同时提升糖氨基转移酶热稳定性及其对非天然底物催化活性实现糖苷酶抑制剂井冈霉烯胺的高效合成

王润希, 乔路, 刘慕非, 冉艳朋, 王军, 闫武鹏, 冯雁, 崔莉

工程(英文) ›› 2024, Vol. 42 ›› Issue (11) : 185-195.

PDF(3491 KB)
PDF(3491 KB)
工程(英文) ›› 2024, Vol. 42 ›› Issue (11) : 185-195. DOI: 10.1016/j.eng.2024.04.026
研究论文
Article

同时提升糖氨基转移酶热稳定性及其对非天然底物催化活性实现糖苷酶抑制剂井冈霉烯胺的高效合成

作者信息 +

Development of an Engineered Sugar Aminotransferase with Simultaneously Improved Stability and Non-Natural Substrate Activity to Synthesize the Glucosidase Inhibitor Valienamine

Author information +
History +

摘要

糖氨基转移酶(Sugar aminotransferase, SAT)可在特定酮糖的结构上引入氨基,生成具有生物学活性的氨基糖。这一特性已被应用于氨基糖的人工设计合成。例如,利用糖氨基转移酶WecE将井冈霉烯酮转化为高价值的α-葡萄糖苷酶抑制剂井冈霉烯胺。然而,WecE的低热稳定性及其对非天然底物催化活性不足限制了该应用。受限于广泛存在的“酶稳定性-活性trade-off”(Stability-activity trade-off)效应,同时提升酶热稳定性和催化活性具有技术挑战。为了实现WecE热稳定性和催化活性的高效进化,我们使用进化保守性和平均突变折叠能等指标对WecE活性中心57个氨基酸残基进行评估,筛选到14个有助于同步提升热稳定性和催化活性的潜在热点,并采用组合活性中心饱和突变-迭代饱和突变策略针对热点残基进行了正向突变筛选和迭代组合。与WecE野生型相比,第四轮迭代突变体M4(Y321F/K209F/V318R/F319V)在40°C的半衰期提高了641.49倍,对非天然底物井冈霉烯酮的催化活性提高了31.37倍。第三轮迭代突变体M3(Y321F/K209F/V318R)在 40°C的半衰期提高了83.04 倍,对井冈霉烯酮的活性提高了37.77倍。催化性能提升机制分析显示,与野生型相比,热稳定性和催化活性同时提升的突变体蛋白界面相互作用增强、氨基转移反应亲核进攻催化距离缩短。本文提供了一种热稳定性-催化活性热点评估的通用策略,为氨基糖类化合物的人工生物合成提供高稳定性和高催化活性的糖氨基转移酶。

Abstract

Sugar aminotransferases (SATs) catalyze the installation of chiral amines onto specific keto sugars, producing bioactive amino sugars. Their activity has been utilized in artificial reactions, such as using the SAT WecE to transform valienone into the valuable α-glucosidase inhibitor valienamine. However, the low thermostability and limited activity on non-natural substrates have hindered their applications. Simultaneously improving stability and enzyme activity is particularly challenging owing to the acknowledged inherent trade-off between stability and activity. A customized combinatorial active-site saturation test-iterative saturation mutagenesis (CAST-ISM) strategy was used to simultaneously enhance the stability and activity of WecE toward valienone. Fourteen hotspots related to improving the stability-\activity trade-off were identified based on evolutionary conservation and the average mutation folding energy assessment of 57 residues in the active site of WecE. Positive mutagenesis and combinatorial mutations of these specific residues were accomplished via site-directed saturation mutagenesis (SSM) and iterative evolution cycles. Compared with those of the wild-type (WT) WecE, the quadruple mutant M4 (Y321F/K209F/V318R/F319V) displayed a 641.49-fold increase in half-life (t1/2) at 40 °C and a 31.37-fold increase in activity toward the non-natural substrate valienone. The triple mutant M3 (Y321F/K209F/V318R) demonstrated an 83.04-fold increase in (t1/2) at 40 °C and a 37.77-fold increase in activity toward valienone. The underlying mechanism was dependent on the strengthened interface interactions and shortened transamination reaction catalytic distance, compared with those of the WT, which improved the stability and activity of the obtained mutants. Thus, we accomplished a general target-oriented strategy for obtaining stable and highly active SATs for artificial amino-sugar biosynthesis applications.

