片上计算光谱仪的创新逆向设计方法——更好的性能和可靠性

李昂, 吴怡凡, 张弓远, 王畅, 何吉骏, 石雅琪, 杨宗银, 潘时龙

工程(英文) ›› 2024, Vol. 43 ›› Issue (12) : 81-88.

PDF(2581 KB)
PDF(2581 KB)
工程(英文) ›› 2024, Vol. 43 ›› Issue (12) : 81-88. DOI: 10.1016/j.eng.2024.07.011
研究论文
Article

片上计算光谱仪的创新逆向设计方法——更好的性能和可靠性

作者信息 +

Innovative Inverse-Design Approach for On-Chip Computational Spectrometers: Enhanced Performance and Reliability

Author information +
History +

摘要

基于无序结构的计算光谱仪已成为满足集成光谱仪需求的有前景解决方案,提供高性能并提高对制造变化和温度波动的抵抗力。然而,当前的计算光谱仪由于依赖蛮力随机设计无序结构而变得不切实际,导致无法控制、不可复制且性能不佳。在这项研究中,我们通过引入一种创新的逆向设计方法彻底改变了现有范式。通过利用逆向设计的强大功能,我们成功地将其适用于优化由多个相关组件组成的复杂系统,这些组件具有复杂的光谱响应。该方法可应用于广泛的结构。我们通过实现一种基于干涉效应的新型无序结构的光谱仪验证了这一点,该结构表现出可忽略的损耗和高灵敏度。对于给定结构,我们的方法在光谱分辨率上提高了12倍,并将滤波器间的交叉相关性减少了四倍。最终的光谱仪展现了可靠和可复制的性能,能够精确确定结构参数。

Abstract

Computational spectrometers utilizing disordered structures have emerged as promising solutions for meeting the imperative demand for integrated spectrometers, offering high performance and improved resilience to fabrication variations and temperature fluctuations. However, the current computational spectrometers are impractical because they rely on a brute-force random design approach for disordered structures. This leads to an uncontrollable, non-reproducible, and suboptimal spectrometer performance. In this study, we revolutionize the existing paradigm by introducing a novel inverse design approach for computational spectrometers. By harnessing the power of inverse design, which has traditionally been applied to optimize single devices with simple performance, we successfully adapted it to optimize a complex system comprising multiple correlated components with intricate spectral responses. This approach can be applied to a wide range of structures. We validated this by realizing a spectrometer utilizing a new type of disordered structure based on interferometric effects that exhibits negligible loss and high sensitivity. For a given structure, our approach yielded a remarkable 12-times improvement in the spectral resolution and a four-fold reduction in the cross-correlation between the filters. The resulting spectrometer demonstrated reliable and reproducible performance with the precise determination of structural parameters.

关键词

硅基光子学 / 集成光谱仪 / 逆向设计

Keywords

Silicon photonics / Integrated spectrometers / Inverse design

引用本文

导出引用
李昂, 吴怡凡, 张弓远. 片上计算光谱仪的创新逆向设计方法——更好的性能和可靠性. Engineering. 2024, 43(12): 81-88 https://doi.org/10.1016/j.eng.2024.07.011

