X射线增敏剂——直接被X射线激活的有机药物中间体高效产生三重态激子用于癌症治疗

Nuo Lin, Han Xu, Haichao Liu, Xiaoqian Ma, Qunying Shi, Qing Yang, Yating Wen, Huanglei Wei, Ke Hu, Bing Yang, Hongmin Chen

工程(英文) ›› 2024, Vol. 43 ›› Issue (12) : 173-182.

PDF(3475 KB)
PDF(3475 KB)
工程(英文) ›› 2024, Vol. 43 ›› Issue (12) : 173-182. DOI: 10.1016/j.eng.2024.06.010
研究论文
Article

X射线增敏剂——直接被X射线激活的有机药物中间体高效产生三重态激子用于癌症治疗

作者信息 +

X-Ray-Sensitizers: Organic Pharmaceutical Drug Intermediates Activated Directly by X-Rays to Efficiently Populate Triplet Excitons for Cancer Treatment

Author information +
History +

Abstract

Radiotherapy is an important treatment for cancer, but it is associated with major side effects due to the high dose of radiation (generally more than 50 Gy). Because radiation’s low acute and late toxicity, many tumors are treated with fractionated radiation in small doses (< 2 Gy). Scintillator X-ray-induced photodynamic therapy is an efficient methodology for cancer management that employs small doses of X-ray irradiation (< 2 Gy) in a complex process. Here we screened pharmaceutical drug intermediates that are derivatives of thioxanthone (TX) and investigated TX-derived organic pharmaceutical molecules that efficiently undergo X-ray-sensitization to populate triplet excitons (singlet oxygen) for cancer therapy when exposed to low-dose X-ray irradiation. By modifying alkoxy side chain substitutions at the 2-position to tune the molecular packing and intermolecular interactions, the fluorescence and room-temperature phosphorescence of a series of TX derivatives were assessed under X-ray irradiation. The ability of these derivatives to generate singlet oxygen and their potential for treating tumors provide new opportunities for developing organic molecules with simple chemical structures, in which large numbers of triplets can be populated directly under ultralow-dose X-ray irradiation.

Keywords

X-ray-sensitizer / Tailored thioxanthone derivatives / Triplet excitons / Singlet oxygen / Cancer treatment

引用本文

导出引用
Nuo Lin, Han Xu, Haichao Liu. X射线增敏剂——直接被X射线激活的有机药物中间体高效产生三重态激子用于癌症治疗. Engineering. 2024, 43(12): 173-182 https://doi.org/10.1016/j.eng.2024.06.010

