[1] |
C.J. Thibodeaux, C.E. Melançon, H.W. Liu. Natural-product sugar biosynthesis and enzymatic glycodiversification. Angew Chem Int Ed Engl, 47 (51) (2008), pp. 9814-9859
|
[2] |
S.I. Elshahawi, K.A. Shaaban, M.K. Kharel, J.S. Thorson. A comprehensive review of glycosylated bacterial natural products. Chem Soc Rev, 44 (21) (2015), pp. 7591-7697
|
[3] |
J. Yang, D. Xie, X. Ma. Recent advances in chemical synthesis of amino sugars. Molecules, 28 (12) (2023), pp. 4724-4772
|
[4] |
F. Subrizi, L. Benhamou, J.M. Ward, T.D. Sheppard, H.C. Hailes. Aminopolyols from carbohydrates: amination of sugars and sugar-derived tetrahydrofurans with transaminases. Angew Chem Int Ed, 58 (12) (2019), pp. 3854-3858
|
[5] |
A.J. Romo, H.W. Liu. Mechanisms and structures of vitamin B6-dependent enzymes involved in deoxy sugar biosynthesis. Biochim Biophys Acta-Proteins Proteomics, 1814 (11) (2011), pp. 1534-1547
|
[6] |
B.Y. Hwang, B.K. Cho, H. Yun, K. Koteshwar, B.G. Kim. Revisit of aminotransferase in the genomic era and its application to biocatalysis. J Mol Catal, B Enzym, 37 (1-6) (2005), pp. 47-55
|
[7] |
L. Cui, X. Wei, X. Wang, L. Bai, S. Lin, Y. Feng.A validamycin shunt pathway for valienamine synthesis in engineered Streptomyces hygroscopicus 5008. ACS Synth Biol, 9 (2) (2020), pp. 294-303
|
[8] |
L. Cui, Y. Zhu, X. Guan, Z. Deng, L. Bai, Y. Feng.De novo biosynthesis of β-valienamine in engineered Streptomyces hygroscopicus 5008. ACS Synth Biol, 5 (1) (2016), pp. 15-20
|
[9] |
K. Skarbek, M.J. Milewska. Biosynthetic and synthetic access to amino sugars. Carbohydr Res, 434 (2016), pp. 44-71
|
[10] |
S. Singh, G.N. Phillips Jr, J.S. Thorson. The structural biology of enzymes involved in natural product glycosylation. Nat Prod Rep, 29 (10) (2012), pp. 1201-1237
|
[11] |
S.A. Kelly, S. Mix, T.S. Moody, B.F. Gilmore. Transaminases for industrial biocatalysis: novel enzyme discovery. Appl Microbiol Biotechnol, 104 (11) (2020), pp. 4781-4794
|
[12] |
B.Y. Hwang, H.J. Lee, Y.H. Yang, H.S. Joo, B.G. Kim.Characterization and investigation of substrate specificity of the sugar aminotransferase WecE from E. coli K12. Chem Biol, 11 (7) (2004), pp. 915-925
|
[13] |
E.S. Burgie, J.B. Thoden, H.M. Holden. Molecular architecture of DesV from Streptomyces venezuelae: a PLP-dependent transaminase involved in the biosynthesis of the unusual sugar desosamine. Protein Sci, 16 (5) (2007), pp. 887-896
|
[14] |
T.R. Zachman-Brockmeyer, J.B. Thoden, H.M. Holden. The structure of RbmB from Streptomyces ribosidificus, an aminotransferase involved in the biosynthesis of ribostamycin. Protein Sci, 26 (9) (2017), pp. 1886-1892
|
[15] |
U.F. Wehmeier, W. Piepersberg. Biotechnology and molecular biology of the alpha-glucosidase inhibitor acarbose. Appl Microbiol Biotechnol, 63 (6) (2004), pp. 613-625
|
[16] |
M.D. García, J.C. Argüelles. Trehalase inhibition by validamycin A may be a promising target to design new fungicides and insecticides. Pest Manag Sci, 77 (9) (2021), pp. 3832-3835
|
[17] |
S. Ogawa, M. Kanto, Y. Suzuki. Development and medical application of unsaturated carbaglycosylamine glycosidase inhibitors. Mini Rev Med Chem, 7 (7) (2007), pp. 679-691
|
[18] |
Q.R. Li, S.I. Kim, S.J. Park, H.R. Yang, A.R. Baek, I.S. Kim, et al. Total synthesis of (+)-valienamine and (-)-1-epi-valienamine via a highly diastereoselective allylic amination of cyclic polybenzyl ether using chlorosulfonyl isocyanate. Tetrahedron, 69 (48) (2013), pp. 10384-10390
