[1] |
R.A. Brain, J.C. Anderson. The agro-enabled urban revolution, pesticides, politics, and popular culture: a case study of land use, birds, and insecticides in the USA. Environ Sci Pollut R, 26 (21) (2019), pp. 21717-21735.
|
[2] |
P.M. Ngegba, G. Cui, M.Z. Khalid, G. Zhong. Use of botanical pesticides in agriculture as an alternative to synthetic pesticides. Agriculture, 12 (5) (2022), p. 600.
|
[3] |
T.C. Sparks, F. Wessels, B.A. Lorsbach, B.M. Nugent, G.B. Watson. The new age of insecticide discovery—the crop protection industry and the impact of natural products. Pestic Biochem Physiol, 161 (2019), pp. 12-22.
|
[4] |
F. Liaqat, L.X. Xu, M.I. Khazi, S. Ali, M.U. Rahman, D. Zhu. Extraction, purification and applications of vanillin: a review of recent advances and challenges. Ind Crops Prod, 204 (2023), Article 117372.
|
[5] |
H. Peng, S. Wang, Z. Zhang, H. Xiong, J. Li, L. Chen, et al. Molecularly imprinted photonic hydrogels as colorimetric sensors for rapid and label-free detection of vanillin. J Agric Food Chem, 60 (8) (2012), pp. 1921-1928.
|
[6] |
A. Olatunde, A. Mohammed, M.A. Ibrahim, N. Tajuddeen, M.N. Shuaibu. Vanillin: a food additive with multiple biological activities. Eur J Med Chem, 5 (2022), Article 100055.
|
[7] |
J. Burri, M. Graf, P. Lambelet, J. Löliger. Vanillin: more than a flavouring agent—a potent antioxidant. J Sci Food Agric, 48 (1) (1989), pp. 49-56.
|
[8] |
L.F. Dalmolin, N.M. Khalil, R.M. Mainardes. Delivery of vanillin by poly(lactic-acid) nanoparticles: development, characterization and in vitro evaluation of antioxidant activity. Mater Sci Eng C, 62 (2016), pp. 1-8.
|
[9] |
A. Tai, T. Sawano, F. Yazama, H. Ito. Evaluation of antioxidant activity of vanillin by using multiple antioxidant assays. Biochim Biophys Acta, 1810 (2) (2011), pp. 170-177.
|
[10] |
H.M. Cheng, F.Y. Chen, C.C. Li, H.Y. Lo, Y.F. Liao, T.Y. Ho, et al. Oral administration of vanillin improves imiquimod-induced psoriatic skin inflammation in mice. J Agric Food Chem, 65 (47) (2017), pp. 10233-10242.
|
[11] |
K. Lirdprapamongkol, J.P. Kramb, T. Suthiphongchai, R. Surarit, C. Srisomsap, G. Dannhardt, et al. Vanillin suppresses metastatic potential of human cancer cells through PI3K inhibition and decreases angiogenesis in vivo. J Agric Food Chem, 57 (8) (2009), pp. 3055-3063.
|
[12] |
A.L.V. Kumar Reddy, N.E. Kathale. Synthesis and anti-inflammatory activity of hydrazones bearing biphenyl moiety and vanillin based hybrids. Orient J Chem, 33 (2) (2017), pp. 971-978.
|
[13] |
D. Srikanth, V.H. Menezes, N. Saliyan, U.P. Rathnakar, P.G. Shiv, S.D. Acaharya, et al. Evaluation of anti-inflammatory property of vanillin in carrageenan induced paw edema model in rats. lnt J Bioassays, 2 (1) (2013), pp. 269-271.
|
[14] |
D. Zhao, Y. Jiang, J. Sun, H. Li, M. Zhao. Elucidation of the anti-inflammatory effect of vanillin in Lps-activated THP-1 cells. Int J Food Sci, 84 (7) (2019), pp. 1920-1928.
|
[15] |
P. Anand, B. Singh, N. Singh. A review on coumarins as acetylcholinesterase inhibitors for Alzheimer’s disease. Bioorg Med Chem, 20 (3) (2012), pp. 1175-1180.
|
[16] |
L. Piazzi, A. Cavalli, F. Colizzi, F. Belluti, M. Bartolini, F. Mancini, et al. Multi-target-directed coumarin derivatives: hAChE and BACE 1 inhibitors as potential anti-Alzheimer compounds. Bioorg Med Chem Lett, 18 (1) (2008), pp. 423-426.
