衰亡链揭示互利共生生态系统中安全与崩溃的中间阶段

王光炜, 刘雪明, 肖颖, 袁烨, 潘林强, 管晓宏, 高建喜, 张海涛

工程(英文) ›› 2024, Vol. 43 ›› Issue (12) : 89-98.

PDF(2850 KB)
PDF(2850 KB)
工程(英文) ›› 2024, Vol. 43 ›› Issue (12) : 89-98. DOI: 10.1016/j.eng.2024.06.004
研究论文
Article

衰亡链揭示互利共生生态系统中安全与崩溃的中间阶段

作者信息 +

Extinction Chains Reveal Intermediate Phases Between the Safety and Collapse in Mutualistic Ecosystems

Author information +
History +

Highlight

•Dynamic model predicts ecosystem tipping points under exploitation, revealing surprising biodiversity impacts and guiding conservation efforts.

摘要

生态系统正因人类过度捕捞和森林砍伐等不可持续活动而经历前所未有的持续性恶化,这种破坏对生态系统稳定性的影响仍未明确。尽管在系统相变和临界点的实验与理论研究方面取得了进展,但在分析和理解衰亡链(即由过度开发引发的物种灭绝序列)方面仍缺乏有效的理论工具,特别是在大规模非线性网络系统中。本研究开发了一种数学工具,用于预测多种开发情境下生态系统的相变和衰亡链,并在26个不同规模和密度的真实互利网络中进行了验证。研究发现,生态系统在开发过程中经历了五个阶段:安全、部分灭绝、双稳态、三稳态和崩溃,由此可以为退化或崩溃的系统设计最优恢复策略。此外,我们使用一个历时20年的大叶藻恢复项目数据集验证了该方法。令人意外的是,我们还在开发率和竞争强度的相图中发现了一个特定区域,在该区域内开发更多物种反而能够提高生物多样性。该计算工具为在保护或恢复互利生态系统生物多样性的前提下制定采伐、捕捞、开发或森林砍伐计划提供了有价值的见解。

Abstract

Ecosystems are undergoing unprecedented persistent deterioration due to unsustainable anthropogenic human activities, such as overfishing and deforestation, and the effects of such damage on ecological stability are uncertain. Despite recent advances in experimental and theoretical studies on regime shifts and tipping points, theoretical tools for understanding the extinction chain, which is the sequence of species extinctions resulting from overexploitation, are still lacking, especially for large-scale nonlinear networked systems. In this study, we developed a mathematical tool to predict regime shifts and extinction chains in ecosystems under multiple exploitation situations and verified it in 26 real-world mutualistic networks of various sizes and densities. We discovered five phases during the exploitation process: safe, partial extinction, bistable, tristable, and collapse, which enabled the optimal design of restoration strategies for degraded or collapsed systems. We validated our approach using a 20-year dataset from an eelgrass restoration project. Counterintuitively, we also found a specific region in the diagram spanning exploitation rates and competition intensities, where exploiting more species helps increase biodiversity. Our computational tool provides insights into harvesting, fishing, exploitation, or deforestation plans while conserving or restoring the biodiversity of mutualistic ecosystems.

关键词

复杂网络 / 网络科学 / 过度开发 / 相变 / 亚稳态

Keywords

Complex system / Network science / Overexploitation / Regime shift / Metastability

引用本文

导出引用
王光炜, 刘雪明, 肖颖. 衰亡链揭示互利共生生态系统中安全与崩溃的中间阶段. Engineering. 2024, 43(12): 89-98 https://doi.org/10.1016/j.eng.2024.06.004