参考文献

[1]
Z. Yang, T. Albrow-Owen, W. Cai, T. Hasan. Miniaturization of optical spectrometers. Science, 371 (6528) (2021), Article eabe0722.
[2]
A. Li, C. Yao, J. Xia, H. Wang, Q. Cheng, R. Penty, et al. Advances in cost-effective integrated spectrometers. Light Sci Appl, 11 (2022), p. 174.
[3]
Z. Xiao, W. Liu, S. Xu, J. Zhou, Z. Ren, C. Lee. Recent progress in silicon-based photonic integrated circuits and emerging applications. Adv Opt Mater, 11 (20) (2023), Article 2301028.
[4]
K. Ma, K. Chen, N. Zhu, L. Liu, S. He. High-resolution compact on-chip spectrometer based on an echelle grating with densely packed waveguide array. IEEE Photonics J, 11 (1) (2019), Article 4900107.
[5]
X. Ma, M. Li, J.J. He. CMOS-compatible integrated spectrometer based on echelle diffraction grating and MSM photodetector array. IEEE Photonics J, 5 (2) (2013), Article 6600807.
[6]
Z. Xia, A.A. Eftekhar, M. Soltani, B. Momeni, Q. Li, M. Chamanzar, et al. High resolution on-chip spectroscopy based on miniaturized microdonut resonators. Opt Express, 19 (13) (2011), pp. 12356-12364.
[7]
B. Redding, S.F. Liew, R. Sarma, H. Cao. Compact spectrometer based on a disordered photonic chip. Nat Photonics, 7 (9) (2013), pp. 746-751.
[8]
J. Bao, M.G. Bawendi. A colloidal quantum dot spectrometer. Nature, 523 (7558) (2015), pp. 67-70.
[9]
Z. Wang, S. Yi, A. Chen, M. Zhou, T.S. Luk, A. James, et al. Single-shot on-chip spectral sensors based on photonic crystal slabs. Nat Commun, 10 (2019), p. 1020.
[10]
X. Zhu, L. Bian, H. Fu, L. Wang, B. Zou, Q. Dai, et al. Broadband perovskite quantum dot spectrometer beyond human visual resolution. Light Sci Appl, 9 (2020), p. 73.
[11]
A. Boschetti, A. Taschin, P. Bartolini, A.K. Tiwari, L. Pattelli, R. Torre, et al. Spectral super-resolution spectroscopy using a random laser. Nat Photonics, 14 (3) (2020), pp. 177-182.
[12]
A. Li, Y. Fainman. On-chip spectrometers using stratified waveguide filters. Nat Commun, 12 (2021), p. 2704.
[13]
W. Hadibrata, H. Noh, H. Wei, S. Krishnaswamy, K. Aydin. Compact, high-resolution inverse-designed on-chip spectrometer based on tailored disorder modes. Laser Photonics Rev, 15 (9) (2021), Article 2000556.
[14]
L. Gao, Y. Qu, L. Wang, Z. Yu. Computational spectrometers enabled by nanophotonics and deep learning. Nanophotonics, 11 (11) (2022), pp. 2507-2529.
[15]
Y. Chang, S. Xu, B. Dong, J. Wei, X. Le, Y. Ma, et al. Development of triboelectric-enabled tunable Fabry-Pérot photonic-crystal-slab filter towards wearable mid-infrared computational spectrometer. Nano Energy, 89 (2021), Article 106446.
[16]
X. Liu, W. Liu, Z. Ren, Y. Ma, B. Dong, G. Zhou, et al. Progress of optomechanical micro/nano sensors: a review. Int J Optomechatronics, 15 (1) (2021), pp. 120-159.
[17]
L. Wu, Z. Cai, Y. Su, J. Wu. Simulative study on speckle’s spectral properties of a random pixelated grating. J Opt Soc Am A Opt Image Sci Vis, 36 (8) (2019), pp. 1410-1417.
[18]
Z. Lin, S. Yu, Y. Chen, W. Cai, B. Lin, J. Song, et al. High-performance, intelligent, on-chip speckle spectrometer using 2D silicon photonic disordered microring lattice. Optica, 10 (4) (2023), pp. 497-504.
[19]
A. Li, C. Wang, F. Bao, W. Fang, Y. Liang, R. Cheng, et al. An integrated single-shot spectrometer with large bandwidth-resolution ratio and wide operation temperature range. PhotoniX, 4 (2023), p. 29.
[20]
P.H. Fu, C.Y. Chao, D.W. Huang. Ultracompact silicon waveguide bends designed using a particle swarm optimization algorithm. IEEE Photonics J, 13 (1) (2021), Article 6600509.
[21]
J.C.C. Mak, C. Sideris, J. Jeong, A. Hajimiri, J.K.S. Poon. Binary particle swarm optimized 2 × 2 power splitters in a standard foundry silicon photonic platform. Opt Lett, 41 (16) (2016), pp. 3868-3871.
[22]
L. Zagaglia, F. Floris, P.A. O’Brien. Experimental characterization of particle swarm optimized focusing non-uniform grating coupler for multiple SOI thicknesses. J Lightwave Technol, 39 (15) (2021), pp. 5028-5034.
[23]
W. Chen, H. Li, B. Zhang, P. Wang, S. Dai, Y. Liu, et al. Silicon mode (de) multiplexer based on cascaded particle-swarm-optimized counter-tapered couplers. IEEE Photonics J, 13 (1) (2020), Article 6600210.
[24]
K. Abedi, S.M. Mirjalili. Slow light performance enhancement of Bragg slot photonic crystal waveguide with particle swarm optimization algorithm. Opt Commun, 339 (2015), pp. 7-13.
[25]
M. Djavid, S. Mirtaheri, M. Abrishamian. Photonic crystal notch-filter design using particle swarm optimization theory and finite-difference time-domain analysis. J Opt Soc Am B, 26 (4) (2009), pp. 849-853.
[26]
Y. Zhang, S. Yang, A.E.J. Lim, G.Q. Lo, C. Galland, T. Baehr-Jones, et al. A compact and low loss Y-junction for submicron silicon waveguide. Opt Express, 21 (1) (2013), pp. 1310-1316.
[27]
Kennedy J, Eberhart R.Particle swarm optimization. In:Proceedings of International Conference on Neural Networks; 1995 Nov 27-Dec 1; Perth, WA, Australia; 1995.
[28]
D.A. Guimaraes, G.H.F. Floriano, L.S. Chaves. A tutorial on the CVX system for modeling and solving convex optimization problems. IEEE Latin Am T, 13 (5) (2015), pp. 1228-1257.
[29]
J. Zhang, X. Zhu, J. Bao. Denoising autoencoder aided spectrum reconstruction for colloidal quantum dot spectrometers. IEEE Sens J, 21 (5) (2020), pp. 6450-6458.
[30]
J. Zhang, X. Zhu, J. Bao. Solver-informed neural networks for spectrum reconstruction of colloidal quantum dot spectrometers. Opt Express, 28 (22) (2020), pp. 33656-33672.
PDF(2581 KB)

Accesses

Citation

Detail

段落导航
相关文章

/