[1] |
G. Vunjak-Novakovic, K. Ronaldson-Bouchard, M. Radisic. Organs-on-a-chip models for biological research. Cell, 184 (18) (2021), pp. 4597-4611
|
[2] |
S.L. Ding, X.Y. Zhao, W. Xiong, L.F. Ji, M.X. Jia, Y.Y. Liu, et al. Cartilage lacuna-inspired microcarriers drive hyaline neocartilage regeneration. Adv Mater, 35 (30) (2023), Article 2212114
|
[3] |
Z. Wang, Y.C. Wang, J.Q. Yan, K.S. Zhang, F. Lin, L. Xiang, et al. Pharmaceutical electrospinning and 3D printing scaffold design for bone regeneration. Adv Drug Deliv Rev, 174 (2021), pp. 504-534
|
[4] |
M. Dong, K. Bopple, J. Thiel, B. Winkler, C.G. Liang, J. Schueler, et al. Perfusion air culture of precision-cut tumor slices: an ex vivo system to evaluate individual drug response under controlled culture conditions. Cells, 12 (5) (2023), p. 807
|
[5] |
Y. Liu, J.Q. Wang, Q.Q. Xiong, D. Hornburg, W. Tao, O.C. Farokhzad. Nano-bio interactions in cancer: from therapeutics delivery to early detection. Acc Chem Res, 54 (2) (2021), pp. 291-301
|
[6] |
A.S. Nagaraj, J. Bao, A. Hemmes, M. Machado, K. Närhi, E.W. Verschuren. Establishment and analysis of tumor slice explants as a prerequisite for diagnostic testing. J Vis Exp, 141 (2018), Article e58569
|
[7] |
S.E. Park, A. Georgescu, D. Huh. Organoids-on-a-chip. Science, 364 (6444) (2019), pp. 960-965
|
[8] |
S.M. Lu, F. Cuzzucoli, J. Jiang, L.G. Liang, Y.M. Wang, M.Q. Kong, et al. Development of a biomimetic liver tumor-on-a-chip model based on decellularized liver matrix for toxicity testing. Lab Chip, 18 (22) (2018), pp. 3379-3392
|
[9] |
Z. Yang, Z. Zhou, T. Si, Z. Zhou, L. Zhou, Y.R. Chin, et al. High throughput confined migration microfluidic device for drug screening. Small, 19 (16) (2023), Article 2207194
|
[10] |
Y.M. Wang, D. Wu, G.H. Wu, J.G. Wu, S.M. Lu, J. Lo, et al. Metastasis-on-a-chip mimicking the progression of kidney cancer in the liver for predicting treatment efficacy. Theranostics, 10 (1) (2020), pp. 300-311
|
[11] |
R. Braun, O. Lapshyna, S. Eckelmann, K. Honselmann, L. Bolm, M. ten Winkel, et al. Organotypic slice cultures as preclinical models of tumor microenvironment in primary pancreatic cancer and metastasis. J Vis Exp, 172 (172) (2021), Article e62541
|
[12] |
Y.R. Yu, J.H. Guo, L.Y. Sun, X.X. Zhang, Y.J. Zhao. Microfluidic generation of microsprings with ionic liquid encapsulation for flexible electronics. Research, 2019 ( 2019), Article 6906275
|
[13] |
H. Yuk, T. Zhang, G.A. Parada, X.Y. Liu, X.H. Zhao. Skin-inspired hydrogel-elastomer hybrids with robust interfaces and functional microstructures. Nat Commun, 7 (1) (2016), p. 12028
|
[14] |
J.F. Yuan, Y.Z. Zhang, G.Z. Li, S.Q. Liu, R. Zhu. Printable and stretchable conductive elastomers for monitoring dynamic strain with high fidelity. Adv Funct Mater, 32 (34) (2022), Article 2204878
|
[15] |
Y. Kim, E. Genevriere, P. Harker, J. Choe, M. Balicki, R.W. Regenhardt, et al. Telerobotic neurovascular interventions with magnetic manipulation. Sci Robot, 7 (65) (2022), Article eabg9907
|
[16] |
X.X. Zhang, G.P. Chen, X. Fu, Y.T. Wang, Y.J. Zhao. Magneto-responsive microneedle robots for intestinal macromolecule delivery. Adv Mater, 33 (44) (2021), Article 2104932
|
[17] |
Y.Y. Zhang, Z.D. Huang, Z.R. Cai, Y.Q. Ye, Z. Li, F.F. Qin, et al. Magnetic-actuated “capillary container” for versatile three-dimensional fluid interface manipulation. Sci Adv, 7 (34) (2021), Article eabi7498
|
[18] |
Y. Kim, G.A. Parada, S.D. Liu, X.H. Zhao. Ferromagnetic soft continuum robots. Sci Robot, 4 (33) (2019), Article eaax7329
|
[19] |
X.X. Zhang, G.P. Chen, L.J. Cai, L. Fan, Y.J. Zhao. Dip-printed microneedle motors for oral macromolecule delivery. Research, 2022 ( 2022), Article 9797482