关键词

糖氨基转移酶 / 热稳定性-活性trade-off / 组合活性中心饱和突变 / 迭代饱和突变 / 设计反应 / 井冈霉烯胺

Keywords

Sugar aminotransferase / Stability-activity trade-off / Combinatorial active-site saturation test / Iterative saturation mutagenesis / Artificial reaction / Valienamine

引用本文

导出引用
王润希, 乔路, 刘慕非. 同时提升糖氨基转移酶热稳定性及其对非天然底物催化活性实现糖苷酶抑制剂井冈霉烯胺的高效合成. Engineering. 2024, 42(11): 185-195 https://doi.org/10.1016/j.eng.2024.04.026

参考文献

[1]
C.J. Thibodeaux, C.E. Melançon, H.W. Liu. Natural-product sugar biosynthesis and enzymatic glycodiversification. Angew Chem Int Ed Engl, 47 (51) (2008), pp. 9814-9859
[2]
S.I. Elshahawi, K.A. Shaaban, M.K. Kharel, J.S. Thorson. A comprehensive review of glycosylated bacterial natural products. Chem Soc Rev, 44 (21) (2015), pp. 7591-7697
[3]
J. Yang, D. Xie, X. Ma. Recent advances in chemical synthesis of amino sugars. Molecules, 28 (12) (2023), pp. 4724-4772
[4]
F. Subrizi, L. Benhamou, J.M. Ward, T.D. Sheppard, H.C. Hailes. Aminopolyols from carbohydrates: amination of sugars and sugar-derived tetrahydrofurans with transaminases. Angew Chem Int Ed, 58 (12) (2019), pp. 3854-3858
[5]
A.J. Romo, H.W. Liu. Mechanisms and structures of vitamin B6-dependent enzymes involved in deoxy sugar biosynthesis. Biochim Biophys Acta-Proteins Proteomics, 1814 (11) (2011), pp. 1534-1547
[6]
B.Y. Hwang, B.K. Cho, H. Yun, K. Koteshwar, B.G. Kim. Revisit of aminotransferase in the genomic era and its application to biocatalysis. J Mol Catal, B Enzym, 37 (1-6) (2005), pp. 47-55
[7]
L. Cui, X. Wei, X. Wang, L. Bai, S. Lin, Y. Feng.A validamycin shunt pathway for valienamine synthesis in engineered Streptomyces hygroscopicus 5008. ACS Synth Biol, 9 (2) (2020), pp. 294-303
[8]
L. Cui, Y. Zhu, X. Guan, Z. Deng, L. Bai, Y. Feng.De novo biosynthesis of β-valienamine in engineered Streptomyces hygroscopicus 5008. ACS Synth Biol, 5 (1) (2016), pp. 15-20
[9]
K. Skarbek, M.J. Milewska. Biosynthetic and synthetic access to amino sugars. Carbohydr Res, 434 (2016), pp. 44-71
[10]
S. Singh, G.N. Phillips Jr, J.S. Thorson. The structural biology of enzymes involved in natural product glycosylation. Nat Prod Rep, 29 (10) (2012), pp. 1201-1237
[11]
S.A. Kelly, S. Mix, T.S. Moody, B.F. Gilmore. Transaminases for industrial biocatalysis: novel enzyme discovery. Appl Microbiol Biotechnol, 104 (11) (2020), pp. 4781-4794
[12]
B.Y. Hwang, H.J. Lee, Y.H. Yang, H.S. Joo, B.G. Kim.Characterization and investigation of substrate specificity of the sugar aminotransferase WecE from E. coli K12. Chem Biol, 11 (7) (2004), pp. 915-925
[13]
E.S. Burgie, J.B. Thoden, H.M. Holden. Molecular architecture of DesV from Streptomyces venezuelae: a PLP-dependent transaminase involved in the biosynthesis of the unusual sugar desosamine. Protein Sci, 16 (5) (2007), pp. 887-896
[14]
T.R. Zachman-Brockmeyer, J.B. Thoden, H.M. Holden. The structure of RbmB from Streptomyces ribosidificus, an aminotransferase involved in the biosynthesis of ribostamycin. Protein Sci, 26 (9) (2017), pp. 1886-1892
[15]
U.F. Wehmeier, W. Piepersberg. Biotechnology and molecular biology of the alpha-glucosidase inhibitor acarbose. Appl Microbiol Biotechnol, 63 (6) (2004), pp. 613-625
[16]
M.D. García, J.C. Argüelles. Trehalase inhibition by validamycin A may be a promising target to design new fungicides and insecticides. Pest Manag Sci, 77 (9) (2021), pp. 3832-3835
[17]
S. Ogawa, M. Kanto, Y. Suzuki. Development and medical application of unsaturated carbaglycosylamine glycosidase inhibitors. Mini Rev Med Chem, 7 (7) (2007), pp. 679-691