|
[17] |
M. Scipioni, G. Kay, I.L. Megson, P.K.T. Lin. Synthesis of novel vanillin derivatives: novel multi-targeted scaffold ligands against Alzheimer’s disease. MedChemComm, 10 (5) (2019), pp. 764-777.
|
[18] |
M.W. Zheng, H.K. Lai, K.Y.A. Lin. Valorization of vanillyl alcohol by pigments: prussian blue analogue as a highly-effective heterogeneous catalyst for aerobic oxidation of vanillyl alcohol to vanillin. Waste Biomass Valoriz, 10 (10) (2019), pp. 2933-2942.
|
[19] |
P.R.G.N. Reddy, B.G. Rao, T.V. Rao, B.M. Reddy. Selective aerobic oxidation of vanillyl alcohol to vanillin catalysed by nanostructured Ce-Zr-O solid solutions. Catal Lett, 149 (2) (2019), pp. 533-543.
|
[20] |
S. Cai, J. Lin, M. Wang, X. Ji, Z. Zhang. Biosynthesis of vanillin from vanillyl alcohol by recombinant Escherichia coli cells expressing 5-hydroxymethylfurfural oxidase. Ind Crops Prod, 204 (2023), Article 117285.
|
[21] |
T. Klaus, A. Seifert, T. Häbe, B.M. Nestl, B. Hauer. An enzyme cascade synthesis of vanillin. Catalysts, 9 (3) (2019), p. 252.
|
[22] |
K. Ogawa, A. Tashima, M. Sadakata, O. Morinaga. Appetite-enhancing effects of vanilla flavours such as vanillin. J Nat Med-Tokyo, 72 (3) (2018), pp. 798-802.
|
[23] |
R. Morissette, J. Mihalov, S.J. Carlson, K.J. Kaneko. Trends in ingredients added to infant formula: FDA’s experiences in the GRAS notification program. Food Chem Toxicol, 178 (2023), Article 113876.
|
[24] |
A.S. Vanilla. In: Chemistry of spices. Beijing: CABI Digital Library; (2008), pp. 287-311.
|
[25] |
M. Fache, B. Boutevin, S. Caillol. Vanillin production from lignin and its use as a renewable chemical. ACS Sustain Chem & Eng, 4 (1) (2016), pp. 35-46.
|
[26] |
J. Ni, F. Tao, H. Du, P. Xu. Mimicking a natural pathway for de novo biosynthesis: natural vanillin production from accessible carbon sources. Sci Rep-Uk, 5 (2015), p. 13670.
|
[27] |
Y. Wang, S. Sun, F. Li, X. Cao, R. Sun. Production of vanillin from lignin: the relationship between β-O-4 linkages and vanillin yield. Ind Crops Prod, 116 (2018), pp. 116-121.
|
[28] |
M.N. Mohamad Ibrahim, M.Y.N. Nadiah, M.S. Norliyana, C.S. Sipaut, S. Shuib. Separation of vanillin from oil palm empty fruit bunch lignin. CLEAN-Soil Air Water, 36 (3) (2008), pp. 287-291.
|
[29] |
P. Sivagurunathan, T. Raj, C.S. Mohanta, S. Semwal, A. Satlewal, R.P. Gupta, et al. 2G waste lignin to fuel and high value-added chemicals: approaches, challenges and future outlook for sustainable development. Chemosphere, 268 (21) (2020), pp. 1-25.
|
[30] |
X. Xu, P. Li, Y. Zhong, J. Yu, C. Miao, G. Tong. Review on the oxidative catalysis methods of converting lignin into vanillin. Int J Biol Macromol, 243 (2023), Article 125203.
|
[31] |
Q. Ma, K. Liu, J. Mao, K. Chen, C. Liang, J. Yao, et al. Kinetic studies on the liquid-phase catalytic oxidation of 4-methyl guaiacol to vanillin. Can J Chem Eng, 95 (8) (2017), pp. 1544-1553.
|
[32] |
S. Ren, Z. Wu, Q. Guo, B. Shen. Zeolites as shape-selective catalysts: highly selective synthesis of vanillin from reimer-tiemann reaction of guaiacol and chloroform. Catal Lett, 145 (2) (2015), pp. 712-714.
