面向未来的石油化工产业

张耀, 邢恩会, 韩伟, 杨攀峰, 张松, 刘苏, 曹东学, 李明丰

工程(英文) ›› 2024, Vol. 43 ›› Issue (12) : 99-114.

PDF(3252 KB)
PDF(3252 KB)
工程(英文) ›› 2024, Vol. 43 ›› Issue (12) : 99-114. DOI: 10.1016/j.eng.2024.06.017
研究论文
Perspective

面向未来的石油化工产业

作者信息 +

Petrochemical Industry for the Future

Author information +
History +

摘要

化石能源为人类文明的演进提供了重要的能量和物质基础。随着人类对能源需求由高碳向低碳、无碳过渡,交通能源的结构发生革命性变化,化石能源的能源属性将逐渐减弱,物质属性将逐渐增强,石油化工的加工基础、科学理念和思路将发生重大调整,石油化工工业将得到高度重塑。在此背景下,本研究尝试站在历史的角度去重新审视石油化工的演化规律,理清历史成因、发展脉络及在未来发展中可能面临的挑战,并从能量和物质的科学本质出发构建了基于简化工程思维的石油化工路径。本文认为,以石油等为原料,以一氧化碳(CO)为目标产品的新型气化技术和以精准合成化学品为目标的新型碳一化学将成为重要的平台技术并发挥至关重要的作用,在现有石油化工的基础上,通过分阶段、分步骤构建基于新型定向气化和高效碳一化学相结合的新型石油化工至简路径,能够实现碳原子(C原子)的精准管控,大幅度提升原子利用效率,降低分离强度、能量消耗和碳排放,是提升原料的可获得性、工艺可持续性和建设标准化的潜在最优解,将在重塑人类现代石油化工体系,实现石油化工低碳、净零发展中发挥重要作用。

Abstract

Petroleum has played a vital role as the major supplier of materials and energy during the evolution of human civilization. Given the change in demand for energy from high to low carbon and ultimately net zero carbon, the energy framework has undergone revolutionary changes. The energy attribute of petroleum will be gradually weakened, while the material and CO2 emission attributes will be gradually strengthened. Thus, the petrochemical processing basis, scientific concepts, and ideas will undergo major adjustments to reshape the petrochemical industry. Hence, it is necessary to reconsider the evolution of the petrochemical industry from a historical perspective and to clarify the historical causes, development contexts, and possible challenges in future development. Herein, we critically reassess the key drivers and rules guiding the development of the petrochemical industry and propose a reconstruction strategy based on simplified engineering thinking, innate nature of energy and material, and CO2 emissions, which can be realized through the integration of gasification with CO as the target product and recent C1 chemistry targeting the precise synthesis of chemicals. The concept of the petrochemical industry will change from the product-based process of selection and transformation of raw material molecules to the process of carbon atom reconfiguration driven by product CO2 emissions. More accurate management of C atoms can be accomplished with greatly improved utilization efficiency and the reduction of separation intensity and CO2 emissions via the stepwise introduction of a new approach in the current petrochemical industry.

关键词

石油化工 / 炼油 / 碳排放 / 气化 / C1化学 / 重构 /

Keywords

Reconstruction / Petrochemical industry / Refining / CO2 emissions / Gasification technology / C1 chemistry / Net zero emissions

引用本文

导出引用
张耀, 邢恩会, 韩伟. 面向未来的石油化工产业. Engineering. 2024, 43(12): 99-114 https://doi.org/10.1016/j.eng.2024.06.017

