[1] |
S.T. Skou, F.S. Mair, M. Fortin, B. Guthrie, B.P. Nunes, J.J. Miranda, et al. Multimorbidity. Nat Rev Dis Primers, 8 (1) (2022), p. 48
|
[2] |
W. Kong, J. Wei, P. Abidi, M. Lin, S. Inaba, C. Li, et al. Berberine is a novel cholesterol-lowering drug working through a unique mechanism distinct from statins. Nat Med, 10 (12) (2004), pp. 1344-1351
|
[3] |
H. Zhang, J. Wei, R. Xue, J.D. Wu, W. Zhao, Z.Z. Wang, et al. Berberine lowers blood glucose in type 2 diabetes mellitus patients through increasing insulin receptor expression. Metabolism, 59 (2) (2010), pp. 285-292
|
[4] |
S. Kwon, A.T. Chan. Extracting the benefits of berberine for colorectal cancer. Lancet Gastroenterol Hepatol, 5 (3) (2020), pp. 231-233
|
[5] |
H.H. Guo, H.R. Shen, L.L. Wang, Z.G. Luo, J.L. Zhang, H.J. Zhang, et al. Berberine is a potential alternative for metformin with good regulatory effect on lipids in treating metabolic diseases. Biomed Pharmacother, 163 (2023), Article 114754
|
[6] |
C. Wang, Y. Wang, S.R. Ma, Z.Y. Zuo, Y.B. Wu, W.J. Kong, et al. Berberine inhibits adipocyte differentiation, proliferation and adiposity through down-regulating galectin-3. Sci Rep, 9 (1) (2019), p. 13415
|
[7] |
W. Wei, Q. Zeng, Y. Wang, X. Guo, T. Fan, Y. Li, et al. Discovery and identification of EIF2AK 2 as a direct key target of berberine for anti-inflammatory effects. Acta Pharm Sin B, 13 (5) (2023), pp. 2138-2151
|
[8] |
G. Ren, J.H. Guo, C.L. Feng, Y.W. Ding, B. Dong, Y.X. Han, et al. Berberine inhibits carcinogenesis through antagonizing the ATX-LPA-LPAR2-p38-leptin axis in a mouse hepatoma model. Mol Ther Oncolytics, 26 (2022), pp. 372-386
|
[9] |
Y. Wang, Q. Tong, S.R. Ma, Z.X. Zhao, L.B. Pan, L. Cong, et al. Oral berberine improves brain dopa/dopamine levels to ameliorate Parkinson’s disease by regulating gut microbiota. Signal Transduct Target Ther, 6 (1) (2021), p. 77
|
[10] |
W.J. Kong, C. Vernieri, M. Foiani, J.D. Jiang. Berberine in the treatment of metabolism-related chronic diseases: a drug cloud (dCloud) effect to target multifactorial disorders. Pharmacol Ther, 209 (2020), Article 107496
|
[11] |
Z. Wang. The entropy perspective on human illness and aging. Engineering, 9 (2022), pp. 22-26
|
[12] |
J.L. Zhang, Y.H. Li, L.L. Wang, H.Q. Liu, S.Y. Lu, Y. Liu, et al. Azvudine is a thymus-homing anti-SARS-CoV-2 drug effective in treating COVID-19 patients. Signal Transduct Target Ther, 6 (1) (2021), p. 414
|
[13] |
Y. Dian, Y. Meng, Y. Sun, G. Deng, F. Zeng. Azvudine versus paxlovid for oral treatment of COVID-19 in Chinese patients with pre-existing comorbidities. J Infect, 87 (2) (2023), pp. e24-e27
|
[14] |
G. Deng, D. Li, Y. Sun, L. Jin, Q. Zhou, C. Xiao, et al. Real-world effectiveness of azvudine versus nirmatrelvir-ritonavir in hospitalized patients with COVID-19: a retrospective cohort study. J Med Virol, 95 (4) (2023), p. e28756
|