|
[33] |
N.Y. Selikhova, D.A. Kurgachev, V.S. Sidelnikov, D.V. Novikov, V.V. Botvin, O.K. Poleshchuk. Optimization of the conditions of guaiacol and glyoxylic acid condensation to vanillylmandelic acid as an intermediate product in vanillin synthesis. J Phys Conf Ser, 1145 (2019), Article 012047.
|
[34] |
L. Xu, F. Liaqat, J. Sun, M. Khazi, R. Xie, D. Zhu. Advances in the vanillin synthesis and biotransformation: a review. Renew Sustain Energy Rev, 189 (2024), Article 113905.
|
[35] |
Q. Ma, L. Liu, S. Zhao, Z. Huang, C. Li, S. Jiang, et al. Biosynthesis of vanillin by different microorganisms: a review. World J Microb Biot, 38 (3) (2022), pp. 1-9.
|
[36] |
R.S. Kumar, S. Naveena, S. Praveen, N. Yogadharshini. Therapeutic aspects of biologically potent vanillin derivatives: a critical review. J Drug Deliv Sci Technol, 13 (7) (2023), pp. 177-189.
|
[37] |
W. Jiang, X. Chen, Y. Feng, J. Sun, Y. Jiang, W. Zhang, et al. Current status, challenges, and prospects for the biological production of vanillin. Fermentation (Basel), 9 (4) (2023), p. 389.
|
[38] |
Y. Wang, Y. Luo, D. Hu, B. Song. Design, synthesis, anti-tomato spotted wilt virus activity, and mechanism of action of thienopyrimidine-containing dithioacetal derivatives. J Agric Food Chem, 70 (20) (2022), pp. 6015-6025.
|
[39] |
L. Zhao, D. Hu, Z. Wu, C. Wei, S. Wu, B. Song. Coumarin derivatives containing sulfonamide and dithioacetal moieties: design, synthesis, antiviral activity, and mechanism. J Agric Food Chem, 70 (19) (2022), pp. 5773-5783.
|
[40] |
H.M. Guo, S.K. Wu, R.J. Song, T. Liu, S.Q. He, B.A. Song, et al. Discovery of mesoionic derivatives containinga dithioacetal skeletonas novel potential antibacterial agentsand mechanism research. J Agric Food Chem, 70 (23) (2022), pp. 7015-7028.
|
[41] |
D. Liu, R. Song, Z. Wu, Z. Xing, D. Hu. Pyrido[1,2-a]pyrimidinone mesoionic compounds containing vanillin moiety: design, synthesis, antibacterial activity, and mechanism. J Agric Food Chem, 70 (34) (2022), pp. 10443-10452.
|
[42] |
H.C. Arca, L.I. Mosquera-Giraldo, V. Bi, D. Xu, L.S. Taylor, K.J. Edgar. Pharmaceutical applications of cellulose ethers and cellulose ether esters. Biomacromolecules, 19 (7) (2018), pp. 2351-2376.
|
[43] |
S. Buwalda, S. Rotman, D. Eglin, F. Moriarty, A. Bethry, X. Garric, et al. Synergistic anti-fouling and bactericidal poly(ether ether ketone) surfaces via a one-step photo modification. Mater Sci Eng C, 111 (2020), Article 110811.
|
[44] |
T. Chen, H. Xiong, J. Yang, X. Zhu, R. Qu, G. Yang. Diaryl ether: a privileged scaffold for drug and agrochemical discovery. J Agric Food Chem, 68 (37) (2020), pp. 9839-9877.
|
[45] |
X. Zhu, J. Sipila, A. Potthast, A. Potthast, T. Rosenau, M. Balakshin. Exploring Alkyl-O-Alkyl ether structures in softwood milled wood lignins. J Agric Food Chem, 71 (1) (2022), pp. 580-591.
|
[46] |
S. Zhou, Z. Wang, X. Zhu, Q. Wu, G. Yang. Synthesis and insecticidal activity study of azidopyridryl containing dichlorolpropene ether derivatives. J Agric Food Chem, 71 (47) (2023), pp. 18205-18211.
|
[47] |
G. Merhi, A.W. Coleman, J.P. Devissaguet, G.M. Barratt. Synthesis and immunostimulating properties of lipophilic ester and ether muramyl peptide derivatives. J Med Chem, 39 (22) (1996), pp. 4483-4488.