参考文献

[1]
V. Siegle, C.W. Liang, B. Kaestner, H.W. Schumacher, F. Jessen, D. Koelle, et al. A molecular quantized charge pump. Nano Lett, 10 (10) (2010), pp. 3841-3845.
[2]
P. Gao, L. Zhong, B. Han, M. He, Y. Sun. Green carbon science: keeping the pace in practice. Angew Chem Int Ed Engl, 61 (46) (2022), Article e202210095.
[3]
J.P. Abella, J.A. Bergerson. Model to investigate energy and greenhouse gas emissions implications of refining petroleum: impacts of crude quality and refinery configuration. Environ Sci Technol, 46 (24) (2012), pp. 13037-13047.
[4]
P. Friedlingstein, M. O’sullivan, M.W. Jones, R.M. Andrew, L. Gregor, J. Hauck, et al. Global carbon budget 2022. Earth Syst Sci Data, 14 (11) (2022), pp. 4811-4900.
[5]
International Energy Agency (IEA). Report. Energy technology perspectives. Paris: International Energy Agency; 2023.
[6]
J. Artz, T.E. Müller, K. Thenert, J. Kleinekorte, R. Meys, A. Sternberg, et al. Sustainable conversion of carbon dioxide: an integrated review of catalysis and life cycle assessment. Chem Rev, 118 (2) (2018), pp. 434-504.
[7]
BP energy outlook 2023. London: BP p.l.c.; 2023.
[8]
Organization of the Petroleum Exporting Countries (OPEC). 2023 world oil outlook 2045. Report. Vienna: Organization of the Petroleum Exporting Countries; 2023.
[9]
J.G. Speight. Handbook of petroleum refining. CRC Press, Boca Raton (2017).
[10]
A. Elgowainy, J. Han, H. Cai, M. Wang, G.S. Forman, V.B. DiVita. Energy efficiency and greenhouse gas emission intensity of petroleum products at US refineries. Environ Sci Technol, 48 (13) (2014), pp. 7612-7624.
[11]
G.S. Forman, V.B. Divita, J. Han, H. Cai, A. Elgowainy, M. Wang. US refinery efficiency: impacts analysis and implications for fuel carbon policy implementation. Environ Sci Technol, 48 (13) (2014), pp. 7625-7633.
[12]
Y. Xu, Y. Zuo, W. Yang, X. Shu, W. Chen, A. Zheng. Targeted catalytic cracking to olefins (TCO): reaction mechanism, production scheme, and process perspectives. Engineering, 30 (2023), pp. 100-109.
[13]
W.B. Arthur. The nature of technology. Free Press, Hong Kong (2009).
[14]
P.A. David. Technical choice innovation and economic growth. Cambridge University Press, Cambridge (1975).
[15]
B.F. Pfleger, R. Takors. Recent progress in the synthesis of advanced biofuel and bioproducts. Curr Opin Biotechnol, 80 (2023), Article 102913.
[16]
F. Jia, T. Jing, G. Liu, Q. Yue, H.M. Wang, L. Shi, et al. Paraffin-based crude oil refining process unit-level energy consumption and CO2 emissions in China. J Clean Prod, 255 (2020), Article 120347.
[17]
Aaron Cheong A, Malashevskaya I, Yim J, Thoelke M, Gupta S, Lewandowski S, et al. 2017 world analysis-ethylene. Report. Houston: IHS Markit; 2016.
[18]
A. Roy, S.R. Venna, G. Rogers, L. Tang, T.C. Fitzgibbons, J. Liu, et al. Membranes for olefin-paraffin separation: an industrial perspective. Proc Natl Acad Sci USA, 118 (37) (2021), Article e2022194118.
[19]
International Energy Agency (IEA). World energy outlook 2022. Report. Paris: International Energy Agency; 2022.
[20]
International Renewable Energy Agency (IREA). World Energy transitions outlook 2023. Report. Abu Dhabi: International Renewable Energy Agency; 2023.
[21]
S. Zhang, W. Chen. China’s energy transition pathway in a carbon neutral vision. Engineering, 14 (2022), pp. 64-76.
[22]
International Energy Agency (IEA). Net zero by 2050—a roadmap for the global energy sector. Report. Paris: International Energy Agency; 2021.