|
[19] |
N. Asano, M. Takeuchi, K. Ninomiya, Y. Kameda, K. Matsui. Microbial degradation of validamycin A by Flavobacterium saccharophilum. Enzymatic cleavage of C-N linkage in validoxylamine A. J Antibiot, 37 (8) (1984), pp. 859-867
|
[20] |
Y. Wang, Y. Zheng, Y. Shen. Isolation and identification of a novel valienamine-producing bacterium. J Appl Microbiol, 102 (3) (2007), pp. 838-844
|
[21] |
L. Bai, L. Li, H. Xu, K. Minagawa, Y. Yu, Y. Zhang, et al. Functional analysis of the validamycin biosynthetic gene cluster and engineered production of validoxylamine A. Chem Biol, 13 (4) (2006), pp. 387-397
|
[22] |
S. Jemli, D. Ayadi-Zouari, H.B. Hlima, S. Bejar. Biocatalysts: application and engineering for industrial purposes. Crit Rev Biotechnol, 36 (2) (2016), pp. 246-258
|
[23] |
G. Qu, A. Li, C.G. Acevedo-Rocha, Z. Sun, M.T. Reetz. The crucial role of methodology development in directed evolution of selective enzymes. Angew Chem Int Ed Engl, 59 (32) (2020), pp. 13204-13231
|
[24] |
S.J. Novick, N. Dellas, R. Garcia, C. Ching, A. Bautista, D. Homan, et al. Engineering an amine transaminase for the efficient production of a chiral sacubitril precursor. ACS Catal, 11 (6) (2021), pp. 3762-3770
|
[25] |
D. Jia, F. Wang, R. Zhao, B. Gu, C. Peng, L. Jin, et al. Engineering novel (R)-selective transaminase for efficient symmetric synthesis of D-alanine. Appl Environ Microbiol, 88 (9) (2022), Article e0006222
|
[26] |
M. Remmert, A. Biegert, A. Hauser, J. Söding. HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment. Nat Methods, 9 (2) (2012), pp. 173-175
|
[27] |
Suzek BE, Wang Y, Huang H, Mcgarvey PB, Wu CH; UniProt Consortium. UniRef clusters: a comprehensive and scalable alternative for improving sequence similarity searches. Bioinformatics 2014 ;31(6):926-32.
|
[28] |
F. Madeira, M. Pearce, A.R.N. Tivey, P. Basutkar, J. Lee, O. Edbali, et al. Search and sequence analysis tools services from EMBL-EBI in 2022. Nucleic Acids Res, 50 (W1) (2022), pp. W276-W279
|
[29] |
S. Kumar, G. Stecher, M. Li, C. Knyaz, K. Tamura. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol, 35 (6) (2018), pp. 1547-1549
|
[30] |
B. Yariv, E. Yariv, A. Kessel, G. Masrati, A.B. Chorin, E. Martz, et al. Using evolutionary data to make sense of macromolecules with a “face-lifted” ConSurf. Protein Sci, 32 (3) (2023), Article e4582
|
[31] |
R.A. Laskowski, M.B. Swindells. LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J Chem Inf Model, 51 (10) (2011), pp. 2778-2786
|
[32] |
J. Sun. DDGScan: an integrated parallel workflow for the in-silico point mutation scan of protein. GitHub, Beijing (2023)
|
[33] |
X.H. Cao, I. Stojkovic, Z. Obradovic. A robust data scaling algorithm to improve classification accuracies in biomedical data. BMC Bioinformatics, 17 (2016), pp. 359-368
|
[34] |
I. Matsumura, L.A. Rowe. Whole plasmid mutagenic PCR for directed protein evolution. Biomol Eng, 22 (1-3) (2005), pp. 73-80
|
[35] |
A. Akabayashi, T. Kato. One-step and two-step fluorometric assay methods for general aminotransferases using glutamate dehydrogenase. Anal Biochem, 182 (1) (1989), pp. 129-135
|
[36] |
L.W. He, Z.M. Liu, Y. Feng, L. Cui. High Throughput screening method and application for L-glutamate specific aminotransferase. Chin Biotechnol, 37 (8) (2017), pp. 59-65
|
[37] |
