[1] |
M. Zhou, X. Zhang, J. Qu. Coronavirus disease 2019 (COVID-19): a clinical update. Front Med, 14 (2) (2020), pp. 126-135.
|
[2] |
P.V. Markov, M. Ghafari, M. Beer, K. Lythgoe, P. Simmonds, N.I. Stilianakis, et al. The evolution of SARS-CoV-2. Nat Rev Microbiol, 21 (6) (2023), pp. 361-379.
|
[3] |
G. Li, R. Hilgenfeld, R. Whitley, E. De Clercq. Therapeutic strategies for COVID-19: progress and lessons learned. Nat Rev Drug Discov, 22 (6) (2023), pp. 449-475.
|
[4] |
W. Yin, Y. Xu, P. Xu, X. Cao, C. Wu, C. Gu, et al. Structures of the Omicron spike trimer with ACE2 and an anti-Omicron antibody. Science, 375 (6584) (2022), pp. 1048-1053.
|
[5] |
M. Liu, B. Lu, Y. Li, S. Yuan, Z. Zhuang, G. Li, et al. P21-activated kinase 1 (PAK1)-mediated cytoskeleton rearrangement promotes SARS-CoV-2 entry and ACE2 autophagic degradation. Signal Transduct Target Ther, 8 (1) (2023), p. 385.
|
[6] |
S.T. Tan, A.T. Kwan, I. Rodríguez-Barraquer, B.J. Singer, H.J. Park, J.A. Lewnard, et al. Infectiousness of SARS-CoV-2 breakthrough infections and reinfections during the Omicron wave. Nat Med, 29 (2) (2023), pp. 358-365.
|
[7] |
S. Iketani, H. Mohri, B. Culbertson, S.J. Hong, Y. Duan, M.I. Luck, et al. Multiple pathways for SARS-CoV-2 resistance to nirmatrelvir. Nature, 613 (7944) (2023), pp. 558-564.
|
[8] |
J. Wang, F. Qi. Traditional Chinese medicine to treat COVID-19: the importance of evidence-based research. Drug Discov Ther, 14 (3) (2020), pp. 149-150.
|
[9] |
S. Zhang, Z. Yang, Z.L. Chen, Z.N. Li, S.J. Yue, J.J. Li, et al. Efficacy and safety of “three Chinese patent medicines and three TCM prescriptions” for COVID-19: a systematic review and network meta-analysis. Evid Based Complement Alternat Med, 2022 (2022), Article 4654793.
|
[10] |
X. Zou, K. Chang, G. Fan, H. Zheng, H. Shen, L. Tang, et al. for CAP-China network. Effectiveness and safety of Sanhan Huashi granules versus nirmatrelvir-ritonavir in adult patients with COVID-19: a randomized, open-label, multicenter trial. Sci Bull, 69 (12) (2024), pp. 1954-1963.
|
[11] |
J. Tian, S. Yan, H. Wang, Y. Zhang, Y. Zheng, H. Wu, et al. Hanshiyi formula, a medicine for SARS-CoV-2 infection in China, reduced the proportion of mild and moderate COVID-19 patients turning to severe status: a cohort study. Pharmacol Res, 161 (2020), Article 105127.
|
[12] |
L. Han, X.X. Wei, Y.J. Zheng, L.L. Zhang, X.M. Wang, H.Y. Yang, et al. Potential mechanism prediction of Cold-Damp Plague formula against COVID-19 via network pharmacology analysis and molecular docking. Chin Med, 15 (1) (2020), p. 78.
|
[13] |
S. Bibi, M.S. Khan, S.A. El-Kafrawy, T.A. Alandijany, M.M. El-Daly, Q. Yousafi, et al. Virtual screening and molecular dynamics simulation analysis of Forsythoside A as a plant-derived inhibitor of SARS-CoV-2 3CLpro. Saudi Pharm J, 30 (7) (2022), pp. 979-1002.
|
[14] |
J. Song, L. Zhang, Y. Xu, D. Yang, L. Zhang, S. Yang, et al. The comprehensive study on the therapeutic effects of baicalein for the treatment of COVID-19 in vivo and in vitro. Biochem Pharmacol, 183 (2021), Article 114302.