[23]
United States Department of Energy. US national clean hydrogen strategy and roadmap. Report. Washington, DC: United States Department of Energy; 2024.
[24]
D. Kirsch. The electric vehicle and the burden of history. Rutgers University Press, New Brunswick (2000).
[25]
International Energy Agency (IEA). Global EV outlook 2024. Report. Paris: International Energy Agency; 2024.
[26]
Fuel Economy. Where the energy goes: electric cars [Internet]. Washington, DC: Energy Efficiency & Renewable Energy; [cited 2023 Oct 27]. Available from:
[27]
Food and Agriculture Organization of the United Nations (FAO). Food outlook. Report. Rome: Food and Agriculture Organization of the United Nations; 2023.
[28]
H.L. Tuomisto, M.J. Teixeira de Mattos. Environmental impacts of cultured meat production. Environ Sci Technol, 45 (14) (2011), pp. 6117-6123.
[29]
N.R. Rubio, N. Xiang, D.L. Kaplan. Plant-based and cell-based approaches to meat production. Nat Commun, 11 (2020), p. 6276.
[30]
D.P. Billington. From insight to innovation. MIT Press, Massachusetts (2020).
[31]
A. Corma, E. Corresa, Y. Mathieu, L. Sauvanaud, S. Al-Bogami, M.S. Al-Ghrami, et al. Crude oil to chemicals: light olefins from crude oil. Catal Sci Technol, 7 (1) (2017), pp. 12-46.
[32]
Stell RC, Bancroft JL, Dinicolantonio AR, Stephens G. inventors; ExxonMobil Chemical Patents Inc., assignee. Converting mist flow to annular flow in thermal cracking application. United States patent US 2004004028. 2004 Jan 8.
[33]
Stell RC, Bancroft JL, Dinicolantonio AR, Stephens G. inventors; ExxonMobil Chemical Patents Inc., assignee. Converting mist flow to annular flow in thermal cracking application. United States patent US 2004004028. 2004 Jan 8.
[34]
X. Zhou, Z. Sun, H. Yan, X. Feng, H. Zhao, Y. Liu, et al. Produce petrochemicals directly from crude oil catalytic cracking, a techno-economic analysis and life cycle society-environment assessment. J Clean Prod, 308 (2021), Article 127283.
[35]
M. He, Y. Sun, B. Han. Green carbon science: efficient carbon resource processing, utilization, and recycling towards carbon neutrality. Angew Chem Int Ed Engl, 61 (15) (2022), Article e202112835.
[36]
M.W. Chase. NIST-JANAF thermochemical tables. (4th ed.), Springer Verlag, Washington, DC (1998).
[37]
Y.V. Kissin. Chemical mechanisms of catalytic cracking over solid acidic catalysts: alkanes and alkenes. Catal Rev Sci Eng, 43 (1-2) (2001), pp. 85-146.
[38]
K.T. Rommens, M. Saeys. Molecular views on Fischer-Tropsch synthesis. Chem Rev, 123 (9) (2023), pp. 5798-5858.
[39]
National Institute of Standards and Technology (NIST). NIST chemistry webbook [Internet]. Gaithersburg: National Institute of Standards and Technology; [cited 2023 Oct 27]. Available from:
[40]
X. Ma, J. Albertsma, D. Gabriels, R. Horst, S. Polat, C. Snoeks, et al. Carbon monoxide separation: past, present and future. Chem Soc Rev, 52 (11) (2023), pp. 3741-3777.
[41]
Y. Luo. Comprehensive handbook of chemical bond energies. CRC Press, Boca Raton (2007).
[42]
S. Navarro-Jaén, M. Virginie, J. Bonin, M. Robert, R. Wojcieszak, A.Y. Khodakov. Highlights and challenges in the selective reduction of carbon dioxide to methanol. Nat Rev Chem, 5 (8) (2021), pp. 564-579.
[43]
O.R. Gilliam, C.M. Johnson, W. Gordy. Microwave Spectroscopy in the region from two to three millimeters. Phys Rev, 78 (2) (1950), pp. 140-144.
[44]
J.E. Huheey, E.A. Keiter, R.L. Keiter. Inorganic chemistry: principles of structure and reactivity. (4th ed.), HarperCollins, New York City (1993).
