Wang, Z. Wang, et al. Bioprinted vascular tissue: assessing functions from cellular, tissue to organ levels. Mater Today Bio, 23 (2023), Article 23100846
|
[197] |
J.M. Bliley, D.J. Shiwarski, A.W. Feinberg. 3D-bioprinted human tissue and the path toward clinical translation. Sci Transl Med, 14 (666) (2022), Article eabo7047
|
[198] |
E.C. Novosel, C. Kleinhans, P.J. Kluger. Vascularization is the key challenge in tissue engineering. Adv Drug Deliv Rev, 63 (4-5) (2011), pp. 300-311
|
[199] |
X. Zhou, M. Nowicki, H. Sun, S.Y. Hann, H. Cui, T. Esworthy, et al. 3D bioprinting-tunable small-diameter blood vessels with biomimetic biphasic cell layers. ACS Appl Mater Interfaces, 12 (41) (2020), pp. 45904-45915
|
[200] |
A.N. Leberfinger, S. Dinda, Y. Wu, S.V. Koduru, V. Ozbolat, D.J. Ravnic, et al. Bioprinting functional tissues. Acta Biomater, 95 (2019), pp. 32-49
|
[201] |
D.J. Ravnic, A.N. Leberfinger, S.V. Koduru, M. Hospodiuk, K.K. Moncal, P. Datta, et al. Transplantation of bioprinted tissues and organs: technical and clinical challenges and future perspectives. Ann Surg, 266 (1) (2017), pp. 48-58
|
[202] |
W. Liu, Z. Zhong, N. Hu, Y. Zhou, L. Maggio, A.K. Miri, et al. Coaxial extrusion bioprinting of 3D microfibrous constructs with cell-favorable gelatin methacryloyl microenvironments. Biofabrication, 10 (2) (2018), Article 024102
|
[203] |
V.C.F. Li, X. Kuang, C.M. Hamel, D. Roach, Y. Deng, H. Qi. Cellulose nanocrystals support material for 3D printing complexly shaped structures via multi-materials-multi-methods printing. Addit Manuf, 28 (2019), pp. 2814-2822
|
[204] |
S. Ji, E. Almeida, M. Guvendiren. 3D bioprinting of complex channels within cell-laden hydrogels. Acta Biomater, 95 (2019), pp. 214-224
|
[205] |
X. Liu, S.S.D. Carter, M.J. Renes, J. Kim, D.M. Rojas-Canales, D. Penko, et al. Development of a coaxial 3D printing platform for biofabrication of implantable islet-containing constructs. Adv Healthc Mater, 8 (7) (2019), Article 1801181
|
[206] |
J. Kim, G. Kim. Formation of various cell-aggregated structures in the core of hydrogel filament using a microfluidic device and its application as an in vitro neuromuscular junction model. Chem Eng J, 472 (2023), Article 472144979
|
[207] |
Ebrahimi M. Standardization and regulation of biomaterials. In: Handbook of biomaterials biocompatibility. Oxon: Elsevier; 2020. p. 251-65.
|
[208] |
M. Monzón, Z. Ortega, A. Martínez, F. Ortega. Standardization in additive manufacturing: activities carried out by international organizations and projects. Int J Adv Manuf Technol, 76 (5-8) (2015), pp. 761111-761121
|
[209] |
Y. Yu, K.K. Moncal, J. Li, W. Peng, I. Rivero, J.A. Martin, et al. Three-dimensional bioprinting using self-assembling scalable scaffold-free “tissue strands” as a new bioink. Sci Rep, 6 (1) (2016), p. 28714
|
[210] |
A. Akkouch, Y. Yu, I.T. Ozbolat. Microfabrication of scaffold-free tissue strands for three-dimensional tissue engineering. Biofabrication, 7 (3) (2015), Article 031002
|
[211] |
A. Sabzevari, H. Rayat Pisheh, M. Ansari, A. Salati. Progress in bioprinting technology for tissue regeneration. J Artif Organs, 26 (4) (2023), pp. 1-20
|
[212] |
Bentley TS, Phillips SJ, Hanson SG. US organ and tissue transplant cost estimates and discussion. Washington. DC: Milliman; 2020.