|
[48] |
M. Hrubý, Č. Koňák, K. Ulbrich. Poly(allyl glycidyl ether)-block-poly(ethylene oxide): a novel promising polymeric intermediate for the preparation of micellar drug delivery systems. J Appl Polym Sci, 95 (2) (2005), pp. 201-211.
|
[49] |
S.S. Kar, V.G. Bhat, V.P. Shenoy, L. Bairy, G.G. Shenoy. Design, synthesis, and evaluation of novel diphenyl ether derivatives against drug-susceptible and drug-resistant strains of Mycobacterium tuberculosis. Chem Biol Drug Des, 93 (1) (2019), pp. 60-66.
|
[50] |
J.M. Dean, I.J. Lodhi. Structural and functional roles of ether lipids. Protein Cell, 9 (2) (2018), pp. 196-206.
|
[51] |
P. Hu, B. Dong, Z. Zhou, W. Chen, B. Zeng. Chemoselective thioacetalisation and transthioacetalisation of aldehydes catalyzed by PVP-I. ChemistrySelect, 4 (36) (2019), pp. 10798-10804.
|
[52] |
N. Taniguchi, K. Kitayama. Dihydrosulfenylation of alkynes with thiols using a nickel catalyst through a radical process. Asian J Org Chem, 8 (8) (2019), pp. 1468-1471.
|
[53] |
D. Xie, J. Shi, A. Zhang, Z. Lei, G. Zu, Y. Fu, et al. Syntheses, antiviral activities and induced resistance mechanisms of novel quinazoline derivatives containing a dithioacetal moiety. Bioorg Chem, 80 (2018), pp. 433-443.
|
[54] |
Z. Xing, M. Yang, H. Sun, Z. Wang, P. Chen, L. Liu, et al. Visible-light promoted dithioacetalization of aldehydes with thiols under aerobic and photocatalyst-free conditions. Green Chem, 20 (22) (2018), pp. 5117-5122.
|
[55] |
J. Wu, F.Z. Xu, S.L. Feng, W. Xue, Z.Z. Wang. A facile preparation of imidazo[1,2-a] pyridin-3-amine derivatives via a three-component reaction with β-cyclodextrin-SO3H as catalyst. J Heterocycl Chem, 92 (9) (2016), pp. 1629-1642.
|
[56] |
D. Luo, S. Guo, F. He, S. Chen, A. Dai, R. Zhang, et al. Design, synthesis, and bioactivity of α-ketoamide derivatives bearing a vanillin skeleton for crop diseases. J Agric Food Chem, 68 (27) (2020), pp. 7226-7234.
|
[57] |
G. Zu, X. Gan, D. Xie, H. Yang, A. Zhang, S. Li, et al. Design, synthesis, and anti-ToCV activity of novel 4(3H)-quinazolinone derivatives bearing dithioacetal moiety. J Agric Food Chem, 68 (20) (2020), pp. 5539-5544.
|
[58] |
H. He, F. Wang, D. Zhang, C. Chen, D. Xu, H. Zhou, et al. Discovery of novel α-methylene-γ-butyrolactone derivatives containing vanillin moieties as antiviral and antifungal agents. J Agric Food Chem, 70 (33) (2022), pp. 10316-10325.
|
[59] |
J. Zhang, L. Zhao, C. Zhu, Z. Wu, G. Zhang, X. Gan, et al. Facile synthesis of novel vanillin derivatives incorporating a bis(2-hydroxyethyl) dithhioacetal moiety as antiviral agents. J Agric Food Chem, 65 (23) (2017), pp. 4582-4588.
|
[60] |
V. Potkin, Y. Zubenko, A. Bykhovetz, R. Zolotar, V. Goncharuk. Synthesis of novel vanillin derivatives containing isothiazole moieties and its synergistic effect in mixtures with insecticides. Nat Prod Commun, 4 (9) (2009), pp. 1205-1208.
|
[61] |
W. Si, M. Chen, X. Wang, M. Wang, J. Jiao, X. Fu, et al. Synthesis and insecticidal activity of novel benzothiazole derivatives containing the coumarin moiety. Arkivoc, vii (2018), pp. 86-99.