[18]
Q.R. Li, S.I. Kim, S.J. Park, H.R. Yang, A.R. Baek, I.S. Kim, et al. Total synthesis of (+)-valienamine and (-)-1-epi-valienamine via a highly diastereoselective allylic amination of cyclic polybenzyl ether using chlorosulfonyl isocyanate. Tetrahedron, 69 (48) (2013), pp. 10384-10390
[19]
N. Asano, M. Takeuchi, K. Ninomiya, Y. Kameda, K. Matsui. Microbial degradation of validamycin A by Flavobacterium saccharophilum. Enzymatic cleavage of C-N linkage in validoxylamine A. J Antibiot, 37 (8) (1984), pp. 859-867
[20]
Y. Wang, Y. Zheng, Y. Shen. Isolation and identification of a novel valienamine-producing bacterium. J Appl Microbiol, 102 (3) (2007), pp. 838-844
[21]
L. Bai, L. Li, H. Xu, K. Minagawa, Y. Yu, Y. Zhang, et al. Functional analysis of the validamycin biosynthetic gene cluster and engineered production of validoxylamine A. Chem Biol, 13 (4) (2006), pp. 387-397
[22]
S. Jemli, D. Ayadi-Zouari, H.B. Hlima, S. Bejar. Biocatalysts: application and engineering for industrial purposes. Crit Rev Biotechnol, 36 (2) (2016), pp. 246-258
[23]
G. Qu, A. Li, C.G. Acevedo-Rocha, Z. Sun, M.T. Reetz. The crucial role of methodology development in directed evolution of selective enzymes. Angew Chem Int Ed Engl, 59 (32) (2020), pp. 13204-13231
[24]
S.J. Novick, N. Dellas, R. Garcia, C. Ching, A. Bautista, D. Homan, et al. Engineering an amine transaminase for the efficient production of a chiral sacubitril precursor. ACS Catal, 11 (6) (2021), pp. 3762-3770
[25]
D. Jia, F. Wang, R. Zhao, B. Gu, C. Peng, L. Jin, et al. Engineering novel (R)-selective transaminase for efficient symmetric synthesis of D-alanine. Appl Environ Microbiol, 88 (9) (2022), Article e0006222
[26]
M. Remmert, A. Biegert, A. Hauser, J. Söding. HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment. Nat Methods, 9 (2) (2012), pp. 173-175
[27]
Suzek BE, Wang Y, Huang H, Mcgarvey PB, Wu CH; UniProt Consortium. UniRef clusters: a comprehensive and scalable alternative for improving sequence similarity searches. Bioinformatics 2014 ;31(6):926-32.
[28]
F. Madeira, M. Pearce, A.R.N. Tivey, P. Basutkar, J. Lee, O. Edbali, et al. Search and sequence analysis tools services from EMBL-EBI in 2022. Nucleic Acids Res, 50 (W1) (2022), pp. W276-W279
[29]
S. Kumar, G. Stecher, M. Li, C. Knyaz, K. Tamura. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol, 35 (6) (2018), pp. 1547-1549
[30]
B. Yariv, E. Yariv, A. Kessel, G. Masrati, A.B. Chorin, E. Martz, et al. Using evolutionary data to make sense of macromolecules with a “face-lifted” ConSurf. Protein Sci, 32 (3) (2023), Article e4582
[31]
R.A. Laskowski, M.B. Swindells. LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J Chem Inf Model, 51 (10) (2011), pp. 2778-2786
[32]
J. Sun. DDGScan: an integrated parallel workflow for the in-silico point mutation scan of protein. GitHub, Beijing (2023)
[33]
X.H. Cao, I. Stojkovic, Z. Obradovic. A robust data scaling algorithm to improve classification accuracies in biomedical data. BMC Bioinformatics, 17 (2016), pp. 359-368
[34]
I. Matsumura, L.A. Rowe. Whole plasmid mutagenic PCR for directed protein evolution. Biomol Eng, 22 (1-3) (2005), pp. 73-80
[35]
A. Akabayashi, T. Kato. One-step and two-step fluorometric assay methods for general aminotransferases using glutamate dehydrogenase. Anal Biochem, 182 (1) (1989), pp. 129-135
[36]