|
[213] |
M. Smith, B. Dominguez-Gil, D. Greer, A. Manara, M. Souter. Organ donation after circulatory death: current status and future potential. Intensive Care Med, 45 (3) (2019), pp. 45310-45321
|
[214] |
J. Duisit, H. Amiel, T. Wüthrich, A. Taddeo, A. Dedriche, V. Destoop, et al. Perfusion-decellularization of human ear grafts enables ECM-based scaffolds for auricular vascularized composite tissue engineering. Acta Biomater, 73 (2018), pp. 73339-73354
|
[215] |
P.E. Bourgine, E. Gaudiello, B. Pippenger, C. Jaquiery, T. Klein, S. Pigeot, et al. Engineered extracellular matrices as biomaterials of tunable composition and function. Adv Funct Mater, 27 (7) (2017), Article 1605486
|
[216] |
M. Liu, X. Zeng, C. Ma, H. Yi, Z. Ali, X. Mou, et al. Injectable hydrogels for cartilage and bone tissue engineering. Bone Res, 5 (1) (2017), pp. 1-20
|
[217] |
F.M. Chen, X. Liu. Advancing biomaterials of human origin for tissue engineering. Prog Polym Sci, 53 (2016), pp. 86-168
|
[218] |
S. Hinderer, S.L. Layland, K. Schenke-Layland. ECM and ECM-like materials—biomaterials for applications in regenerative medicine and cancer therapy. Adv Drug Deliv Rev, 97 (2016), pp. 97260-97269
|
[219] |
X. Zhang, X. Chen, H. Hong, R. Hu, J. Liu, C. Liu. Decellularized extracellular matrix scaffolds: recent trends and emerging strategies in tissue engineering. Bioact Mater, 10 (2022), pp. 1015-1031
|
[220] |
M.S. Lee, D.H. Lee, J. Jeon, G. Tae, Y.M. Shin, H.S. Yang. Biofabrication and application of decellularized bone extracellular matrix for effective bone regeneration. J Ind Eng Chem, 83 (2020), pp. 83323-83332
|
[221] |
X. Xie, W. Wang, J. Cheng, H. Liang, Z. Lin, T. Zhang, et al. Bilayer pifithrin-α loaded extracellular matrix/PLGA scaffolds for enhanced vascularized bone formation. Colloid Surface B, 190 (2020), Article 190110903
|
[222] |
F. Paduano, M. Marrelli, N. Alom, M. Amer, L.J. White, K.M. Shakesheff, et al. Decellularized bone extracellular matrix and human dental pulp stem cells as a construct for bone regeneration. J Biomater Sci Polym Ed, 28 (8) (2017), pp. 730-748
|
[223] |
N.T. Huang, W. Chen, B.R. Oh, T.T. Cornell, T.P. Shanley, J. Fu, et al. An integrated microfluidic platform for in situ cellular cytokine secretion immunophenotyping. Lab Chip, 12 (20) (2012), pp. 4093-4101
|
[224] |
P.J. Little, A. Chait, A. Bobik. Cellular and cytokine-based inflammatory processes as novel therapeutic targets for the prevention and treatment of atherosclerosis. Pharmacol Ther, 131 (3) (2011), pp. 255-268
|
[225] |
A. Kirillova, S. Bushev, A. Abubakirov, G. Sukikh. Bioethical and legal issues in 3D bioprinting. Int J, 6 (3) (2020), p. 272
|
[226] |
N. Vermeulen, G. Haddow, T. Seymour, A. Faulkner-Jones, W. Shu. 3D bioprint me: a socioethical view of bioprinting human organs and tissues. J Med Ethics, 43 (9) (2017), pp. 618-624
|
[227] |
W. Liu, Y.S. Zhang, M.A. Heinrich, F. De Ferrari, H.L. Jang, S.M. Bakht, et al. Rapid continuous multimaterial extrusion bioprinting. Adv Mater, 29 (3) (2017), Article 1604630
|
[228] |
B.S. Kim, J.S. Lee, G. Gao, D.W. Cho. Direct 3D cell-printing of human skin with functional transwell system. Biofabrication, 9 (2) (2017), Article 025034
