[1] |
E.E. Powell, V.W. Wong, M. Rinella. Non-alcoholic fatty liver disease. Lancet, 397 (10290) (2021), pp. 2212-2224.
|
[2] |
J.V. Lazarus, P.N. Newsome, S.M. Francque, F. Kanwal, N.A. Terrault, M.E. Rinella. Reply: a multi-society Delphi consensus statement on new fatty liver disease nomenclature. Hepatology, 79 (3) (2024), pp. E93-E94.
|
[3] |
M. Yao, L. Qv, Y. Lu, B. Wang, B. Berglund, L. Li. An update on the efficacy and functionality of probiotics for the treatment of non-alcoholic fatty liver disease. Engineering, 7 (5) (2021), pp. 679-686.
|
[4] |
R.S. Taylor, R.J. Taylor, S. Bayliss, H. Hagström, P. Nasr, J.M. Schattenberg, et al. Association between fibrosis stage and outcomes of patients with nonalcoholic fatty liver disease: a systematic review and meta-analysis. Gastroenterology, 158 (6) (2020), pp. 1611-1625.e12.
|
[5] |
H. Hagström, P. Nasr, M. Ekstedt, U. Hammar, P. Stål, R. Hultcrantz, et al. Fibrosis stage but not NASH predicts mortality and time to development of severe liver disease in biopsy-proven NAFLD. J Hepatol, 67 (6) (2017), pp. 1265-1273.
|
[6] |
S. Li, B. Zhou, M. Xue, J. Zhu, G. Tong, J. Fan, et al. Macrophage-specific FGF 12 promotes liver fibrosis progression in mice. Hepatology, 77 (3) (2023), pp. 816-833.
|
[7] |
X. Wu, L. Shu, Z. Zhang, J. Li, J. Zong, L.Y. Cheong, et al. Adipocyte fatty acid binding protein promotes the onset and progression of liver fibrosis via mediating the crosstalk between liver sinusoidal endothelial cells and hepatic stellate cells. Adv Sci, 8 (11) (2021), p. e2003721.
|
[8] |
X. Liu, S. Tan, H. Liu, J. Jiang, X. Wang, L. Li, et al. Hepatocyte-derived MASP1-enriched small extracellular vesicles activate HSCs to promote liver fibrosis. Hepatology, 77 (4) (2023), pp. 1181-1197.
|
[9] |
T.A. Wynn, K.M. Vannella. Macrophages in tissue repair, regeneration, and fibrosis. Immunity, 44 (3) (2016), pp. 450-462.
|
[10] |
M. Alquraishi, D.L. Puckett, D.S. Alani, A.S. Humidat, V.D. Frankel, D.R. Donohoe, et al. Pyruvate kinase M2: a simple molecule with complex functions. Free Radic Biol Med, 143 (2019), pp. 176-192.
|
[11] |
W. Yang, Y. Xia, H. Ji, Y. Zheng, J. Liang, W. Huang, et al. Nuclear PKM2 regulates β-catenin transactivation upon EGFR activation. Nature, 480 (7375) (2011), pp. 118-122.
|
[12] |
Z. Zhang, X. Deng, Y. Liu, Y. Liu, L. Sun, F. Chen. PKM2, function and expression and regulation. Cell Biosci, 9 (1) (2019), p. 52.
|
[13] |
P. Doddapattar, R. Dev, M. Ghatge, R.B. Patel, M. Jain, N. Dhanesha, et al. Myeloid cell PKM2 deletion enhances efferocytosis and reduces atherosclerosis. Circ Res, 130 (9) (2022), pp. 1289-1305.
|
[14] |
M. Xie, Y. Yu, R. Kang, S. Zhu, L. Yang, L. Zeng, et al. PKM2-dependent glycolysis promotes NLRP3 and AIM2 inflammasome activation. Nat Commun, 7 (2016), p. 13280.
|
[15] |
H. Qu, J. Liu, D. Zhang, R. Xie, L. Wang, J. Hong. Glycolysis in chronic liver diseases: mechanistic insights and therapeutic opportunities. Cells, 12 (15) (2023), p. 1930.
|
[16] |
P.P. Hou, L. Luo, H. Chen, Q. Chen, X. Bian, S. Wu, et al. Ectosomal PKM2 promotes HCC by inducing macrophage differentiation and remodeling the tumor microenvironment. Mol Cell, 78 (6) (2020), pp. 1192-1206.e10.