参考文献

[1]
R.R. Allison, G.H. Downie, R. Cuenca, X.H. Hu, C.J.H. Childs, C.H. Sibata. Photosensitizers in clinical PDT. Photodiagn Photodyn Ther, 1 (1) (2004), pp. 27-42.
[2]
T.C. Pham, V.N. Nguyen, Y. Choi, S. Lee, J. Yoon. Recent strategies to develop innovative photosensitizers for enhanced photodynamic therapy. Chem Rev, 121 (21) (2021), pp. 13454-13461.
[3]
X. Li, J.F. Lovell, J. Yoon, X. Chen. Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat Rev Clin Oncol, 17 (11) (2020), pp. 657-667.
[4]
L. Beaton, S. Bandula, M.N. Gaze, R.A. Sharma. How rapid advances in imaging are defining the future of precision radiation oncology. Br J Cancer, 120 (8) (2019), pp. 779-790.
[5]
W. Zhang, I. Oraiqat, D. Litzenberg, K.W. Chang, S. Hadley, N.B. Sunbul, et al. Real-time, volumetric imaging of radiation dose delivery deep into the liver during cancer treatment. Nat Biotechnol, 41 (8) (2023), pp. 1160-1167.
[6]
W. Sun, C. Chu, S. Li, X. Ma, P. Liu, S. Chen, et al. Nanosensitizer-mediated unique dynamic therapy tactics for effective inhibition of deep tumors. Adv Drug Deliv Rev, 192 (2023), Article 114643.
[7]
W. Sun, Z. Zhou, G. Pratx, X. Chen, H. Chen. Nanoscintillator-mediated X-ray induced photodynamic therapy for deep-seated tumors: from concept to biomedical applications. Theranostics, 10 (3) (2020), pp. 1296-1318.
[8]
X. Chen, J. Song, X. Chen, H. Yang. X-ray-activated nanosystems for theranostic applications. Chem Soc Rev, 48 (11) (2019), pp. 3073-3101.
[9]
F.D. Brooks. Development of organic scintillators. Nucl Instrum Methods, 162 (1) (1979), pp. 477-505.
[10]
H. Hatcher. Scintillating observations. Nat Rev Chem, 6 (12) (2022), p. 840.
[11]
M. Koshimizu. Recent progress of organic scintillators. Jpn J Appl Phys, 62 (1) (2023), Article 010503.
[12]
G. Laustriat. The luminescence decay of organic scintillators. Molec Crystals, 4 (1-4) (1968), pp. 127-145.
[13]
M.A. Baldo, M.E. Thompson, S.R. Forrest. High-efficiency fluorescent organic light-emitting devices using a phosphorescent sensitizer. Nature, 403 (6771) (2000), pp. 750-753.
[14]
A. Rao, P.C. Chow, S. Gelinas, C.W. Schlenker, C.Z. Li, H.L. Yip, et al. The role of spin in the kinetic control of recombination in organic photovoltaics. Nature, 500 (7463) (2013), pp. 435-439.
[15]
S. Hirata. Recent advances in materials with room-temperature phosphorescence: photophysics for triplet exciton stabilization. Adv Opt Mater, 5 (17) (2017), Article 1700116.
[16]
Y. Wen, H. Liu, S. Zhang, J. Cao, J. De, B. Yang. Achieving highly efficient pure organic single-molecule white-light emitter: the coenhanced fluorescence and phosphorescence dual emission by tailoring alkoxy substituents. Adv Opt Mater, 8 (7) (2020), Article 1901995.
[17]
X. Wang, H. Shi, H. Ma, W. Ye, L. Song, J. Zan, et al. Organic phosphors with bright triplet excitons for efficient X-ray-excited luminescence. Nat Photonics, 15 (3) (2021), pp. 187-192.
[18]
W. Ma, Y. Su, Q. Zhang, C. Deng, L. Pasquali, W. Zhu, et al. Thermally activated delayed fluorescence (TADF) organic molecules for efficient X-ray scintillation and imaging. Nat Mater, 21 (2) (2022), pp. 210-216.
[19]
C. Chen, Z. Chi, K.C. Chong, A.S. Batsanov, Z. Yang, Z. Mao, et al. Carbazole isomers induce ultralong organic phosphorescence. Nat Mater, 20 (2) (2021), pp. 175-180.
[20]
Q. Miao, C. Xie, X. Zhen, Y. Lyu, H. Duan, X. Liu, et al. Molecular afterglow imaging with bright, biodegradable polymer nanoparticles. Nat Biotechnol, 35 (11) (2017), pp. 1102-1110.
[21]
C. Xu, J. Huang, Y. Jiang, S. He, C. Zhang, K. Pu. Nanoparticles with ultrasound-induced afterglow luminescence for tumour-specific theranostics. Nat Biomed Eng, 7 (3) (2023), pp. 298-1231.
[22]
J. Huang, L. Su, C. Xu, X. Ge, R. Zhang, J. Song, et al. Molecular radio afterglow probes for cancer radiodynamic theranostics. Nat Mater, 22 (11) (2023), pp. 1421-1429.
[23]
X. Wang, W. Sun, H. Shi, H. Ma, G. Niu, Y. Li, et al. Organic phosphorescent nanoscintillator for low-dose X-ray-induced photodynamic therapy. Nat Commun, 13 (1) (2022), p. 5091.
[24]
J.X. Wang, L. Gutiérrez-Arzaluz, X. Wang, T. He, Y. Zhang, M. Eddaoudi, et al. Heavy-atom engineering of thermally activated delayed fluorophores for high-performance X-ray imaging scintillators. Nat Photonics, 16 (12) (2022), pp. 869-875.
[25]
B. Varga, A. Csonka, A. Csonka, J. Molnar, L. Amaral, G. Spengler. Possible biological and clinical applications of phenothiazines. Anticancer Res, 37 (11) (2017), pp. 5983-5993.
[26]
A.N. Edinoff, G. Armistead, C.A. Rosa, A. Anderson, R. Patil, E.M. Cornett, et al. Phenothiazines and their evolving roles in clinical practice: a narrative review. Health Psychol Res, 10 (4) (2022), p. 38930.
[27]
A.M. Paiva, M.M. Pinto, E. Sousa. A century of thioxanthones: through synthesis and biological applications. Curr Med Chem, 20 (19) (2013), pp. 2438-2457.
[28]
Y. Wen, H. Liu, S. Zhang, Y. Gao, Y. Yan, B. Yang. One-dimensional π-π stacking induces highly efficient pure organic room-temperature phosphorescence and ternary-emission single-molecule white light. J Mater Chem C Mater Opt Electron Devices, 7 (40) (2019), pp. 12502-12508.
[29]
Scott LJ, Goa KL. Verteporfin. Drugs Aging 2000; 16(2):139-46,discussion147-8.
[30]
C. Wei, X. Li. The role of photoactivated and non-photoactivated verteporfin on tumor. Front Pharmacol, 11 (2020), p. 55742.
[31]
S.B. Brown, K.J. Mellish. Verteporfin: a milestone in opthalmology and photodynamic therapy. Expert Opin Pharmacother, 2 (2) (2001), pp. 351-361.
[32]
M.T. Huggett, M. Jermyn, A. Gillams, R. Illing, S. Mosse, M. Novelli, et al. Phase I/II study of verteporfin photodynamic therapy in locally advanced pancreatic cancer. Br J Cancer, 110 (7) (2014), pp. 1698-1704.
[33]
K. Vigneswaran, N.H. Boyd, S.Y. Oh, S. Lallani, A. Boucher, S.G. Neill, et al. YAP/TAZ transcriptional coactivators create therapeutic vulnerability to verteporfin in EGFR-mutant glioblastoma. Clin Cancer Res, 27 (5) (2021), pp. 1553-1569.
PDF(3475 KB)

Accesses

Citation

Detail

段落导航
相关文章

/