|
[229] |
P.N. Bernal, P. Delrot, D. Loterie, Y. Li, J. Malda, C. Moser, et al. Volumetric bioprinting of complex living-tissue constructs within seconds. Adv Mater, 31 (42) (2019), Article 1904209
|
[230] |
G. Größbacher, M. Bartolf-Kopp, C. Gergely, P.N. Bernal, S. Florczak, M. de Ruijter, et al. Volumetric printing across melt electrowritten scaffolds fabricates multimaterial living constructs with tunable architecture and mechanics. Adv Mater, 35 (32) (2023), Article 2300756
|
[231] |
H. Mao, L. Yang, H. Zhu, L. Wu, P. Ji, J. Yang, et al. Recent advances and challenges in materials for 3D bioprinting. Prog Nat Sci Mater, 30 (5) (2020), pp. 618-634
|
[232] |
N.K. Katiyar, G. Goel, S. Hawi, S. Goel. Nature-inspired materials: emerging trends and prospects. NPG Asia Mater, 13 (1) (2021), p. 56
|
[233] |
M. Yeo, A. Sarkar, Y.P. Singh, I.D. Derman, P. Datta, I.T. Ozbolat. Synergistic coupling between 3D bioprinting and vascularization strategies. Biofabrication, 16 (1) (2023), Article 012003
|
[234] |
S.S. Soman, S. Vijayavenkataraman. Applications of 3D bioprinted-induced pluripotent stem cells in healthcare. Int J Bioprint, 6 (4) (2020), p. 280
|
[235] |
S.R. Dabbagh, M.R. Sarabi, M.T. Birtek, N. Mustafaoglu, Y.S. Zhang, S. Tasoglu. 3D bioprinted organ-on-chips. Aggregate, 4 (1) (2023), p. e197
|
[236] |
B. Gao, Q. Yang, X. Zhao, G. Jin, Y. Ma, F. Xu. 4D bioprinting for biomedical applications. Trends Biotechnol, 34 (9) (2016), pp. 746-756
|
[237] |
A. Kirillova, R. Maxson, G. Stoychev, C.T. Gomillion, L. Ionov. 4D biofabrication using shape-morphing hydrogels. Adv Mater, 29 (46) (2017), Article 1703443
|
[238] |
H. Ravanbakhsh, V. Karamzadeh, G. Bao, L. Mongeau, D. Juncker, Y.S. Zhang. Emerging technologies in multi-material bioprinting. Adv Mater, 33 (49) (2021), Article e2104730
|
[239] |
D. Ribezzi, M. Gueye, S. Florczak, F. Dusi, D. de Vos, F. Manente, et al. Shaping synthetic multicellular and complex multimaterial tissues via embedded extrusion-volumetric printing of microgels. Adv Mater, 35 (36) (2023), Article e2301673
|
[240] |
J.H. Kim, I. Kim, Y.J. Seol, I.K. Ko, J.J. Yoo, A. Atala, et al. Neural cell integration into 3D bioprinted skeletal muscle constructs accelerates restoration of muscle function. Nat Commun, 11 (1) (2020), p. 1025
|
[241] |
D. Banerjee, Y.P. Singh, P. Datta, V. Ozbolat, A. O’Donnell, M. Yeo, et al. Strategies for 3D bioprinting of spheroids: a comprehensive review. Biomaterials, 291 (2022), Article 291121881
|
[242] |
N. Tabatabaei Rezaei, H. Kumar, H. Liu, S.S. Lee, S.S. Park, K. Kim. Recent advances in organ-on-chips integrated with bioprinting technologies for drug screening. Adv Healthc Mater, 12 (20) (2023), Article e2203172
|
[243] |
H. Chen, X. Ma, T. Gao, W. Zhao, T. Xu, Z. Liu. Robot-assisted in situ bioprinting of gelatin methacrylate hydrogels with stem cells induces hair follicle-inclusive skin regeneration. Biomed Pharmacother, 158 (2023), Article 158114140
|
[244] |
K.K. Moncal, H. Gudapati, K.P. Godzik, D.N. Heo, Y. Kang, E. Rizk, et al. Intra-operative bioprinting of hard, soft, and hard/soft composite tissues for craniomaxillofacial reconstruction. Adv Funct Mater, 31 (29) (2021), Article 2010858