|
[20] |
X.X. Zhang, G.P. Chen, Y.T. Wang, L. Fan, Y.J. Zhao. Arrowhead composite microneedle patches with anisotropic surface adhesion for preventing intrauterine adhesions. Adv Sci, 9 (12) (2022), p. 2104883
|
[21] |
J.X. Wang, Z.Y. Lu, R.S. Cai, H.Q. Zheng, J.C. Yu, Y.Q. Zhang, et al. Microneedle-based transdermal detection and sensing devices. Lab Chip, 23 (5) (2023), pp. 869-887
|
[22] |
X.X. Zhang, G.P. Chen, L.J. Cai, Y.T. Wang, L.Y. Sun, Y.J. Zhao. Bioinspired pagoda-like microneedle patches with strong fixation and hemostasis capabilities. Chem Eng J, 414 (2021), Article 128905
|
[23] |
M.G. Valverde, L.S. Mille, K.P. Figler, E. Cervantes, V.Y. Li, J.V. Bonventre, et al. Biomimetic models of the glomerulus. Nat Rev Nephrol, 18 (4) (2022), pp. 241-257
|
[24] |
A. Shastri, L.M. McGregor, Y. Liu, V. Harris, H.Q. Nan, M. Mujica, et al. An aptamer-functionalized chemomechanically modulated biomolecule catch-and-release system. Nat Chem, 7 (5) (2015), pp. 447-454
|
[25] |
T. Thorsen, S.J. Maerkl, S.R. Quake. Microfluidic large-scale integration. Science, 298 (5593) (2002), pp. 580-584
|
[26] |
J. Aleman, T. Kilic, L.S. Mille, S.R. Shin, Y.S. Zhang. Microfluidic integration of regeneratable electrochemical affinity-based biosensors for continual monitoring of organ-on-a-chip devices. Nat Protoc, 16 (5) (2021), pp. 2564-2593
|
[27] |
F. Wu, Y. Huang, X. Yang, J.J. Hu, X.D. Lou, F. Xia, et al. Tunning intermolecular interaction of peptide-conjugated AlEgen in nano-confined space for quantitative detection of tumor marker secreted from cells. Anal Chem, 93 (48) (2021), pp. 16257-16263
|
[28] |
J.J. Kim, J.Y. Park, V.V.T. Nguyen, M. Bae, M. Kim, J. Jang, et al. Pathophysiological reconstruction of a tissue-specific multiple-organ on-a-chip for type 2 diabetes emulation using 3D cell printing. Adv Funct Mater, 33 (22) (2023), Article 2213649
|
[29] |
L.X. Zhang, R. Parvin, M.S. Chen, D.M. Hu, Q.H. Fan, F.F. Ye. High-throughput microfluidic droplets in biomolecular analytical system: a review. Biosens Bioelectron, 228 (2023), Article 115213
|
[30] |
C. Spatola Rossi, F. Coulon, S. Ma, Y.S. Zhang, Z. Yang. Microfluidics for rapid detection of live pathogens. Adv Funct Mater, 33 (21) (2023), Article 2212081
|
[31] |
S. Ma, J.H. Kim, W. Chen, L. Li, J. Lee, J. Xue, et al.. Cancer cell-specific fluorescent prodrug delivery platforms. Adv Sci, 10 (16) (2023), Article 2207768
|
[32] |
J.D. Mizrahi, R. Surana, J.W. Valle, R.T. Shroff. Pancreatic cancer. Lancet, 395 (10242) (2020), pp. 2008-2020
|
[33] |
I. Garrido-Laguna, M. Hidalgo. Pancreatic cancer: from state-of-the-art treatments to promising novel therapies. Nat Rev Clin Oncol, 12 (6) (2015), pp. 319-334
|
[34] |
D.D. Von Hoff, T. Ervin, F.P. Arena, E.G. Chiorean, J. Infante, M. Moore, et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med, 369 (18) (2013), pp. 1691-1703
|
[35] |
M.A. Morgan, A. Meirovitz, M.A. Davis, L.E. Kollar, M.C. Hassan, T.S. Lawrence. Radiotherapy combined with gemcitabine and oxaliplatin in pancreatic cancer cells. Transl Oncol, 1 (1) (2008), pp. 36-43
|
[36] |
N. Tsavaris, C. Kosmas, H. Skopelitis, P. Gouveris, P. Kopteridis, D. Loukeris, et al. Second-line treatment with oxaliplatin, leucovorin and 5-fluorouracil in gemcitabine-pretreated advanced pancreatic cancer: a phase II study. Invest New Drugs, 23 (4) (2005), pp. 369-375
|
[37] |
B.A. Schroeder, M.T. Mandelson, V.J. Picozzi. Alternating gemcitabine/nab-paclitaxel (GA) and 5-FU/leucovorin/irinotecan (FOLFIRI) as first-line treatment for de novo metastatic pancreatic cancer (MPC): safety and effect. Cancers, 15 (23) (2023), p. 5588
|