参考文献

[1]
A.D. Barnosky, E.A. Hadly, J. Bascompte, E.L. Berlow, J.H. Brown, M. Fortelius, et al. Approaching a state shift in Earth’s biosphere. Nature, 486 (7401) (2012), pp. 52-58.
[2]
W. Steffen, K. Richardson, J. Rockström, S.E. Cornell, I. Fetzer, E.M. Bennett, et al. Planetary boundaries: guiding human development on a changing planet. Science, 347 (6223) (2015), Article 1259855.
[3]
M. Scheffer, S. Barrett, S.R. Carpenter, C. Folke, A.J. Green, M. Holmgren, et al. Creating a safe operating space for iconic ecosystems. Science, 347 (6228) (2015), pp. 1317-1319.
[4]
Integration and application network [Internet]. Cambridge: University of Maryland; [cited 2024 Jun 12]. Available from:
[5]
D.W. O’Neill, A.L. Fanning, W.F. Lamb, J.K. Steinberger. A good life for all within planetary boundaries. Nat Sustain, 1 (2) (2018), pp. 88-95.
[6]
A.M. Dean. A Simple model of mutualism. Am Nat, 121 (3) (1983), pp. 409-417.
[7]
D.H.A. Wright. Simple, stable model of mutualism incorporating handling time. Am Nat, 134 (4) (1989), pp. 664-667.
[8]
X. Liu, D. Li, M. Ma, B.K. Szymanski, H.E. Stanley, J. Gao. Network resilience. Phys Rep, 971 (2022), pp. 1-108.
[9]
R. Cohen, K. Erez, D. ben-Avraham, S. Havlin. Resilience of the Internet to random breakdowns. Phys Rev Lett, 85 (21) (2000), pp. 4626-4628.
[10]
J. Li, Q. Yang, J. Dong, M. Sweet, Y. Zhang, C. Liu, et al. Microbiome engineering: a promising approach to improve coral health. Engineering, 28 (2023), pp. 105-116.
[11]
V. Dakos, J. Bascompte. Critical slowing down as early warning for the onset of collapse in mutualistic communities. Proc Natl Acad Sci USA, 111 (49) (2014), pp. 17546-17551.
[12]
C.S. Holling. Resilience and stability of ecological systems. Annu Rev Ecol Syst, 4 (1) (1973), pp. 1-23.
[13]
C. Folke, S. Carpenter, B. Walker, M. Scheffer, T. Elmqvist, L. Gunderson, et al. Regime shifts, resilience, and biodiversity in ecosystem management. Annu Rev Ecol Evol Syst, 35 (1) (2004), pp. 557-581.
[14]
S. Allesina, M. Pascual. Googling food webs: can an eigenvector measure species’ importance for coextinctions?. PLOS Comput Biol, 5 (9) (2009), Article e1000494.
[15]
C.N. Kaiser-Bunbury, S. Muff, J. Memmott, C.B. Müller, A. Caflisch. The robustness of pollination networks to the loss of species and interactions: a quantitative approach incorporating pollinator behaviour. Ecol Lett, 13 (4) (2010), pp. 442-452.
[16]
J. Gao, B. Barzel, A.L. Barabási. Universal resilience patterns in complex networks. Nature, 530 (7590) (2016), pp. 307-312.
[17]
G. Baruah. The impact of individual variation on abrupt collapses in mutualistic networks. Ecol Lett, 25 (1) (2022), pp. 26-37.
[18]
R. Kehoe, E. Frago, D. Sanders. Cascading extinctions as a hidden driver of insect decline. Ecol Entomol, 46 (4) (2021), pp. 743-756.
[19]
S. Saavedra, D.B. Stouffer, B. Uzzi, J. Bascompte. Strong contributors to network persistence are the most vulnerable to extinction. Nature, 478 (7368) (2011), pp. 233-235.
[20]
J. Jiang, Z.G. Huang, T.P. Seager, W. Lin, C. Grebogi, A. Hastings, et al. Predicting tipping points in mutualistic networks through dimension reduction. Proc Natl Acad Sci USA, 115 (4) (2018), pp. E639-E647.
[21]
E. Laurence, N. Doyon, L.J. Dubé, P. Desrosiers. Spectral dimension reduction of complex dynamical networks. Phys Rev X, 9 (2019), Article 011042.
[22]
C. Tu, P. D’Odorico, S. Suweis. Dimensionality reduction of complex dynamical systems. iScience, 24 (2021), Article 101912.
[23]
F. Morone, G. Del Ferraro, H.A. Makse. The k-core as a predictor of structural collapse in mutualistic ecosystems. Nat Phys, 15 (1) (2019), pp. 95-102.