|
[17] |
J. Rao, H. Wang, M. Ni, Z. Wang, Z. Wang, S. Wei, et al. FSTL 1 promotes liver fibrosis by reprogramming macrophage function through modulating the intracellular function of PKM2. Gut, 71 (12) (2022), pp. 2539-2550.
|
[18] |
M.E. Moreno-Fernandez, D.A. Giles, J.R. Oates, C.C. Chan, M.S.M.A. Damen, J.R. Doll, et al. PKM2-dependent metabolic skewing of hepatic Th 17 cells regulates pathogenesis of non-alcoholic fatty liver disease. Cell Metab, 33 (6) (2021), pp. 1187-1204.e9.
|
[19] |
X. Ouyang, S.N. Han, J.Y. Zhang, E. Dioletis, B.T. Nemeth, P. Pacher, et al. Digoxin suppresses pyruvate kinase M2-promoted HIF-1α transactivation in steatohepatitis. Cell Metab, 27 (2) (2018), pp. 339-350.e3.
|
[20] |
F. Xu, M. Guo, W. Huang, L. Feng, J. Zhu, K. Luo, et al. Annexin A 5 regulates hepatic macrophage polarization via directly targeting PKM2 and ameliorates NASH. Redox Biol, 36 (2020), Article 101634.
|
[21] |
Y. Yang, J. Sheng, Y. Sheng, J. Wang, X. Zhou, W. Li, et al. Lapachol treats non-alcoholic fatty liver disease by modulating the M1 polarization of Kupffer cells via PKM2. Int Immunopharmacol, 120 (2023), Article 110380.
|
[22] |
Q. Kong, N. Li, H. Cheng, X. Zhang, X. Cao, T. Qi, et al. HSPA12A is a novel player in nonalcoholic steatohepatitis via promoting nuclear PKM2-mediated M1 macrophage polarization. Diabetes, 68 (2) (2019), pp. 361-376.
|
[23] |
D. Zheng, Y. Jiang, C. Qu, H. Yuan, K. Hu, L. He, et al. Pyruvate kinase M2 tetramerization protects against hepatic stellate cell activation and liver fibrosis. Am J Pathol, 190 (11) (2020), pp. 2267-2281.
|
[24] |
K. Nishina, W. Piao, K. Yoshida-Tanaka, Y. Sujino, T. Nishina, T. Yamamoto, et al. DNA/RNA heteroduplex oligonucleotide for highly efficient gene silencing. Nat Commun, 6 (2015), p. 7969.
|
[25] |
R.I. Hara, K. Yoshioka, T. Yokota. DNA-RNA heteroduplex oligonucleotide for highly efficient gene silencing. Methods Mol Biol, 2176 (2020), pp. 113-119.
|
[26] |
D. Zhong, J. Cai, C. Hu, J. Chen, R. Zhang, C. Fan, et al. Inhibition of mPGES-2 ameliorates NASH by activating NR1D 1 via heme. Hepatology, 78 (2) (2023), pp. 547-561.
|
[27] |
Zeng X, Zhang X, Su H, Gou H, Lau HCH, Hu X, et al. Pien Tze Huang protects against non-alcoholic steatohepatitis by modulating the gut microbiota and metabolites in mice. Engineering 2024;35:257-69.
|
[28] |
X.J. Zhang, Y.X. Ji, X. Cheng, Y. Cheng, H. Yang, J. Wang, et al. A small molecule targeting ALOX12-ACC 1 ameliorates nonalcoholic steatohepatitis in mice and macaques. Sci Transl Med, 13 (624) (2021), Article eabg8116.
|
[29] |
T. Tsuchida, Y.A. Lee, N. Fujiwara, M. Ybanez, B. Allen, S. Martins, et al. A simple diet- and chemical-induced murine NASH model with rapid progression of steatohepatitis, fibrosis and liver cancer. J Hepatol, 69 (2) (2018), pp. 385-395.
|
[30] |
S. Lee, T.O. Usman, J. Yamauchi, G. Chhetri, X. Wang, G.M. Coudriet, et al. Myeloid FoxO 1 depletion attenuates hepatic inflammation and prevents nonalcoholic steatohepatitis. J Clin Invest, 132 (14) (2022), Article e154333.