L.W. He, Z.M. Liu, Y. Feng, L. Cui. High Throughput screening method and application for L-glutamate specific aminotransferase. Chin Biotechnol, 37 (8) (2017), pp. 59-65
[37]
L. Cui, X. Guan, Z. Liu, L. Fan, Q. Li, Y. Feng. A new pre-column derivatization for valienamine and beta-valienamine using o-phthalaldehyde to determine the epimeric purity by HPLC and application of this method to monitor enzymatic catalyzed synthesis of beta-valienamine. J Asian Nat Prod Res, 19 (4) (2017), pp. 347-357
[38]
F.H. Niesen, H. Berglund, M. Vedadi. The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability. Nat Protoc, 2 (9) (2007), pp. 2212-2221
[39]
Y. Xie, J. An, G. Yang, G. Wu, Y. Zhang, L. Cui, et al. Enhanced enzyme kinetic stability by increasing rigidity within the active site. J Biol Chem, 289 (11) (2014), pp. 7994-8006
[40]
B.J. Jones, H.Y. Lim, J. Huang, R.J. Kazlauskas. Comparison of five protein engineering strategies for stabilizing an α/β-hydrolase. Biochemistry, 56 (50) (2017), pp. 6521-6532
[41]
V.B. Chen, W.B. Arendall III, J.J. Headd, D.A. Keedy, R.M. Immormino, G.J. Kapral, et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr, 66 (1) (2010), pp. 12-21
[42]
R.A. Laskowski, J. Jabłońska, L. Pravda, R.S. Vařeková, J.M. Thornton. PDBsum: structural summaries of PDB entries. Protein Sci, 27 (1) (2018), pp. 129-134
[43]
F. Wang, S. Singh, W. Xu, K.E. Helmich, M.D. Miller, H. Cao, et al. Structural basis for the stereochemical control of amine installation in nucleotide sugar aminotransferases. ACS Chem Biol, 10 (9) (2015), pp. 2048-2056
[44]
D.F.A.R. Dourado, S. Pohle, A.T.P. Carvalho, D.S. Dheeman, J.M. Caswell, T. Skvortsov, et al. Rational design of a (S)-selective-transaminase for asymmetric synthesis of (1S)-1-(1,1′-biphenyl-2-yl)ethanamine. ACS Catal, 6 (11) (2016), pp. 7749-7759
[45]
R. Pearce, Y. Zhang. Toward the solution of the protein structure prediction problem. J Biol Chem, 297 (1) (2021), Article 100870
[46]
N. Tokuriki, F. Stricher, J. Schymkowitz, L. Serrano, D.S. Tawfik. The stability effects of protein mutations appear to be universally distributed. J Mol Biol, 369 (5) (2007), pp. 1318-1332
[47]
J. Delgado, L.G. Radusky, D. Cianferoni, L. Serrano. FoldX 5.0: working with RNA, small molecules and a new graphical interface. Bioinformatics, 35 (20) (2019), pp. 4168-4169
[48]
R. Guerois, J.E. Nielsen, L. Serrano.Predicting changes in the stability of proteins and protein complexes: a study of more than 1000 mutations. J Mol Biol, 320 (2) (2002), pp. 369-387
[49]
P. Xiong, X. Hu, B. Huang, J. Zhang, Q. Chen, H. Liu. Increasing the efficiency and accuracy of the ABACUS protein sequence design method. Bioinformatics, 36 (1) (2020), pp. 136-144
[50]
R.M.P. Siloto, R.J. Weselake. Site saturation mutagenesis: methods and applications in protein engineering. Biocatal Agric Biotechnol, 1 (3) (2012), pp. 181-189
[51]
M.T. Reetz, L.W. Wang, M. Bocola. Directed evolution of enantioselective enzymes: iterative cycles of casting for probing protein-sequence space. Angew Chem Int Ed Engl, 45 (8) (2006), pp. 1236-1241
[52]
A. Bosshart, S. Panke, M. Bechtold. Systematic optimization of interface interactions increases the thermostability of a multimeric enzyme. Angew Chem Int Ed Engl, 52 (37) (2013), pp. 9673-9676
[53]
Q. Meng, N. Capra, C.M. Palacio, E. Lanfranchi, M. Otzen, L.Z. Van Schie, et al. Robust ω-transaminases by computational stabilization of the subunit interface. ACS Catal, 10 (5) (2020), pp. 2915-2928
[54]