|
[62] |
H. Sauter, W. Steglich, T. Anke. Strobilurins: evolution of a new class of active substances. Angew Chem Int Ed, 38 (10) (1999), pp. 1328-1349.
|
[63] |
W. Huang, P. Zhao, C. Liu, Q. Chen, Z. Liu, G. Yang. Design, synthesis, and fungicidal activities of new strobilurin derivatives. J Agric Food Chem, 55 (8) (2007), pp. 3004-3010.
|
[64] |
P. Zhao, C. Liu, W. Huang, Y. Wang, G. Yang. Synthesis and fungicidal evaluation of novel chalcone-based strobilurin analogues. J Agric Food Chem, 55 (14) (2007), pp. 5697-5700.
|
[65] |
D.W. Bartlett, J.M. Clough, J.R. Godwin, A.A. Hall, M. Hamer, B. Parr-Dobrzanski. The strobilurin fungicides. Pest Manag Sci, 58 (7) (2002), pp. 649-662.
|
[66] |
M. Kovačević, D.K. Hackenberger, B.K. Hackenberger. Effects of strobilurin fungicides (azoxystrobin, pyraclostrobin, and trifloxystrobin) on survival, reproduction and hatching success of Enchytraeus crypticus. Sci Total Environ, 790 (2021), Article 148143.
|
[67] |
B. Chai, C. Liu, H. Li, S. Liu, Y. Xu, Y. Song, et al. Synthesis and acaricidal activity of strobilurin-pyrimidine derivatives. Chin Chem Lett, 25 (1) (2014), pp. 137-140.
|
[68] |
D. Debona, K.J.T. Nascimento, J.G.O. Gomes, C.E. Aucique-Perez, F.A. Rodrigues. Physiological changes promoted by a strobilurin fungicide in the rice-Bipolaris oryzae interaction. Pestic Biochem Physiol, 130 (2016), pp. 8-16.
|
[69] |
S. Herms, K. Seehaus, H. Koehle, U. Conrath. A strobilurin fungicide enhances the resistance of tobacco against tobacco mosaic virus and Pseudomonas syringae pv tabaci. Plant Physiol, 130 (1) (2002), pp. 120-127.
|
[70] |
A. Liu, X. Wang, X. Ou, M. Huang, C. Chen, S. Liu, et al. Synthesis and fungicidal activities of novel bis(trifluoromethyl) phenyl-based strobilurins. J Agric Food Chem, 56 (15) (2008), pp. 6562-6566.
|
[71] |
P. Zhao, F. Wang, M. Zhang, Z. Liu, W. Huang, G. Yang. Synthesis, fungicidal, and insecticidal activities of β-methoxyacrylate-containing N-acetyl pyrazoline derivatives. J Agric Food Chem, 56 (22) (2008), pp. 10767-10773.
|
[72] |
J. Chen, J. Shi, L. Yu, D. Liu, X. Gan, B. Song, et al. Design, synthesis, antiviral bioactivity, and defense mechanisms of novel dithioacetal derivatives bearing a strobilurin moiety. J Agric Food Chem, 66 (21) (2018), pp. 5335-5345.
|
[73] |
D. Xie, J. Zhang, H. Yang, Y. Liu, D. Hu, B. Song. First anti-ToCV activity evaluation of glucopyranoside derivatives containing a dithioacetal moiety through a novel ToCVCP-oriented screening method. J Agric Food Chem, 67 (26) (2019), pp. 7243-7248.
|
[74] |
Z. Lei, J. Wang, G. Mao, Y. Wen, Y. Tian, H. Wu, et al. Glucose positions affect the phloem mobility of glucose-fipronil conjugates. J Agric Food Chem, 62 (26) (2014), pp. 6065-6071.
|
[75] |
Y. Liu, J. Chen, D. Xie, B. Song, D. Hu. First report on anti-TSWV activities of quinazolinone derivatives containing a dithioacetal moiety. J Agric Food Chem, 69 (41) (2021), pp. 12135-12142.
|
[76] |
L. Christodoulopoulou, M. Tsoukatou, L.A. Tziveleka, C. Vagias, P.V. Petrakis, V. Roussis. Piperidinyl amides with insecticidal activity from the maritime plant Otanthus maritimus. J Agric Food Chem, 53 (5) (2005), pp. 1435-1439.
