[1] |
S.A. Osinga, D. Paudel, S.A. Mouzakitis, I.N. Athanasiadis. Big data in agriculture: between opportunity and solution. Agric Syst, 195 (2022), Article 103298
|
[2] |
J.L. Araus, J.E. Cairns. Field high-throughput phenotyping: the new crop breeding frontier. Trends Plant Sci, 19 (1) (2014), pp. 52-61
|
[3] |
R.T. Furbank, M. Tester. Phenomics-technologies to relieve the phenotyping bottleneck. Trends Plant Sci, 16 (12) (2011), pp. 635-644
|
[4] |
A. Zavafer, H. Bates, C. Mancilla, P.J. Ralph. Phenomics: conceptualization and importance for plant physiology. Trends Plant Sci, 2439 (9) (2023), pp. 1004-1013
|
[5] |
C. Zhao, Y. Zhang, J. Du, X. Guo, W. Wen, S. Gu, et al. Crop phenomics: current status and perspectives. Front Plant Sci, 10 (2019), p. 714
|
[6] |
X. Jin, P.J. Zarco-Tejada, U. Schmidhalter, M.P. Reynolds, M.J. Hawkesford, R.K. Varshney, et al. High-throughput estimation of crop traits: a review of ground and aerial phenotyping platforms. IEEE Geosci Remote Sens Mag, 9 (1) (2020), pp. 200-231
|
[7] |
W. Yang, H. Feng, X. Zhang, J. Zhang, J.H. Doonan, W.D. Batchelor, et al. Crop phenomics and high-throughput phenotyping: past decades, current challenges, and future perspectives. Mol Plant, 13 (2) (2020), pp. 187-214
|
[8] |
D. Sun, K. Robbins, N. Morales, Q. Shu, H. Cen. Advances in optical phenotyping of cereal crops. Trends Plant Sci, 27 (2) (2021), pp. 191-208
|
[9] |
S. Ninomiya. High-throughput field crop phenotyping: current status and challenges. Breed Sci, 72 (1) (2022), pp. 3-18
|
[10] |
J.L. Araus, S.C. Kefauver, M. Zaman-Allah, M.S. Olsen, J.E. Cairns. Translating high-throughput phenotyping into genetic gain. Trends Plant Sci, 23 (5) (2018), pp. 451-466
|
[11] |
C. Zhao. Big data of plant phenomics and its research progress. J Agric Big Data, 1 (2019), pp. 5-14Chinese
|
[12] |
Deng CH, Naithani S, Kumari S, Cobo-Simon I, Quezada-Rodriguez EH, Skrabisova M, et al. Agricultural sciences in the big data era: genotype and phenotype data standardization, utilization and integration. DATABASE-OXFORD 2023; 2023:baad088.
|
[13] |
E.A. Papoutsoglou, D. Faria, D. Arend, E. Arnaud, I.N. Athanasiadis, I. Chaves, et al. Enabling reusability of plant phenomic datasets with MIAPPE 1.1. New Phytol, 227 (1) (2020), pp. 260-273
|
[14] |
D. Reynolds, F. Baret, C. Welckere, A. Bostrom, J. Ball, F. Cellini, et al. What is cost-efficient phenotyping? Optimizing costs for different scenarios. Plant Sci, 282 (2019), pp. 14-22
|
[15] |
W. Wang, W. Guo, L. Le, J. Yu, Y. Wu, D. Li, et al. Integration of high-throughput phenotyping, GWAS, and predictive models reveals the genetic architecture of plant height in maize. Mol Plant, 16 (2) (2023), pp. 354-373
|
[16] |
S. Wolfert, L. Ge, C. Verdouw, M.J. Bogaardt. Big data in smart farming—a review. Agric Syst, 153 (2017), pp. 69-80
|
[17] |
P. Song, J. Wang, X. Guo, W. Yang, C. Zhao. High-throughput phenotyping: breaking through the bottleneck in future crop breeding. Crop J, 9 (3) (2021), pp. 633-645
|
[18] |
A. Watson, S. Ghosh, M.J. Williams, W.S. Cuddy, J. Simmonds, M.D. Rey, et al. Speed breeding is a powerful tool to accelerate crop research and breeding. Nat Plants, 4 (1) (2018), pp. 23-29
|
[19] |
M.D. Wilkinson, M. Dumontier, I.J. Aalbersberg, G. Appleton, M. Axton, A. Baak, et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci Data, 3 (1) (2016), Article 160018
|
[20] |
C. Pommier, C. Michotey, G. Cornut, P. Roumet, E. Duchêne, R. Flores, et al. Applying FAIR principles to plant phenotypic data management in GnpIS. Plant Phenomics, 2019 ( 2019), Article 1671403
|
[21] |
P. Krajewski, D. Chen, H. Cwiek, A.D.J. van Dijk, F. Fiorani, P. Kersey, et al. Towards recommendations for metadata and data handling in plant phenotyping. J Exp Bot, 66 (18) (2015), pp. 5417-5427
|
[22] |
H. Cwiek-Kupczynska, T. Altmann, D. Arend, E. Arnaud, D.J. Chen, G. Cornut, et al. Measures for interoperability of phenotypic data: minimum information requirements and formatting. Plant Methods, 12 (2016), p. 44
|
[23] |