C. Ramírez-Palacios, H.J. Wijma, S. Thallmair, S.J. Marrink, D.B. Janssen. Computational prediction of ω-transaminase specificity by a combination of docking and molecular dynamics simulations. J Chem Inf Model, 61 (11) (2021), pp. 5569-5580
[55]
J.M. Berg, J.L. Tymoczko, G.J. Gatto,L. Stryer. Biochemistry. ( 9th ed.), WH Freeman & Company, New York City (2020)
[56]
B.R. Miller III, T.D. Mcgee Jr, J.M. Swails, N. Homeyer, H. Gohlke, A.E. Roitberg. MMPBSA. py: an efficient program for end-state free energy calculations. J Chem Theory Comput, 8 (9) (2012), pp. 3314-3321
[57]
T.W. Thorpe, J.R. Marshall, V. Harawa, R.E. Ruscoe, A. Cuetos, J.D. Finnigan, et al. Multifunctional biocatalyst for conjugate reduction and reductive amination. Nature, 604 (7904) (2022), pp. 86-91
[58]
H. Yu, S. Ma, Y. Li, P.A. Dalby. Hot spots-making directed evolution easier. Biotechnol Adv, 56 (2022), Article 107926
[59]
K.S. Siddiqui. Defying the activity-stability trade-off in enzymes: taking advantage of entropy to enhance activity and thermostability. Crit Rev Biotechnol, 37 (3) (2017), pp. 309-322
[60]
T.B. Mamonova, A.V. Glyakina, O.V. Galzitskaya, M.G. Kurnikova. Stability and rigidity/flexibility—two sides of the same coin?. Biochim Biophys Acta Proteins Proteomics, 1834 (5) (2013), pp. 854-866
[61]
N.G. Nezhad, R.N.Z.R. Abd Rahman, Y.M. Normi, S.N. Oslan, F.M. Shariff, T.C. Leow. Recent advances in simultaneous thermostability-activity improvement of industrial enzymes through structure modification. Int J Biol Macromol, 232 (2023), Article 123440
[62]
E.Y. Hong, S.G. Lee, B.J. Park, J.M. Lee, H. Yun, B.G. Kim. Simultaneously enhancing the stability and catalytic activity of multimeric lysine decarboxylase CadA by engineering interface regions for enzymatic production of cadaverine at high concentration of lysine. Biotechnol J, 12 (11) (2017), Article 1700278
[63]
J. Cao, F. Fan, C. Lv, H. Wang, Y. Li, S. Hu, et al. Improving the thermostability and activity of transaminase from Aspergillus terreus by charge-charge interaction. Front Chem, 9 (2021), Article 664156
[64]
G. Li, M.A. Maria-Solano, A. Romero-Rivera, S. Osuna, M.T. Reetz. Inducing high activity of a thermophilic enzyme at ambient temperatures by directed evolution. Chem Commun, 53 (68) (2017), pp. 9454-9457
[65]
S. Kwon, H.H. Park. Structural consideration of the working mechanism of fold type I transaminases from eubacteria: overt and covert movement. Comput Struct Biotechnol J, 17 (2019), pp. 1031-1039
[66]
S.K. Sinha, S. Goswami, S. Das, S. Datta. Exploiting non-conserved residues to improve activity and stability of Halothermothrix orenii β-glucosidase. Appl Microbiol Biotechnol, 101 (4) (2017), pp. 1455-1463
[67]
J. Huang, D. Xie, Y. Feng. Engineering thermostable (R)-selective amine transaminase from Aspergillus terreus through in silico design employing B-factor and folding free energy calculations. Biochem Biophys Res Commun, 483 (1) (2017), pp. 397-402
[68]
D. Xie, J. Yang, C. Lv, J. Mei, H. Wang, S. Hu, et al. Construction of stabilized (R)-selective amine transaminase from Aspergillus terreus by consensus mutagenesis. J Biotechnol, 293 (2019), pp. 8-16
[69]
M.T. Reetz, D. Kahakeaw, R. Lohmer. Addressing the numbers problem in directed evolution. ChemBioChem, 9 (11) (2008), pp. 1797-1804
[70]
Y. Wang, P. Xue, M. Cao, T. Yu, S.T. Lane, H. Zhao. Directed evolution: methodologies and applications. Chem Rev, 121 (20) (2021), pp. 12384-12444
PDF(3491 KB)

Accesses

Citation

Detail

段落导航
相关文章

/