|
[15] |
L. Fu, S. Shao, Y. Feng, F. Ye, X. Sun, Q. Wang, et al. Mechanism of microbial metabolite leupeptin in the treatment of COVID-19 by traditional Chinese medicine herbs. MBio, 12 (5) (2021), Article e0222021.
|
[16] |
D. Zhu, H. Su, C. Ke, C. Tang, M. Witt, R.J. Quinn, et al. Efficient discovery of potential inhibitors for SARS-CoV-2 3C-like protease from herbal extracts using a native MS-based affinity-selection method. J Pharm Biomed Anal, 209 (2022), Article 114538.
|
[17] |
J. Lan, J. Ge, J. Yu, S. Shan, H. Zhou, S. Fan, et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature, 581 (7807) (2020), pp. 215-220.
|
[18] |
Q. Sun, F. Ye, H. Liang, H. Liu, C. Li, R. Lu, et al. Bardoxolone and bardoxolone methyl, two Nrf2 activators in clinical trials, inhibit SARS-CoV-2 replication and its 3C-like protease. Signal Transduct Target Ther, 6 (1) (2021), p. 212.
|
[19] |
N. Liu, Y. Zhang, Y. Lei, R. Wang, M. Zhan, J. Liu, et al. Design and evaluation of a novel peptide-drug conjugate covalently targeting SARS-CoV-2 papain-like protease. J Med Chem, 65 (1) (2022), pp. 876-884.
|
[20] |
M. Hoffmann, H. Kleine-Weber, S. Schroeder, N. Krüger, T. Herrler, S. Erichsen, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 181 (2) (2020), pp. 271-280.e8.
|
[21] |
J. Gao, C. Cao, M. Shi, S. Hong, S. Guo, J. Li, et al. Kaempferol inhibits SARS-CoV-2 invasion by impairing heptad repeats-mediated viral fusion. Phytomedicine, 118 (2023), Article 154942.
|
[22] |
H. Liu, F. Ye, Q. Sun, H. Liang, C. Li, S. Li, et al. Scutellaria baicalensis extract and baicalein inhibit replication of SARS-CoV-2 and its 3C-like protease in vitro. J Enzyme Inhib Med Chem, 36 (1) (2021), pp. 497-503.
|
[23] |
Brevini T, Maes M, Webb GJ, John BV, Fuchs CD, Buescher G, et al.; the UK-PBC Consortium. FXR inhibition may protect from SARS-CoV-2 infection by reducing ACE2. Nature 2023; 615(7950):134-42.
|
[24] |
V. Callahan, S. Hawks, M.A. Crawford, C.W. Lehman, H.A. Morrison, H.M. Ivester, et al. The pro-inflammatory chemokines CXCL9, CXCL10 and CXCL 11 are upregulated following SARS-CoV-2 infection in an AKT-dependent manner. Viruses, 13 (6) (2021), p. 1062.
|
[25] |
C. Huang, Y. Wang, X. Li, L. Ren, J. Zhao, Y. Hu, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 395 (10223) (2020), pp. 497-506.
|
[26] |
Zhou Z, Ren L, Zhang L, Zhong J, Xiao Y, Jia Z, et al. Overly exuberant innate immune response to SARS-CoV-2 infection. 2020. ssrn.3551623.
|
[27] |
M. Liao, Y. Liu, J. Yuan, Y. Wen, G. Xu, J. Zhao, et al. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. Nat Med, 26 (6) (2020), pp. 842-844.
|
[28] |
K. Huang, P. Zhang, Z. Zhang, J.Y. Youn, C. Wang, H. Zhang, et al. Traditional Chinese medicine (TCM) in the treatment of COVID-19 and other viral infections: efficacies and mechanisms. Pharmacol Ther, 225 (2021), Article 107843.
|
[29] |
Q. Li, H. Wang, X. Li, Y. Zheng, Y. Wei, P. Zhang, et al. The role played by traditional Chinese medicine in preventing and treating COVID-19 in China. Front Med, 14 (5) (2020), pp. 681-688.