|
[31] |
C. Qu, L. He, N. Yao, J. Li, Y. Jiang, B. Li, et al. Myofibroblast-specific Msi2 knockout inhibits HCC progression in a mouse model. Hepatology, 74 (1) (2021), pp. 458-473.
|
[32] |
C.Q. Gao, Z.Z. Chu, D. Zhang, Y. Xiao, X.Y. Zhou, J.R. Wu, et al. Serine/threonine kinase TBK 1 promotes cholangiocarcinoma progression via direct regulation of β-catenin. Oncogene, 42 (18) (2023), pp. 1492-1507.
|
[33] |
Q. Wang, H. Zhou, Q. Bu, S. Wei, L. Li, J. Zhou, et al. Role of XBP 1 in regulating the progression of non-alcoholic steatohepatitis. J Hepatol, 77 (2) (2022), pp. 312-325.
|
[34] |
L.N. da Silva, M.F. Fondevila, E. Nóvoa, X. Buqué, M. Mercado-Gómez, S. Gallet, et al. Inhibition of ATG 3 ameliorates liver steatosis by increasing mitochondrial function. J Hepatol, 76 (1) (2022), pp. 11-24.
|
[35] |
E. Anderson-Baucum, A.R. Piñeros, A. Kulkarni, B.J. Webb-Robertson, B. Maier, R.M. Anderson, et al. Deoxyhypusine synthase promotes a pro-inflammatory macrophage phenotype. Cell Metab, 33 (9) (2021), pp. 1883-1893.e7.
|
[36] |
E.M. Palsson-McDermott, A.M. Curtis, G. Goel, M.A.R. Lauterbach, F.J. Sheedy, L.E. Gleeson, et al. Pyruvate kinase M2 regulates Hif-1α activity and IL-1β induction and is a critical determinant of the Warburg effect in LPS-activated macrophages. Cell Metab, 21 (1) (2015), pp. 65-80.
|
[37] |
X. Xiong, H. Kuang, S. Ansari, T. Liu, J. Gong, S. Wang, et al. Landscape of intercellular crosstalk in healthy and NASH liver revealed by single-cell secretome gene analysis. Mol Cell, 75 (3) (2019), pp. 644-660.e5.
|
[38] |
A. Deczkowska, E. David, P. Ramadori, D. Pfister, M. Safran, B. Li, et al. XCR1+ type 1 conventional dendritic cells drive liver pathology in non-alcoholic steatohepatitis. Nat Med, 27 (6) (2021), pp. 1043-1054.
|
[39] |
P. Zhang, Z. Chen, H. Kuang, T. Liu, J. Zhu, L. Zhou, et al. Neuregulin 4 suppresses NASH-HCC development by restraining tumor-prone liver microenvironment. Cell Metab, 34 (9) (2022), pp. 1359-1376.e7.
|
[40] |
J.S. Seidman, T.D. Troutman, M. Sakai, A. Gola, N.J. Spann, H. Bennett, et al. Niche-specific reprogramming of epigenetic landscapes drives myeloid cell diversity in nonalcoholic steatohepatitis. Immunity, 52 (6) (2020), pp. 1057-1074.e7.
|
[41] |
K. Kitamori, H. Naito, H. Tamada, M. Kobayashi, D. Miyazawa, Y. Yasui, et al. Development of novel rat model for high-fat and high-cholesterol diet-induced steatohepatitis and severe fibrosis progression in SHRSP5/Dmcr. Environ Health Prev Med, 17 (3) (2012), pp. 173-182.
|
[42] |
Q.M. Anstee, H.L. Reeves, E. Kotsiliti, O. Govaere, M. Heikenwalder. From NASH to HCC: current concepts and future challenges. Nat Rev Gastroenterol Hepatol, 16 (7) (2019), pp. 411-428.
|
[43] |
Y. Liu, R. Xu, H. Gu, E. Zhang, J. Qu, W. Cao, et al. Metabolic reprogramming in macrophage responses. Biomark Res, 9 (1) (2021), p. 1.
|
[44] |
H.C. Lin, Y.J. Chen, Y.H. Wei, H.A. Lin, C.C. Chen, T.F. Liu, et al. Lactic acid fermentation is required for NLRP 3 inflammasome activation. Front Immunol, 12 (2021), Article 630380.