|
[245] |
L. Li, J. Shi, K. Ma, J. Jin, P. Wang, H. Liang, et al. Robotic in situ 3D bioprinting technology for repairing large segmental bone defects. J Adv Res, 30 (2021), pp. 3075-3084
|
[246] |
Y. Chen, J. Zhang, X. Liu, S. Wang, J. Tao, Y. Huang, et al. Noninvasive in vivo 3D bioprinting. Sci Adv, 6 (23) (2020), Article eaba7406
|
[247] |
K. Ma, T. Zhao, L. Yang, P. Wang, J. Jin, H. Teng, et al. Application of robotic-assisted in situ 3D printing in cartilage regeneration with HAMA hydrogel: an in vivo study. J Adv Res, 23 (2020), pp. 23123-23132
|
[248] |
W. Kim, C.H. Jang, G. Kim. Bioprinted HASC-laden structures with cell-differentiation niches for muscle regeneration. Chem Eng J, 419 (2021), Article 419129570
|
[249] |
W. Zhao, T. Xu. Preliminary engineering for in situ in vivo bioprinting: a novel micro bioprinting platform for in situ in vivo bioprinting at a gastric wound site. Biofabrication, 12 (4) (2020), Article 045020
|
[250] |
M.T. Thai, P.T. Phan, H.A. Tran, C.C. Nguyen, T.T. Hoang, J. Davies, et al. Advanced soft robotic system for in situ 3D bioprinting and endoscopic surgery. Adv Sci, 10 (12) (2023), Article 2205656
|
[251] |
J.M. Willey, L. Sherwood, C.J. Woolverton.Prescott’s microbiology. ( 7th ed.), McGraw-Hill, New York City (2011)
|
[252] |
P.J. Goodhew, J. Humphreys.Electron microscopy and analysis. ( 3rd ed.), CRC Press, London (2000)
|
[253] |
C.J. Dawes.Biological techniques for transmission and scanning electron microscopy. (2nd ed.), Ladd Research Industries, Burlington (1980)
|
[254] |
T.A. Caswell, P. Ercius, M.W. Tate, A. Ercan, S.M. Gruner, D.A. Muller. A high-speed area detector for novel imaging techniques in a scanning transmission electron microscope. Ultramicroscopy, 109 (4) (2009), pp. 304-311
|
[255] |
H. Yang, L. Wei, C. Liu, W. Zhong, B. Li, Y. Chen, et al. Engineering human ventricular heart tissue based on macroporous iron oxide scaffolds. Acta Biomater, 88 (2019), pp. 88540-88553
|
[256] |
R. Sobreiro-Almeida, M. Gómez-Florit, R. Quinteira, R.L. Reis, M.E. Gomes, N.M. Neves. Decellularized kidney extracellular matrix bioinks recapitulate renal 3D microenvironment in vitro. Biofabrication, 13 (4) (2021), Article 045006
|
[257] |
B. Falcones, H. Sanz-Fraile, E. Marhuenda, I. Mendizábal, I. Cabrera-Aguilera, N. Malandain, et al. Bioprintable lung extracellular matrix hydrogel scaffolds for 3D culture of mesenchymal stromal cells. Polymers, 13 (14) (2021), p. 2350
|
[258] |
G.A. Salg, E. Poisel, M. Neulinger-Munoz, J. Gerhardus, D. Cebulla, C. Bludszuweit-Philipp, et al. Toward 3D-bioprinting of an endocrine pancreas: a building-block concept for bioartificial insulin-secreting tissue. J Tissue Eng, 13 (2022) 20417314221091033
|
[259] |
D. Gusnard, R.H. Kirschner. Cell and organelle shrinkage during preparation for scanning electron microscopy: effects of fixation, dehydration and critical point drying. J Microsc, 110 (1) (1977), pp. 51-57
|
[260] |
D. Xiang, F. Fu, J. Zhang, X. Huang, L. Wang, X. Wang, et al. Accelerator-based single-shot ultrafast transmission electron microscope with picosecond temporal resolution and nanometer spatial resolution. Nucl Instrum Methods Phys Res A, 759 (2014), pp. 75974-75982