[45]
Q. Zhang, J. Yu, A. Corma. Applications of zeolites to C1 chemistry: recent advances, challenges, and opportunities. Adv Mater, 32 (44) (2020), Article 2002927.
[46]
G. Liu, G. Yang, X. Peng, J. Wu, N. Tsubaki. Recent advances in the routes and catalysts for ethanol synthesis from syngas. Chem Soc Rev, 51 (13) (2022), pp. 5606-5659.
[47]
I. Amghizar, L.A. Vandewalle, K.M. Van Geem, G.B. Marin. New trends in olefin production. Engineering., 3 (2) (2017), pp. 171-178.
[48]
J. Li, C. Wu, D. Cao, S. Hu, L. Weng, K. Liu. Green methanol—an important pathway to realize carbon neutrality. Engineering, 29 (2023), pp. 27-31.
[49]
R. Dittmeyer, M. Klumpp, P. Kant, G. Ozin. Crowd oil not crude oil. Nat Commun, 10 (2019), p. 1818.
[50]
W. Li, H. Zhu, Y. Xiao, R. Cai, Z. Liu. An approach to achieve carbon neutrality with integrated multi-energy technology. Engineering, 19 (2022), pp. 11-13.
[51]
G. Garcia-Garcia, M.C. Fernandez, K. Armstrong, S. Woolass, P. Styring. Analytical review of life-cycle environmental impacts of carbon capture and utilization technologies. Chem Sus Chem, 14 (4) (2021), pp. 995-1015.
[52]
A.R.C. Morais, A.M. Da Costa Lopes, R. Bogel-Łukasik. Carbon dioxide in biomass processing: contributions to the green biorefinery concept. Chem Rev, 115 (1) (2015), pp. 3-27.
[53]
G. De Bhowmick, A.K. Sarmah, R. Sen. Zero-waste algal biorefinery for bioenergy and biochar: a green leap towards achieving energy and environmental sustainability. Sci Total Environ, 650 (2019), pp. 2467-2482.
[54]
S. Chang, J. Zhuo, S. Meng, S. Qin, Q. Yao. Clean coal technologies in China: current status and future perspectives. Engineering., 2 (4) (2016), pp. 447-459.
[55]
P.H. Abelson. Clean coal technology. Science, 250 (4986) (1990), p. 1317.
[56]
P.V. Ramakrishna, J. Singh, A. Sahoo, S. Mohapatra. CFD simulation for coal gasification in fluidized bed gasifier. Energy, 281 (2023), Article 128272.
[57]
A. Pathak, N.D. Dhaigude, G. Sahu, V. Chauhan, S. Saha, S. Datta, et al. A review of factors affecting gasifier performance. Chem Bio Eng Rev, 10 (5) (2023), pp. 779-800.
[58]
M.W. Seo, S.H. Lee, H. Nam, D. Lee, D. Tokmurzin, S. Wang, et al. Recent advances of thermochemical conversion processes for biorefinery. Bioresour Technol, 343 (2022), Article 126109.
[59]
E. Petre, D. Selişteanu, M. Roman. Control schemes for a complex biorefinery plant for bioenergy and biobased products. Bioresour Technol, 295 (2020), Article 122245.
[60]
Z. Sun, T. Wang, R. Zhang, H. Li, Y. Wu, S. Toan, et al. Boosting hydrogen production via deoxygenation-sorption-enhanced biomass gasification. Bioresour Technol, 382 (2023), Article 129197.
[61]
H. De Lasa, E. Salaices, J. Mazumder, R. Lucky. Catalytic steam gasification of biomass: catalysts, thermodynamics and kinetics. Chem Rev, 111 (9) (2011), pp. 5404-5433.
[62]
S. Varjani. Efficient removal of tar employing dolomite catalyst in gasification: challenges and opportunities. Sci Total Environ, 836 (2022), Article 155721.
[63]
M. Ye, P. Tian, Z. Liu. DMTO: a Sustainable methanol-to-olefins technology. Engineering, 7 (1) (2021), pp. 17-21.
[64]
C. Yang, H. Zhao, Y. Hou, D. Ma. Fe5C2 nanoparticles: a facile bromide-induced synthesis and as an active phase for Fischer-Tropsch synthesis. J Am Chem Soc, 134 (38) (2012), pp. 15814-15821.
[65]