|
[30] |
A. Zaliani, L. Vangeel, J. Reinshagen, D. Iaconis, M. Kuzikov, O. Keminer, et al. Cytopathic SARS-CoV-2 screening on Vero-E6 cells in a large-scale repurposing effort. Sci Data, 9 (1) (2022), p. 405.
|
[31] |
R.D. Jiang, M.Q. Liu, Y. Chen, C. Shan, Y.W. Zhou, X.R. Shen, et al. Pathogenesis of SARS-CoV-2 in transgenic mice expressing human angiotensin-converting enzyme 2. Cell, 182 (1) (2020), pp. 50-58.e8.
|
[32] |
M. Ranjbar, A. Rahimi, Z. Baghernejadan, A. Ghorbani, H. Khorramdelazad. Role of CCL2/CCR2 axis in the pathogenesis of COVID-19 and possible treatments: all options on the table. Int Immunopharmacol, 113 (Pt A) (2022), Article 109325.
|
[33] |
L. Lu, H. Zhang, M. Zhan, J. Jiang, H. Yin, D.J. Dauphars, et al. Preventing mortality in COVID-19 patients: which cytokine to target in a raging storm?. Front Cell Dev Biol, 8 (2020), p. 677.
|
[34] |
W. Liang, Z. Feng, S. Rao, C. Xiao, X. Xue, Z. Lin, et al. Diarrhoea may be underestimated: a missing link in 2019 novel coronavirus. Gut, 69 (6) (2020), pp. 1141-1143.
|
[35] |
S. Ahlawat, S.KK. Asha. Immunological co-ordination between gut and lungs in SARS-CoV-2 infection. Virus Res, 286 (2020), Article 198103.
|
[36] |
K.S. Cheung, I.F.N. Hung, P.P.Y. Chan, K.C. Lung, E. Tso, R. Liu, et al. Gastrointestinal manifestations of SARS-CoV-2 infection and virus load in fecal samples from a Hong Kong cohort: systematic review and meta-analysis. Gastroenterology, 159 (1) (2020), pp. 81-95.
|
[37] |
Stein SR, Ramelli SC, Grazioli A, Chung JY, Singh M, Yinda CK, et al.; the NIH COVID-19 Autopsy Consortium. SARS-CoV-2 infection and persistence in the human body and brain at autopsy. Nature 2022; 612(7941):758-63.
|
[38] |
E.F. Brooks, A.S. Bhatt. The gut microbiome: a missing link in understanding the gastrointestinal manifestations of COVID-19?. Cold Spring Harb Mol Case Stud, 7 (2) (2021), Article a006031.
|
[39] |
A. Natarajan, S. Zlitni, E.F. Brooks, S.E. Vance, A. Dahlen, H. Hedlin, et al. Gastrointestinal symptoms and fecal shedding of SARS-CoV-2 RNA suggest prolonged gastrointestinal infection. Med, 3 (6) (2022), pp. 371-387.e9.
|
[40] |
S. Zheng, J. Fan, F. Yu, B. Feng, B. Lou, Q. Zou, et al. Viral load dynamics and disease severity in patients infected with SARS-CoV-2 in Zhejiang province, China, January-March 2020: retrospective cohort study. BMJ, 369 (2020), Article m1443.
|
[41] |
Y.F. Huang, C. Bai, F. He, Y. Xie, H. Zhou. Review on the potential action mechanisms of Chinese medicines in treating coronavirus disease 2019 (COVID-19). Pharmacol Res, 158 (2020), Article 104939.
|
[42] |
J.Y. Lim, J.H. Lee, D.H. Yun, Y.M. Lee, D.K. Kim. Inhibitory effects of nodakenin on inflammation and cell death in lipopolysaccharide-induced liver injury mice. Phytomedicine, 81 (2021), Article 153411.
|
[43] |
N. Yi, Y. Mi, X. Xu, N. Li, B. Chen, K. Yan, et al. Nodakenin attenuates cartilage degradation and inflammatory responses in a mice model of knee osteoarthritis by regulating mitochondrial Drp1/ROS/NLRP3 axis. Int Immunopharmacol, 113 (Pt A) (2022), Article 109349.
|