[24]
H. Zhang, Q. Wang, W. Zhang, S. Havlin, J. Gao. Estimating comparable distances to tipping points across mutualistic systems by scaled recovery rates. Nat Ecol Evol, 6 (10) (2022), pp. 1524-1536.
[25]
X. Wang, J. Wang, B. Wang, B. Burkhard, L. Che, C. Dai, et al. The nature-based ecological engineering paradigm: symbiosis, coupling, and coordination. Engineering, 19 (2022), pp. 14-21.
[26]
Z. Ding, H. Zheng, J. Wang, P. O’Connor, C. Li, X. Chen, et al. Integrating top-down and bottom-up approaches improves practicality and efficiency of large-scale ecological restoration planning: insights from a social-ecological. Engineering, 31 (2023), pp. 50-58.
[27]
U. Bastolla, M.A. Fortuna, A. Pascual-García, A. Ferrera, B. Luque, J. Bascompte. The architecture of mutualistic networks minimizes competition and increases biodiversity. Nature, 458 (7241) (2009), pp. 1018-1020.
[28]
R.P. Rohr, S. Saavedra, J. Bascompte. On the structural stability of mutualistic systems. Science, 345 (6195) (2014), Article 1253497.
[29]
V. Domínguez-García, M.A. Muñoz. Ranking species in mutualistic networks. Sci Rep, 5 (2015), p. 8182.
[30]
R.J. Orth, J.S. Lefcheck, K.S. McGlathery, L. Aoki, M.W. Luckenbach, K.A. Moore, et al. Restoration of seagrass habitat leads to rapid recovery of coastal ecosystem services. Sci Adv, 6 (41) (2020), Article eabc6434.
[31]
J. Bascompte, P. Jordano. Mutualistic networks. Princeton University Press, Princeton (2013).
[32]
M. Scheffer, S. Carpenter, J.A. Foley, C. Folke, B. Walker. Catastrophic shifts in ecosystems. Nature, 413 (6856) (2001), pp. 591-596.
[33]
D.R. Bellwood, T.P. Hughes, C. Folke, M. Nyström. Confronting the coral reef crisis. Nature, 429 (6994) (2004), pp. 827-833.
[34]
S. Sahasrabudhe, A.E. Motter. Rescuing ecosystems from extinction cascades through compensatory perturbations. Nat Commun, 2 (2011), p. 170.
[35]
Y. Yu, T. Hua, L. Chen, Z. Zhang, P. Pereira. Divergent changes in vegetation greenness, productivity, and rainfall use efficiency are characteristic of ecological restoration towards high-quality development in the Yellow River Basin, China. Engineering, 34 (2024), pp. 109-119.
[36]
M.C. Vieira, M. Almeida-Neto. A simple stochastic model for complex coextinctions in mutualistic networks: robustness decreases with connectance. Ecol Lett, 18 (2) (2015), pp. 144-152.
[37]
J.F. Brodie, C.E. Aslan, H.S. Rogers, K.H. Redford, J.L. Maron, J.L. Bronstein, et al. Secondary extinctions of biodiversity. Trends Ecol Evol, 29 (12) (2014), pp. 664-672.
[38]
M.A. Leibold, S.R. Hall, V.H. Smith, D.A. Lytle. Herbivory enhances the diversity of primary producers in pond ecosystems. Ecology, 98 (1) (2017), pp. 48-56.
[39]
M.R. Heithaus, A. Frid, A.J. Wirsing, B. Worm. Predicting ecological consequences of marine top predator declines. Trends Ecol Evol, 23 (4) (2008), pp. 202-210.
[40]
B.B. Hughes, K.M. Beheshti, M.T. Tinker, C. Angelini, C. Endris, L. Murai, et al. Top-predator recovery abates geomorphic decline of a coastal ecosystem. Nature, 626 (7997) (2024), pp. 111-118.
[41]
A. Aparicio, J.X. Velasco-Hernández, C.H. Moog, Y.Y. Liu, M.T. Angulo. Structure-based identification of sensor species for anticipating critical transitions. Proc Natl Acad Sci USA, 118 (51) (2021), Article e2104732118.
[42]
J.M. Olesen, J. Bascompte, Y.L. Dupont, P. Jordano. The modularity of pollination networks. Proc Natl Acad Sci USA, 104 (50) (2007), pp. 19891-19896.
PDF(2850 KB)

Accesses

Citation

Detail

段落导航
相关文章

/