E. De Smit, F. Cinquini, A.M. Beale, O.V. Safonova, W. van Beek, P. Sautet, et al. Stability and reactivity of ∊-χ-θ iron carbide catalyst phases in Fischer-Tropsch synthesis: controlling μ(C). J Am Chem Soc, 132 (42) (2010), pp. 14928-14941.
[66]
J. Yang, K. Gong, D. Miao, F. Jiao, X. Pan, X. Meng, et al. Enhanced aromatic selectivity by the sheet-like ZSM-5 in syngas conversion. J Energy Chem, 35 (2019), pp. 44-48.
[67]
Y. Xu, J. Liu, J. Wang, G. Ma, J. Lin, Y. Yang, et al. Selective conversion of syngas to aromatics over Fe3O4@MnO2 and hollow HZSM-5 bifunctional catalysts. ACS Catal, 9 (6) (2019), pp. 5147-5156.
[68]
X. Yang, X. Su, D. Chen, T. Zhang, Y. Huang. Direct conversion of syngas to aromatics: a review of recent studies. Chin J Catal, 41 (4) (2020), pp. 561-573.
[69]
K. Cheng, B. Gu, X. Liu, J. Kang, Q. Zhang, Y. Wang. Direct and Highly selective conversion of synthesis gas into lower olefins: design of a bifunctional catalyst combining methanol synthesis and carbon-carbon coupling. Angew Chem Int Ed Engl, 128 (15) (2016), pp. 4803-4806.
[70]
Y. Zhu, X. Pan, F. Jiao, J. Li, J. Yang, M. Ding, et al. Role of manganese oxide in syngas conversion to light olefins. ACS Catal, 7 (4) (2017), pp. 2800-2804.
[71]
F. Jiao, X. Pan, K. Gong, Y. Chen, G. Li, X. Bao. Shape-selective zeolites promote ethylene formation from syngas via a ketene intermediate. Angew Chem Int Ed Engl, 57 (17) (2018), pp. 4692-4696.
[72]
C. Liu, S. Liu, H. Zhou, J. Su, W. Jiao, L. Zhang, et al. Selective conversion of syngas to aromatics over metal oxide/HZSM-5 catalyst by matching the activity between CO hydrogenation and aromatization. Appl Catal A Gen, 585 (2019), Article 117206.
[73]
K. Cheng, W. Zhou, J. Kang, S. He, S. Shi, Q. Zhang, et al. Bifunctional catalysts for one-step conversion of syngas into aromatics with excellent selectivity and stability. Chem, 3 (2) (2017), pp. 334-347.
[74]
J. Yang, X. Pan, F. Jiao, J. Li, X. Bao. Direct conversion of syngas to aromatics. Chem Commun, 53 (81) (2017), pp. 11146-11149.
[75]
W. Zhou, J. Kang, K. Cheng, S. He, J. Shi, C. Zhou, et al. Direct conversion of syngas into methyl acetate, ethanol and ethylene by relay catalysis via dimethyl ether intermediate. Angew Chem Int Ed Engl, 130 (37) (2018), pp. 12188-12192.
[76]
J. Su, H. Zhou, S. Liu, C. Wang, W. Jiao, Y. Wang, et al. Syngas to light olefins conversion with high olefin/paraffin ratio using ZnCrOx/AlPO-18 bifunctional catalysts. Nat Commun, 10 (2019), p. 1297.
[77]
F. Jiao, B. Bai, G. Li, X. Pan, Y. Ye, S. Qu, et al. Disentangling the activity-selectivity trade-off in catalytic conversion of syngas to light olefins. Science, 380 (6646) (2023), pp. 727-730.
[78]
W. Fang, C. Wang, Z. Liu, L. Wang, L. Liu, H. Li, et al. Physical mixing of a catalyst and a hydrophobic polymer promotes CO hydrogenation through dehydration. Science, 377 (6604) (2022), pp. 406-410.
[79]
A. Velty, A. Corma. Advanced zeolite and ordered mesoporous silica-based catalysts for the conversion of CO2 to chemicals and fuels. Chem Soc Rev, 52 (5) (2023), pp. 1773-1946.
[80]
J.A. Labinger, J.E. Bercaw. Understanding and exploiting C-H bond activation. Nature, 417 (6888) (2002), pp. 507-514.
[81]
J. Klankermayer, S. Wesselbaum, K. Beydoun, W. Leitner. Selective catalytic synthesis using the combination of carbon dioxide and hydrogen: catalytic chess at the interface of energy and chemistry. Angew Chem Int Ed Engl, 55 (26) (2016), pp. 7296-7343.
[82]
K. Chen, H. Li, L. He. Advance and prospective on CO2 activation and transformation strategy. Chin J Org Chem, 40 (8) (2020), pp. 2195-2207.