|
[261] |
D.J. Smith. Characterization of nanomaterials using transmission electron microscopy. Nanocharacterisation, Royal Society of Chemistry (RSC), London (2015)
|
[262] |
K. Im, S. Mareninov, M.F.P. Diaz, W.H. Yong. An introduction to performing immunofluorescence staining. Biobanking, Humana Press, New York City (2019), pp. 299-311
|
[263] |
J.K. Kular, S. Basu, R.I. Sharma. The extracellular matrix: structure, composition, age-related differences, tools for analysis and applications for tissue engineering. J Tissue Eng, 5 (2014), Article 2041731414557112
|
[264] |
N.J. Mankovich, D. Samson, W. Pratt, D. Lew, J. Beumer. Surgical planning using three-dimensional imaging and computer modeling. Otolaryngol Clin North Am, 27 (5) (1994), pp. 875-889
|
[265] |
N.J. Mankovich, D.R. Robertson, A.M. Cheeseman. Three-dimensional image display in medicine. J Digit Imaging, 3 (2) (1990), pp. 69-80
|
[266] |
W. Sun, P. Lal. Recent development on computer aided tissue engineering—a review. Comput Methods Programs Biomed, 67 (2) (2002), pp. 85-103
|
[267] |
S. Mastrogiacomo, W. Dou, J.A. Jansen, X.F. Walboomers. Magnetic resonance imaging of hard tissues and hard tissue engineered biosubstitutes. Mol Imaging Biol, 21 (6) (2019), pp. 211003-211019
|
[268] |
G. Meiry, Y. Reisner, Y. Feld, S. Goldberg, M. Rosen, N. Ziv, et al. Evolution of action potential propagation and repolarization in cultured neonatal rat ventricular myocytes. J Cardiovasc Electrophysiol, 12 (11) (2001), pp. 1269-1277
|
[269] |
I. Mannhardt, K. Breckwoldt, D. Letuffe-Brenière, S. Schaaf, H. Schulz, C. Neuber, et al. Human engineered heart tissue: analysis of contractile force. Stem Cell Reports, 7 (1) (2016), pp. 29-42
|
[270] |
C.D. Roche, R.J. Brereton, A.W. Ashton, C. Jackson, C. Gentile. Current challenges in three-dimensional bioprinting heart tissues for cardiac surgery. Eur J Cardiothorac Surg, 58 (3) (2020), pp. 500-510
|
[271] |
T. Hiller, J. Berg, L. Elomaa, V. Röhrs, I. Ullah, K. Schaar, et al. Generation of a 3D liver model comprising human extracellular matrix in an alginate/gelatin-based bioink by extrusion bioprinting for infection and transduction studies. Int J Mol Sci, 19 (10) (2018), p. 3129
|
[272] |
K.T. Lawlor, J.M. Vanslambrouck, J.W. Higgins, A. Chambon, K. Bishard, D. Arndt, et al. Cellular extrusion bioprinting improves kidney organoid reproducibility and conformation. Nat Mater, 20 (2) (2021), pp. 260-271
|
[273] |
B. Grigoryan, S.J. Paulsen, D.C. Corbett, D.W. Sazer, C.L. Fortin, A.J. Zaita, et al. Multivascular networks and functional intravascular topologies within biocompatible hydrogels. Science, 364 (6439) (2019), pp. 458-464
|
[274] |
C. Ionescu-Tirgoviste, P.A. Gagniuc, E. Gubceac, L. Mardare, I. Popescu, S. Dima, et al. A 3D map of the islet routes throughout the healthy human pancreas. Sci Rep, 5 (1) (2015), p. 14634
|
[275] |
J.D. Weaver, D.M. Headen, M.M. Coronel, M.D. Hunckler, H. Shirwan, A. García. Synthetic poly(ethylene glycol)-based microfluidic islet encapsulation reduces graft volume for delivery to highly vascularized and retrievable transplant site. Am J Transplant, 19 (5) (2019), pp. 1315-1327
|
[276] |