|
[77] |
J. Ma, P. Li, X. Li, Q. Shi, Z. Wan, D. Hu, et al. Synthesis and antiviral bioactivity of novel 3-((2-((1E, 4E)-3-oxo-5-arylpenta-1, 4-dien-1-yl) phenoxy) methyl)-4 (3H)-quinazolinone derivatives. J Agric Food Chem, 62 (36) (2014), pp. 8928-8934.
|
[78] |
A.R. Aguiar, E.S. Alvarenga, E.M.P. Silva, E.S. Farias, M.C. Picanço. Synthesis, insecticidal activity, and phytotoxicity of novel chiral amides. Pest Manag Sci, 75 (6) (2019), pp. 1689-1696.
|
[79] |
J.D. Eckelbarger, M.H. Parker, M.C.H. Yap, A.M. Buysse, J.M. Babcock, R. Hunter, et al. Synthesis and biological activity of a new class of insecticides: the N-(5-aryl-1, 3, 4-thiadiazol-2-yl) amides. Pest Manag Sci, 73 (4) (2017), pp. 761-773.
|
[80] |
M. Tsikolia, U.R. Bernier, N.M. Agramonte, A.S. Estep, J.J. Becnel, N. Tabanca, et al. Insecticidal and repellent properties of novel trifluoromethylphenyl amides II. Pestic Biochem Physiol, 151 (2018), pp. 40-46.
|
[81] |
P. Kaushik, D.J. Sarkar, S. Chander, V.S. Rana, N.A. Shakil. Insecticidal activity of phenolic acid amides against brown planthopper (BPH), Nilaparvata lugens (Stål) and their QSAR analysis. J Environ Sci Health B, 54 (6) (2019), pp. 489-497.
|
[82] |
G.M. Richoux, L. Yang, E.J. Norris, K.J. Linthicum, J.R. Bloomquist. Structural exploration of novel pyrethroid esters and amides for repellent and insecticidal activity against mosquitoes. J Agric Food Chem, 71 (47) (2023), pp. 18285-18291.
|
[83] |
M. Tsikolia, U.R. Bernier, N.M. Agramonte, A.S. Estep, J.J. Becnel, K.J. Linthicum, et al. Insecticidal and repellent properties of novel trifluoromethylphenyl amides III. Pestic Biochem Physiol, 161 (2019), pp. 5-11.
|
[84] |
W. Dong, J. Xu, L. Xiong, Z. Li. Synthesis, structure and insecticidal activities of some novel amides containing N-pyridylpyrazole moeities. Molecules, 17 (9) (2012), pp. 10414-10428.
|
[85] |
A.M. Buysse, M.C.H. Yap, R. Hunter, J. Babcock, X. Huang. Synthesis and biological activity of pyridazine amides, hydrazones and hydrazides. Pest Manag Sci, 73 (4) (2017), pp. 782-795.
|
[86] |
G. Li, M. Obul, J.Y. Zhao, G.Y. Liu, W. Lu, H.A. Aisa. Novel amides modified rupestonic acid derivatives as anti-influenza virus reagents. Bioorg Med Chem Lett, 29 (19) (2019), Article 126605.
|
[87] |
E.V. Suslov, E.S. Mozhaytsev, D.V. Korchagina, N.I. Bormotov, O.I. Yarovaya, K.P. Volcho, et al. New chemical agents based on adamantane-monoterpene conjugates against orthopoxvirus infections. Rsc Med Chem, 11 (10) (2020), pp. 1185-1195.
|
[88] |
E.S. Mozhaitsev, E.V. Suslov, D.A. Rastrepaeva, O.I. Yarovaya, S.S. Borisevich, E.M. Khamitov, et al. Structure-based design, synthesis, and biological evaluation of the cage-amide derived orthopox virus replication inhibitors. Viruses, 15 (1) (2022), p. 29.
|
[89] |
V.A. Fedorova, R.A. Kadyrova, A.V. Slita, A.A. Muryleva, P.R. Petrova, A.V. Kovalskaya, et al. Antiviral activity of amides and carboxamides of quinolizidine alkaloid (-)-cytisine against human influenza virus A (H1N1) and parainfluenza virus type 3. Nat Prod Res, 35 (22) (2021), pp. 4256-4264.