L. Cui, X. Guan, Z. Liu, L. Fan, Q. Li, Y. Feng. A new pre-column derivatization for valienamine and beta-valienamine using o-phthalaldehyde to determine the epimeric purity by HPLC and application of this method to monitor enzymatic catalyzed synthesis of beta-valienamine. J Asian Nat Prod Res, 19 (4) (2017), pp. 347-357
|
[38] |
F.H. Niesen, H. Berglund, M. Vedadi. The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability. Nat Protoc, 2 (9) (2007), pp. 2212-2221
|
[39] |
Y. Xie, J. An, G. Yang, G. Wu, Y. Zhang, L. Cui, et al. Enhanced enzyme kinetic stability by increasing rigidity within the active site. J Biol Chem, 289 (11) (2014), pp. 7994-8006
|
[40] |
B.J. Jones, H.Y. Lim, J. Huang, R.J. Kazlauskas. Comparison of five protein engineering strategies for stabilizing an α/β-hydrolase. Biochemistry, 56 (50) (2017), pp. 6521-6532
|
[41] |
V.B. Chen, W.B. Arendall III, J.J. Headd, D.A. Keedy, R.M. Immormino, G.J. Kapral, et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr, 66 (1) (2010), pp. 12-21
|
[42] |
R.A. Laskowski, J. Jabłońska, L. Pravda, R.S. Vařeková, J.M. Thornton. PDBsum: structural summaries of PDB entries. Protein Sci, 27 (1) (2018), pp. 129-134
|
[43] |
F. Wang, S. Singh, W. Xu, K.E. Helmich, M.D. Miller, H. Cao, et al. Structural basis for the stereochemical control of amine installation in nucleotide sugar aminotransferases. ACS Chem Biol, 10 (9) (2015), pp. 2048-2056
|
[44] |
D.F.A.R. Dourado, S. Pohle, A.T.P. Carvalho, D.S. Dheeman, J.M. Caswell, T. Skvortsov, et al. Rational design of a (S)-selective-transaminase for asymmetric synthesis of (1S)-1-(1,1′-biphenyl-2-yl)ethanamine. ACS Catal, 6 (11) (2016), pp. 7749-7759
|
[45] |
R. Pearce, Y. Zhang. Toward the solution of the protein structure prediction problem. J Biol Chem, 297 (1) (2021), Article 100870
|
[46] |
N. Tokuriki, F. Stricher, J. Schymkowitz, L. Serrano, D.S. Tawfik. The stability effects of protein mutations appear to be universally distributed. J Mol Biol, 369 (5) (2007), pp. 1318-1332
|
[47] |
J. Delgado, L.G. Radusky, D. Cianferoni, L. Serrano. FoldX 5.0: working with RNA, small molecules and a new graphical interface. Bioinformatics, 35 (20) (2019), pp. 4168-4169
|
[48] |
R. Guerois, J.E. Nielsen, L. Serrano.Predicting changes in the stability of proteins and protein complexes: a study of more than 1000 mutations. J Mol Biol, 320 (2) (2002), pp. 369-387
|
[49] |
P. Xiong, X. Hu, B. Huang, J. Zhang, Q. Chen, H. Liu. Increasing the efficiency and accuracy of the ABACUS protein sequence design method. Bioinformatics, 36 (1) (2020), pp. 136-144
|
[50] |
R.M.P. Siloto, R.J. Weselake. Site saturation mutagenesis: methods and applications in protein engineering. Biocatal Agric Biotechnol, 1 (3) (2012), pp. 181-189
|
[51] |
M.T. Reetz, L.W. Wang, M. Bocola. Directed evolution of enantioselective enzymes: iterative cycles of casting for probing protein-sequence space. Angew Chem Int Ed Engl, 45 (8) (2006), pp. 1236-1241
|
[52] |
A. Bosshart, S. Panke, M. Bechtold. Systematic optimization of interface interactions increases the thermostability of a multimeric enzyme. Angew Chem Int Ed Engl, 52 (37) (2013), pp. 9673-9676
|
[53] |
Q. Meng, N. Capra, C.M. Palacio, E. Lanfranchi, M. Otzen, L.Z. Van Schie, et al. Robust ω-transaminases by computational stabilization of the subunit interface. ACS Catal, 10 (5) (2020), pp. 2915-2928
|
[54] |