|
[45] |
J.L. Calleja, J. Rivera-Esteban, R. Aller, M. Hernández-Conde, J. Abad, J.M. Pericàs, et al. Prevalence estimation of significant fibrosis because of NASH in Spain combining transient elastography and histology. Liver Int, 42 (8) (2022), pp. 1783-1792.
|
[46] |
F. Tacke, H.W. Zimmermann. Macrophage heterogeneity in liver injury and fibrosis. J Hepatol, 60 (5) (2014), pp. 1090-1096.
|
[47] |
S.E. Corcoran, L.A. O’Neill. HIF1α and metabolic reprogramming in inflammation. J Clin Invest, 126 (10) (2016), pp. 3699-3707.
|
[48] |
A.R. Mridha, A. Wree, A.A.B. Robertson, M.M. Yeh, C.D. Johnson, D.M. Van Rooyen, et al. NLRP 3 inflammasome blockade reduces liver inflammation and fibrosis in experimental NASH in mice. J Hepatol, 66 (5) (2017), pp. 1037-1046.
|
[49] |
B. Kaufmann, L. Kui, A. Reca, A. Leszczynska, A.D. Kim, L.M. Booshehri, et al. Cell-specific deletion of NLRP 3 inflammasome identifies myeloid cells as key drivers of liver inflammation and fibrosis in murine steatohepatitis. Cell Mol Gastroenterol Hepatol, 14 (4) (2022), pp. 751-767.
|
[50] |
D.M. Calcagno, A. Chu, S. Gaul, N. Taghdiri, A. Toomu, A. Leszczynska, et al. NOD-like receptor protein 3 activation causes spontaneous inflammation and fibrosis that mimics human NASH. Hepatology, 76 (3) (2022), pp. 727-741.
|
[51] |
J. Knorr, B. Kaufmann, M.E. Inzaugarat, T.M. Holtmann, G. Lukas, J. Hundertmark, et al. Interleukin-18 signaling promotes activation of hepatic stellate cells in mouse liver fibrosis. Hepatology, 77 (6) (2023), pp. 1768-1782.
|
[52] |
S.H. Yang, H. Wu, Z.J. Yi, X. Lai. The PKM2 activator TEPP-46 attenuates MCD feeding-induced nonalcoholic steatohepatitis by inhibiting the activation of Kupffer cells. Eur Rev Med Pharmacol Sci, 25 (11) (2021), pp. 4017-4026.
|
[53] |
S. Huang, W. Zhu, F. Zhang, G. Chen, X. Kou, X. Yang, et al. Silencing of pyruvate kinase M2 via a metal-organic framework based theranostic gene nanomedicine for triple-negative breast cancer therapy. ACS Appl Mater Interfaces, 13 (48) (2021), pp. 56972-56987.
|
[54] |
X. Li, R. Zhou, H. Peng, J. Peng, Q. Li, M. Mei. Microglia PKM2 mediates neuroinflammation and neuron loss in mice epilepsy through the astrocyte C3-neuron C3R signaling pathway. Brain Sci, 13 (2) (2023), p. 262.
|
[55] |
W.K. Ma, D.M. Voss, J. Scharner, A.S.H. Costa, K.T. Lin, H.Y. Jeon, et al. ASO-based PKM splice-switching therapy inhibits hepatocellular carcinoma growth. Cancer Res, 82 (5) (2022), pp. 900-915.
|
[56] |
Z. Chu, B. Zhang, X. Zhou, H. Yuan, C. Gao, L. Liu, et al. A DNA/RNA heteroduplex oligonucleotide coupling asparagine depletion restricts FGFR2 fusion-driven intrahepatic cholangiocarcinoma. Mol Ther Nucleic Acids, 34 (2023), Article 102047.
|
[57] |
R. Nishi, M. Ohyagi, T. Nagata, Y. Mabuchi, T. Yokota. Regulation of activated microglia and macrophages by systemically administered DNA/RNA heteroduplex oligonucleotides. Mol Ther, 30 (6) (2022), pp. 2210-2223.
|
[58] |
M. Ohyagi, T. Nagata, K. Ihara, K. Yoshida-Tanaka, R. Nishi, H. Miyata, et al. DNA/RNA heteroduplex oligonucleotide technology for regulating lymphocytes in vivo. Nat Commun, 12 (2021), p. 7344.
|