|
[90] |
A.I. Dalinger, D.S. Baev, O.I. Yarovaya, V.Y. Chirkova, E.A. Sharlaeva, S.V. Belenkaya, et al. Synthesis of non-symmetric N-benzylbispidinol amides and study of their inhibitory activity against the main protease of the SARS-CoV-2 virus. Russ Chem Bull, 72 (1) (2023), pp. 239-247.
|
[91] |
Z. Sun, C. Wei, S. Wu, W. Zhang, R. Song, D. Hu. Synthesis, anti-potato virus Y activities, and interaction mechanisms of novel quinoxaline derivatives bearing dithioacetal moiety. J Agric Food Chem, 70 (23) (2022), pp. 7029-7038.
|
[92] |
G.R. Silveira, K.A. Campelo, G.R.S. Lima, L.P. Carvalho, S.S. Samarão, O. Vieira-da-Motta, et al. In vitro anti-Toxoplasma gondii and antimicrobial activity of amides derived from cinnamic acid. Molecules, 23 (4) (2018), p. 774.
|
[93] |
S. Matysiak, J. Zabielska, J. Kula, A. Kunicka-Styczyńska. Synthesis of (R)- and (S)-ricinoleic acid amides and evaluation of their antimicrobial activity. J Am Oil Chem Soc, 95 (1) (2018), pp. 69-77.
|
[94] |
G.C. Look, C. Vacin, T.M. Dias, S. Ho, T.H. Tran, L.L. Lee, et al. The discovery of biaryl acids and amides exhibiting antibacterial activity against Gram-positive bacteria. Bioorg Med Chem Lett, 14 (6) (2004), pp. 1423-1426.
|
[95] |
B. Erkuş, H. Özcan, Ö. Zaim. Synthesis, antimicrobial activity, and ion transportation investigation of four new [1+1] condensed furan and thiophene-based cycloheterophane amides. J Heterocycl Chem, 57 (4) (2020), pp. 1956-1962.
|
[96] |
M. Krátký, Š. Štěpánková, K. Vorčáková, L. Navrátilová, F. Trejtnar, J. Stolaříková, et al. Synthesis of readily available fluorophenylalanine derivatives and investigation of their biological activity. Bioorg Chem, 71 (2017), pp. 244-256.
|
[97] |
W. Zhang, C.W. Holyoke Jr, T.F. Pahutski, G.P. Lahm, J.D. Barry, D. Cordova, et al. Mesoionic Pyrido[1,2-a]pyrimidinones: discovery of triflumezopyrim as a potent hopper insecticide. Bioorg Med Chem Lett, 27 (1) (2017), pp. 16-20.
|
[98] |
W. Zhang, C.W. Holyoke Jr, J.D. Barry, D. Cordova, R.M. Leighty, M.H.T. Tong. Mesoionic Pyrido[1,2-a]pyrimidinones: discovery of dicloromezotiaz as a lepidoptera insecticide acting on nicotinic acetylcholine receptors. Bioorg Med Chem Lett, 27 (4) (2017), pp. 911-917.
|
[99] |
D. Liu, J. Zhang, L. Zhao, W.J. He, G. Liu, X. Gan, et al. First discovery of novel pyrido[1,2-a]pyrimidinone mesoionic compounds as antibacterial agents. J Agric Food Chem, 67 (43) (2019), pp. 11860-11866.
|
[100] |
W. Zhang. Mesoionic pyrido[1,2-a]pyrimidinone insecticides: from discovery to triflumezopyrim and dicloromezotiaz. Acc Chem Res, 50 (9) (2017), pp. 2381-2388.
|
[101] |
H. Li, W. Peng, W. Feng, Y. Wang, G. Chen, S. Wang, et al. A novel dual-emission fluorescent probe for the simultaneous detection of H2S and GSH. Chem Commun, 52 (25) (2016), pp. 4628-4631.
|
[102] |
C. Zhou, X. Xu. Synthesis of New C2-Symmetric Chiral Bisamides from (1S, 2S)-Cyclohexane-1,2-dicarboxylic Acid. Helv Chim Acta, 97 (10) (2014), pp. 1396-1405.
|
[103] |
J. Shi, L. Yu, B. Song. Proteomics analysis of Xiangcaoliusuobingmi-treated Capsicum annuum L. infected with cucumber mosaic virus. Pestic Biochem Physiol, 149 (2018), pp. 113-122.