A.I. Ugochukwu, P.W.B. Phillips. Data sharing in plant phenotyping research: perceptions, practices, enablers, barriers and implications for science policy on data management. Plant Phenome Journal, 5 (1) (2022), Article e20056
|
[24] |
J. Fan, Y. Li, S. Yu, W. Gou, X. Guo, C. Zhao. Application of internet of things to agriculture—the LQ-FieldPheno platform: a high-throughput platform for obtaining crop phenotypes in field. Research, 2023 ( 2023), p. 0059
|
[25] |
J. Du, J. Fan, C. Wang, X. Lu, Y. Zhang, W. Wen, et al. Greenhouse-based vegetable high-throughput phenotyping platform and trait evaluation for large-scale lettuces. Comput Electron Agric, 186 (2021), Article 106193
|
[26] |
S. Wu, W. Wen, Y. Wang, J. Fan, C. Wang, W. Gou, et al. MVS-Pheno: a portable and low-cost phenotyping platform for maize shoots using Multiview stereo 3D reconstruction. Plant Phenomics, 2020 ( 2020), Article 1848437
|
[27] |
S. Cai, W. Gou, W. Wen, X. Lu, J. Fan, X. Guo. Design and development of a low-cost UGV 3D phenotyping platform with integrated LiDAR and electric slide rail. Plants, 12 (3) (2023), p. 483
|
[28] |
X. Xiong, L. Yu, W. Yang, M. Liu, N. Jiang, D. Wu, et al. A high-throughput stereo-imaging system for quantifying rape leaf traits during the seedling stage. Plant Methods, 13 (2017), p. 7
|
[29] |
W. Yang, Z. Guo, C. Huang, L. Duan, G. Chen, N. Jiang, et al. Combining high-throughput phenotyping and genome-wide association studies to reveal natural genetic variation in rice. Nat Commun, 5 (2014), p. 5087
|
[30] |
Y. Zhang, J. Wang, J. Du, Y. Zhao, X. Lu, W. Wen, et al. Dissecting the phenotypic components and genetic architecture of maize stem vascular bundles using high-throughput phenotypic analysis. Plant Biotechnol J, 19 (1) (2020), pp. 35-50
|
[31] |
J.J. Du, X.J. Lu, J.C. Fan, Y.J. Qin, X.Z. Yang, X.Y. Guo. Image-based high-throughput detection and phenotype evaluation method for multiple lettuce varieties. Front. Plant Sci., 11 (2020), Article 563386
|
[32] |
J. Gao, X. Hu, C. Gao, G. Chen, H. Feng, Z. Jia, et al. Deciphering genetic basis of developmental and agronomic traits by integrating high-throughput optical phenotyping and genome-wide association studies in wheat. Plant Biotechnol J, 21 (10) (2023), pp. 1966-1977
|
[33] |
X. Zhang, C. Huang, D. Wu, F. Qiao, W. Li, L. Duan, et al. High-throughput phenotyping and QTL mapping reveals the genetic architecture of maize plant growth. Plant Physiol, 173 (3) (2017), pp. 1554-1564
|
[34] |
T. Miao, W. Wen, Y. Li, S. Wu, C. Zhu, X. Guo. Label3DMaize: toolkit for 3D point cloud data annotation of maize shoots. Gigascience, 10 (5) (2021), Article giab031s
|
[35] |
Y. Li, W. Wen, J. Fan, W. Gou, S. Gu, X. Lu, et al. Multi-source data fusion improves time-series phenotype accuracy in maize under a field high-throughput phenotyping platform. Plant Phenomics, 5 (2023), p. 0043
|
[36] |
D. Wu, L.J. Yu, J.L. Ye, R.F. Zhai, L.F. Duan, L.B. Liu, et al. Panicle-3D: a low-cost 3D-modeling method for rice panicles based on deep learning, shape from silhouette, and supervoxel clustering. Crop J, 10 (5) (2022), pp. 1386-1398
|
[37] |
X. Liang, X. Xu, Z. Wang, L. He, K. Zhang, B. Liang, et al. StomataScorer: a portable and high-throughput leaf stomata trait scorer combined with deep learning and an improved CV model. Plant Biotechnol J, 20 (3) (2022), pp. 577-591
|
[38] |
P. Neveu, A. Tireau, N. Hilgert, V. Negre, J. Mineau-Cesari, N. Brichet, et al. Dealing with multi-source and multi-scale information in plant phenomics: the ontology-driven Phenotyping Hybrid Information System. New Phytol, 221 (1) (2019), pp. 588-601
|
[39] |
D. Reynolds, J. Ball, A. Bauer, R. Davey, S. Griffiths, J. Zhou. CropSight: a scalable and open-source information management system for distributed plant phenotyping and IoT-based crop management. Gigascience, 8 (3) (2019), Article giz009
|
[40] |
Y. Xu, X. Zhang, H. Li, H. Zheng, J. Zhang, M.S. Olsen, et al. Smart breeding driven by big data, artificial intelligence, and integrated genomic-enviromic prediction. Mol Plant, 15 (11) (2022), pp. 1664-1695
|