L.A. MacQueen, S.P. Sheehy, C.O. Chantre, J.F. Zimmerman, F.S. Pasqualini, X. Liu, et al. A tissue-engineered scale model of the heart ventricle. Nat Biomed Eng, 2 (12) (2018), pp. 930-941
|
[277] |
C. Tu, B.S. Chao, J.C. Wu. Strategies for improving the maturity of human induced pluripotent stem cell-derived cardiomyocytes. Am Heart Assoc, 123 (5) (2018), pp. 512-514
|
[278] |
M. Valls-Margarit, O. Iglesias-García, C. Di Guglielmo, L. Sarlabous, K. Tadevosyan, R. Paoli, et al. Engineered macroscale cardiac constructs elicit human myocardial tissue-like functionality. Stem Cell Reports, 13 (1) (2019), pp. 207-220
|
[279] |
W.J. McCarty, O.B. Usta, M.L. Yarmush. A microfabricated platform for generating physiologically-relevant hepatocyte zonation. Sci Rep, 6 (1) (2016), p. 26868
|
[280] |
J.W. Allen, S.N. Bhatia. Formation of steady-state oxygen gradients in vitro: application to liver zonation. Biotechnol Bioeng, 82 (3) (2003), pp. 253-262
|
[281] |
Y.B. Kang, T.R. Sodunke, J. Lamontagne, J. Cirillo, C. Rajiv, M.J. Bouchard, et al. Liver sinusoid on a chip: long-term layered co-culture of primary rat hepatocytes and endothelial cells in microfluidic platforms. Biotechnol Bioeng, 112 (12) (2015), pp. 2571-2582
|
[282] |
C. Kryou, V. Leva, M. Chatzipetrou, I. Zergioti. Bioprinting for liver transplantation. Bioengineering, 6 (4) (2019), p. 95
|
[283] |
Y. Yang, Z. Yu, X. Lu, J. Dai, C. Zhou, J. Yan, et al. Minimally invasive bioprinting for in situ liver regeneration. Bioact Mater, 26 (2023), pp. 26465-26477
|
[284] |
C. Li, Z. Jiang, H. Yang. Advances in 3D bioprinting technology for liver regeneration. Hepatobiliary Surg Nutr, 11 (6) (2022), pp. 917-919
|
[285] |
K.A. Homan, N. Gupta, K.T. Kroll, D.B. Kolesky, M. Skylar-Scott, T. Miyoshi, et al. Flow-enhanced vascularization and maturation of kidney organoids in vitro. Nat Methods, 16 (3) (2019), pp. 255-262
|
[286] |
S. Musah, A. Mammoto, T.C. Ferrante, S.S. Jeanty, M. Hirano-Kobayashi, T. Mammoto, et al. Mature induced-pluripotent-stem-cell-derived human podocytes reconstitute kidney glomerular-capillary-wall function on a chip. Nat Biomed Eng, 1 (2017), p. 0069
|
[287] |
A. Petrosyan, P. Cravedi, V. Villani, A. Angeletti, J. Manrique, A. Renieri, et al. A glomerulus-on-a-chip to recapitulate the human glomerular filtration barrier. Nat Commun, 10 (1) (2019), p. 3656
|
[288] |
M.F. Fransen, G. Addario, C.V. Bouten, F. Halary, L. Moroni, C. Mota. Bioprinting of kidney in vitro models: cells, biomaterials, and manufacturing techniques. Essays Biochem, 65 (3) (2021), pp. 587-602
|
[289] |
F. Akter, Y. Araf, S.K. Promon, J. Zhai, C. Zheng. 3D bioprinting for regenerating COVID-19-mediated irreversibly damaged lung tissue. Int J Bioprinting, 8 (4) (2022), p. 616
|
[290] |
M. Barreiro Carpio, M. Dabaghi, J. Ungureanu, M.R. Kolb, J.A. Hirota, J.M. Moran-Mirabal. 3D bioprinting strategies, challenges, and opportunities to model the lung tissue microenvironment and its function. Front Bioeng Biotechnol, 9 (2021), Article 9773511
|
[291] |
M. Wszoła, D. Nitarska, P. Cywoniuk, M. Gomółka, M. Klak.Stem cells as a source of pancreatic cells for production of 3D bioprinted bionic pancreas in the treatment of type 1 diabetes. Cells, 10 (6) (2021), p. 1544