C. Ramírez-Palacios, H.J. Wijma, S. Thallmair, S.J. Marrink, D.B. Janssen. Computational prediction of ω-transaminase specificity by a combination of docking and molecular dynamics simulations. J Chem Inf Model, 61 (11) (2021), pp. 5569-5580
|
[55] |
J.M. Berg, J.L. Tymoczko, G.J. Gatto,L. Stryer. Biochemistry. ( 9th ed.), WH Freeman & Company, New York City (2020)
|
[56] |
B.R. Miller III, T.D. Mcgee Jr, J.M. Swails, N. Homeyer, H. Gohlke, A.E. Roitberg. MMPBSA. py: an efficient program for end-state free energy calculations. J Chem Theory Comput, 8 (9) (2012), pp. 3314-3321
|
[57] |
T.W. Thorpe, J.R. Marshall, V. Harawa, R.E. Ruscoe, A. Cuetos, J.D. Finnigan, et al. Multifunctional biocatalyst for conjugate reduction and reductive amination. Nature, 604 (7904) (2022), pp. 86-91
|
[58] |
H. Yu, S. Ma, Y. Li, P.A. Dalby. Hot spots-making directed evolution easier. Biotechnol Adv, 56 (2022), Article 107926
|
[59] |
K.S. Siddiqui. Defying the activity-stability trade-off in enzymes: taking advantage of entropy to enhance activity and thermostability. Crit Rev Biotechnol, 37 (3) (2017), pp. 309-322
|
[60] |
T.B. Mamonova, A.V. Glyakina, O.V. Galzitskaya, M.G. Kurnikova. Stability and rigidity/flexibility—two sides of the same coin?. Biochim Biophys Acta Proteins Proteomics, 1834 (5) (2013), pp. 854-866
|
[61] |
N.G. Nezhad, R.N.Z.R. Abd Rahman, Y.M. Normi, S.N. Oslan, F.M. Shariff, T.C. Leow. Recent advances in simultaneous thermostability-activity improvement of industrial enzymes through structure modification. Int J Biol Macromol, 232 (2023), Article 123440
|
[62] |
E.Y. Hong, S.G. Lee, B.J. Park, J.M. Lee, H. Yun, B.G. Kim. Simultaneously enhancing the stability and catalytic activity of multimeric lysine decarboxylase CadA by engineering interface regions for enzymatic production of cadaverine at high concentration of lysine. Biotechnol J, 12 (11) (2017), Article 1700278
|
[63] |
J. Cao, F. Fan, C. Lv, H. Wang, Y. Li, S. Hu, et al. Improving the thermostability and activity of transaminase from Aspergillus terreus by charge-charge interaction. Front Chem, 9 (2021), Article 664156
|
[64] |
G. Li, M.A. Maria-Solano, A. Romero-Rivera, S. Osuna, M.T. Reetz. Inducing high activity of a thermophilic enzyme at ambient temperatures by directed evolution. Chem Commun, 53 (68) (2017), pp. 9454-9457
|
[65] |
S. Kwon, H.H. Park. Structural consideration of the working mechanism of fold type I transaminases from eubacteria: overt and covert movement. Comput Struct Biotechnol J, 17 (2019), pp. 1031-1039
|
[66] |
S.K. Sinha, S. Goswami, S. Das, S. Datta. Exploiting non-conserved residues to improve activity and stability of Halothermothrix orenii β-glucosidase. Appl Microbiol Biotechnol, 101 (4) (2017), pp. 1455-1463
|
[67] |
J. Huang, D. Xie, Y. Feng. Engineering thermostable (R)-selective amine transaminase from Aspergillus terreus through in silico design employing B-factor and folding free energy calculations. Biochem Biophys Res Commun, 483 (1) (2017), pp. 397-402
|
[68] |
D. Xie, J. Yang, C. Lv, J. Mei, H. Wang, S. Hu, et al. Construction of stabilized (R)-selective amine transaminase from Aspergillus terreus by consensus mutagenesis. J Biotechnol, 293 (2019), pp. 8-16
|
[69] |
M.T. Reetz, D. Kahakeaw, R. Lohmer. Addressing the numbers problem in directed evolution. ChemBioChem, 9 (11) (2008), pp. 1797-1804
|
[70] |
Y. Wang, P. Xue, M. Cao, T. Yu, S.T. Lane, H. Zhao. Directed evolution: methodologies and applications. Chem Rev, 121 (20) (2021), pp. 12384-12444
|