|
[104] |
J. Shi, H. He, D. Hu, B. Song. Defense mechanism of Capsicum annuum L. infected with pepper mild mottle virus induced by vanisulfane. J Agric Food Chem, 70 (12) (2022), pp. 3618-3632.
|
[105] |
S. Zhang, C. Wei, L. Yu, B. Song. Vanisulfane induced plant resistance toward potato virus Y via the salicylic-depended acid signaling pathway. J Agric Food Chem, 71 (40) (2023), pp. 14527-14538.
|
[106] |
J. Shi, H. He, Z. Liu, D. Hu. Pepper mild mottle virus coat protein as a novel target to screen antiviral drugs. J Agric Food Chem, 70 (27) (2022), pp. 8233-8242.
|
[107] |
S. Shao, X. Cheng, R. Zheng, S. Zhang, Z. Yu, H. Wang, et al. Sex-related deposition and metabolism of vanisulfane, a novel vanillin-derived pesticide, in rats and its hepatotoxic and gonadal effects. Sci Total Environ, 813 (2022), Article 152545.
|
[108] |
E.A. Iverson, D.A. Goodman, M.E. Gorchels, K.M. Stedman. Extreme mutation tolerance: nearly half of the archaeal fusellovirus sulfolobus spindle-shaped virus 1 genes are not required for virus function, including the minor capsid protein gene vp3. J Virol, 91 (10) (2017), pp. e02406-e02416.
|
[109] |
N. Zan, J. Li, H. He, D. Hu, B. Song. Discovery of novel chromone derivatives as potential anti-TSWV agents. J Agric Food Chem, 69 (37) (2021), pp. 10819-10829.
|
[110] |
G. Banerjee, P. Chattopadhyay. Vanillin biotechnology: the perspectives and future. J Sci Food Agric, 99 (2) (2018), pp. 499-506.
|
[111] |
H. Priefert, J. Rabenhorst, A. Steinbüchel. Biotechnological production of vanillin. Appl Microbiol Biot, 56 (3-4) (2001), pp. 296-314.
|
[112] |
A. Kundu. Vanillin biosynthetic pathways in plants. Planta, 245 (6) (2017), pp. 1069-1078.
|
[113] |
M. Ashengroph, I. Nahvi, H. Zarkesh-Esfahani, F. Momenbeik. Conversion of isoeugenol to vanillin by Psychrobacter sp. Strain CSW4. Appl Biochem Biotechnol, 166 (1) (2012), pp. 1-12.
|
[114] |
X.G. Meng, N. Wang, X.F. Long, D.Y. Hu. Degradation of a novel pesticide antiviral agent vanisulfane in aqueous solution: kinetics, identification of photolysis products, and pathway. ACS Omega, 5 (38) (2020), pp. 24881-24889.
|
[115] |
S. Shao, R. Zheng, X. Cheng, S. Zhang, Z. Yu, X. Pang, et al. Diverse positional 14C labeling-assisted metabolic analysis of pesticides in rats: the case of vanisulfane, a novel vanillin-derived pesticide. Sci Total Environ, 826 (2022), Article 153920.
|
[116] |
S. Shao, S. Zhang, Z. Yu, H. Wang, Q. Ye. Insights into the fate of the novel pesticide vanisulfane from animal manure in plant-soil systems: assisted by carbon-14 labeling. J Agric Food Chem, 71 (2) (2023), pp. 1139-1148.
|
[117] |
J. Ouyang, X. Xing, L. Zhou, C. Zhang, J. Heng. Cocrystal design of vanillin with amide drugs: crystal structure determination, solubility enhancement, DFT calculation. Chem Eng Res Des, 183 (2022), pp. 170-180.
|
[118] |
X. Xing, J. Ouyang, S. Guo, M. Chen, Z. Gao, F. He, et al. Spherical particles design of vanillin via crystallization method: preparation, characterization and mechanism. Separ Purif Tech, 314 (2023), Article 123622.
|
[119] |
J. Ouyang, X. Xing, B. Yang, Y. Li, L. Xu, L. Zhou, et al. Terahertz spectroscopic characterization and DFT calculations of vanillin cocrystals with nicotinamide and isonicotinamide. CrystEngComm, 25 (14) (2023), pp. 2038-2051.
|