[83]
S. Wang, L. Wang, D. Wang, Y. Li. Recent advances of single-atom catalysts in CO2 conversion. Energy Environ Sci, 16 (7) (2023), pp. 2759-2803.
[84]
X. Wu, P.J. Dyson, B.A. Arndtsen. Achievements in C1 chemistry for organic synthesis. J Org Chem, 88 (8) (2023), pp. 4891-4893.
[85]
L. Qiu, X. Yao, Y. Zhang, H. Li, L. He. Advancements and challenges in reductive conversion of carbon dioxide via thermo-/photocatalysis. J Org Chem, 88 (8) (2023), pp. 4942-4964.
[86]
C. Tang, Y. Zheng, M. Jaroniec, S. Qiao. Electrocatalytic refinery for sustainable production of fuels and chemicals. Angew Chem Int Ed Engl, 133 (36) (2021), pp. 19724-19742.
[87]
C. Mesters. A Selection of recent advances in C1 chemistry. Annu Rev Chem Biomol, 7 (1) (2016), pp. 223-238.
[88]
W. Zheng, X. Yang, Z. Li, B. Yang, Q. Zhang, L. Lei, et al. Designs of tandem catalysts and cascade catalytic systems for CO2 upgrading. Angew Chem Int Ed Engl, 62 (43) (2023), Article e202307283.
[89]
A. Ramirez, P. Ticali, D. Salusso, T. Cordero-Lanzac, S. Ould-Chikh, C. Ahoba-Sam, et al. Multifunctional catalyst combination for the direct conversion of CO2 to propane. JACS Au, 1 (10) (2021), pp. 1719-1732.
[90]
P. De Luna, C. Hahn, D. Higgins, S.A. Jaffer, T.F. Jaramillo, E.H. Sargent. What would it take for renewably powered electrosynthesis to displace petrochemical processes?. Science, 364 (6438) (2019), Article eaav3506.
[91]
L. Li, X. Li, Y. Sun, Y. Xie. Rational design of electrocatalytic carbon dioxide reduction for a zero-carbon network. Chem Soc Rev, 51 (4) (2022), pp. 1234-1252.
[92]
C. Tang, Q. Zhang. Green electrification of the chemical industry toward carbon neutrality. Engineering, 29 (2023), pp. 22-26.
[93]
X. She, Y. Wang, H. Xu, S. Chi Edman Tsang, LauS. Ping. Challenges and opportunities in electrocatalytic CO2 reduction to chemicals and fuels. Angew Chem Int Ed Engl, 61 (49) (2022), Article e202211396.
[94]
L. Bi, S. Boulfrad, E. Traversa. Steam electrolysis by solid oxide electrolysis cells (SOECs) with proton-conducting oxides. Chem Soc Rev, 43 (24) (2014), pp. 8255-8270.
[95]
Z. Abdin, A. Zafaranloo, A. Rafiee, W. Mérida, W. Lipiński, R. Khalilpour. Hydrogen as an energy vector. Renew Sustain Energy Rev, 120 (2020), Article 109620.
[96]
W. Zhang, M. Liu, X. Gu, Y. Shi, Z. Deng, N. Cai. Water electrolysis toward elevated temperature: advances, challenges and frontiers. Chem Rev, 123 (11) (2023), pp. 7119-7192.
[97]
M. Chatenet, B.G. Pollet, D.R. Dekel, F. Dionigi, J. Deseure, P. Millet, et al. Water electrolysis: from textbook knowledge to the latest scientific strategies and industrial developments. Chem Soc Rev, 51 (11) (2022), pp. 4583-4762.
[98]
M. Mehrpooya, R. Habibi. A review on hydrogen production thermochemical water-splitting cycles. J Clean Prod, 275 (2020), Article 123836.
[99]
International Renewable Energy Agency (IRENA). Green hydrogen cost reduction:scaling up electrolysers to meet the 1.5 oC climate goal. Report. Abu Dhabi: International Renewable Energy Agency; 2020.
[100]
P. Sun, V. Cappello, A. Elgowainy, P. Vyawahare, O. Ma, K. Podkaminer, et al. An analysis of the potential and cost of the US refinery sector decarbonization. Environ Sci Technol, 57 (3) (2023), pp. 1411-1424.
[101]
H. Seo, D. Koh. Refining petroleum with membranes. Science, 376 (6597) (2022), pp. 1053-1054.
PDF(3252 KB)

Accesses

Citation

Detail

段落导航
相关文章

/