|
[292] |
D. Ribeiro, A.J. Kvist, P. Wittung-Stafshede, R. Hicks, A. Forslöw. 3D-models of insulin-producing β-cells: from primary islet cells to stem cell-derived islets. Stem Cell Rev Rep, 14 (2) (2018), pp. 177-188
|
[293] |
L. Lu, H.M. Arbit, J.L. Herrick, S.G. Segovis, A. Maran, M.J. Yaszemski. Tissue engineered constructs: perspectives on clinical translation. Ann Biomed Eng, 43 (3) (2015), pp. 43796-43804
|
[294] |
S.V. Murphy, P. De Coppi, A. Atala. Opportunities and challenges of translational 3D bioprinting. Nat Biomed Eng, 4 (4) (2020), pp. 370-380
|
[295] |
K. Belsky, J. Smiell. Navigating the regulatory pathways and requirements for tissue-engineered products in the treatment of burns in the United States. J Burn Care Res, 42 (4) (2021), pp. 774-784
|
[296] |
B.P. Dodson, A.D. Levine. Challenges in the translation and commercialization of cell therapies. BMC Biotechnol, 15 (1) (2015), pp. 1-15
|
[297] |
M.P. Sekar, H. Budharaju, A. Zennifer, S. Sethuraman, N. Vermeulen, D. Sundaramurthi, et al. Current standards and ethical landscape of engineered tissues—3D bioprinting perspective. J Tissue Eng, 12 (2021), Article 1220417314211027677
|
[298] |
L.M. Ricles, J.C. Coburn, M. Di Prima, S.S. Oh. Regulating 3D-printed medical products. Sci Transl Med, 10 (461) (2018), Article eaan6521
|
[299] |
J.M. Bliley, M.C. Vermeer, R.M. Duffy, I. Batalov, D. Kramer, J.W. Tashman, et al. Dynamic loading of human engineered heart tissue enhances contractile function and drives a desmosome-linked disease phenotype. Sci Transl Med, 13 (603) (2021), Article eabd1817
|
[300] |
M. Vaidya. Startups tout commercially 3D-printed tissue for drug screening. Nat Med, 21 (1) (2015), p. 2
|
[301] |
D. Choudhury, S. Anand, M.W. Naing. The arrival of commercial bioprinters-towards 3D bioprinting revolution!. Int J Bioprinting, 4 (2) (2018), p. 139
|
[302] |
T.H. Jovic, E.J. Combellack, Z.M. Jessop, I.S. Whitaker. 3D bioprinting and the future of surgery. Front Surg, 7 (2020), Article 7609836
|
[303] |
3D bioprinted models for predicting chemotherapy response in colorectal cancer with/without liver metastases [Internet]. Maryland, MD: National Institutes of Health (NIH); 2021 Feb 16 [cited 2024 Apr 28]. Available from: https://classic.clinicaltrials.gov/ct2/show/NCT04755907.
|
[304] |
Rabin RC. Doctors transplant ear of human cells, made by 3-D printer. New York City: The New York Times; 2022 Jun 02 [cited 2024 Apr 28]. Available from: https://www.nytimes.com/2022/06/02/health/ear-transplant-3d-printer.html.
|
[305] |
Everett H. United therapeutics and 3D systems shoot for 3D printed lung scaffold trials within five years [Internet]. New York City: 3D Printing Industry; 2022 Jun 7 [cited 2024 Apr 28]. Available from: https://3dprintingindustry.com/news/united-therapeutics-and-3d-systems-shoot-for-3d-printed-lung-scaffold-trials-within-five-years-210303/.
|
[306] |
G.G. Wallace, R. Cornock, C.D. O’Connell, S. Bernie, S. Dodds, F. Gilbert. 3D bioprinting: printing parts for bodies. University of Tasmania, Hobart (2014)
|
[307] |
E.H.Y. Lam, F. Yu, S. Zhu, Z. Wang. 3D bioprinting for next-generation personalized medicine. Int J Mol Sci, 24 (7) (2023), p. 6357
|