通过液滴实现液-固界面摩擦电荷的可控操纵

工程(英文) ›› 2025, Vol. 45 ›› Issue (2) : 132-142.

PDF(2536 KB)
PDF(2536 KB)
工程(英文) ›› 2025, Vol. 45 ›› Issue (2) : 132-142. DOI: 10.1016/j.eng.2024.07.013
研究论文
Article

通过液滴实现液-固界面摩擦电荷的可控操纵

作者信息 +

Droplet-Enabled Controllable Manipulation of Tribo-Charges from Liquid–Solid Interface

Author information +
History +

Abstract

Efficient utilization of electrostatic charges is paramount for numerous applications, from printing to kinetic energy harvesting. However, existing technologies predominantly focus on the static qualities of these charges, neglecting their dynamic capabilities as carriers for energy conversion. Herein, we report a paradigm-shifting strategy that orchestrates the swift transit of surface charges, generated through contact electrification, via a freely moving droplet. This technique ingeniously creates a bespoke charged surface which, in tandem with a droplet acting as a transfer medium to the ground, facilitates targeted charge displacement and amplifies electrical energy collection. The spontaneously generated electric field between the charged surface and needle tip, along with the enhanced water ionization under the electric field, proves pivotal in facilitating controlled charge transfer. By coupling the effects of charge self-transfer, contact electrification, and electrostatic induction, a dual-electrode droplet-driven (DD) triboelectric nanogenerator (TENG) is designed to harvest the water-related energy, exhibiting a two-order-of-magnitude improvement in electrical output compared to traditional single-electrode systems. Our strategy establishes a fundamental groundwork for efficient water drop energy acquisition, offering deep insights and substantial utility for future interdisciplinary research and applications in energy science.

Keywords

Solid–liquid interface engineering / Energy harvesting device / Triboelectric nanogenertor / Interface charge utilization / Water energy

引用本文

导出引用
. 通过液滴实现液-固界面摩擦电荷的可控操纵. Engineering. 2025, 45(2): 132-142 https://doi.org/10.1016/j.eng.2024.07.013

参考文献

[1]
McCarty LS, Whitesides GM.Electrostatic charging due to separation of ions at interfaces: contact electrification of ionic electrets.Angew Chem Int Ed 2008; 47(12):2188-2207.
[2]
Averin DV, Nazarov YV.Virtual electron diffusion during quantum tunneling of the electric charge.Phys Rev Lett 1990; 65(19):2446-2449.
[3]
Lee JK, Han HS, Chaikasetsin S, Marron DP, Waymouth RM, Prinz FB, et al.Condensing water vapor to droplets generates hydrogen peroxide.Proc Natl Acad Sci USA 2020; 117(49):30934-30941.
[4]
Li X, Bista P, Stetten AZ, Bonart H, Schür MT, Hardt S, et al.Spontaneous charging affects the motion of sliding drops.Nat Phys 2022; 18(6):713-719.
[5]
Barringer SA, Sumonsiri N.Electrostatic coating technologies for food processing.Annu Rev Food Sci Technol 2015; 6(1):157-169.
[6]
Prasad LK, McGinity JW, Williams III RO.Electrostatic powder coating: principles and pharmaceutical applications.Int J Pharm 2016; 505:289-302.
[7]
Pel J, Broemeling D, Mai L, Poon HL, Tropini G, Warren RL, et al.Nonlinear electrophoretic response yields a unique parameter for separation of biomolecules.Proc Natl Acad Sci USA 2009; 106(35):14796-14801.
[8]
Saucedo-Espinosa MA, Dittrich PS.In-droplet electrophoretic separation and enrichment of biomolecules.Anal Chem 2020; 92(12):8414-8421.
[9]
Wang ZL.Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors.ACS Nano 2013; 7(11):9533-9557.
[10]
Cheng T, Shao J, Wang ZL.Triboelectric nanogenerators.Nat Rev Methods Primer 2023; 3(1):39.
[11]
Lin ZH, Cheng G, Lee S, Pradel KC, Wang ZL.Harvesting water drop energy by a sequential contact-electrification and electrostatic-induction process.Adv Mater 2014; 26(27):4690-4696.
[12]
Zhu G, Su Y, Bai P, Chen J, Jing Q, Yang W, et al.Harvesting water wave energy by asymmetric screening of electrostatic charges on a nanostructured hydrophobic thin-film surface.ACS Nano 2014; 8(6):6031-6037.
[13]
Lin ZH, Cheng G, Lin L, Lee S, Wang ZL.Water–solid surface contact electrification and its use for harvesting liquid-wave energy.Angew Chem Int Ed 2013; 52(48):12545-12549.
[14]
Levin Z, Hobbs PV.Splashing of water drops on solid and wetted surfaces: hydrodynamics and charge separation.Philos Trans R Soc A 1971; 269(1200):555-585.
[15]
Skinner LB, Benmore CJ, Shyam B, Weber JKR, Parise JB.Structure of the floating water bridge and water in an electric field.Proc Natl Acad Sci USA 2012; 109(41):16463-16468.
[16]
Fuchs EC, Woisetschläger J, Gatterer K, Maier E, Pecnik R, Holler G, et al.The floating water bridge.J Phys D Appl Phys 2007; 40(19):6112.
[17]
Hosono T, Kato K, Morita A, Okubo H.Surface charges on alumina in vacuum with varying surface roughness and electric field distribution.IEEE Trans Dielectr Electr Insul 2007; 14(3):627-633.
[18]
Quinn A, Sedev R, Ralston J.Contact angle saturation in electrowetting.J Phys Chem B 2005; 109(13):6268-6275.
[19]
Ali HAA, Mohamed HA, Abdelgawad M.Repulsion-based model for contact angle saturation in electrowetting.Biomicrofluidics 2015; 9(1):014115.
[20]
Sun Q, Wang D, Li Y, Zhang J, Ye S, Cui J, et al.Surface charge printing for programmed droplet transport.Nat Mater 2019; 18(9):936-941.
[21]
Chun J, Ye BU, Lee JW, Choi D, Kang CY, Kim SW, et al.Boosted output performance of triboelectric nanogenerator via electric double layer effect.Nat Commun 2016; 7(1):12985.
[22]
Tang Z, Yang D, Guo H, Lin S, Wang ZL.Spontaneous wetting induced by contact-electrification at liquid–solid interface.Adv Mater 2024; 36(25):2400451.
[23]
Lin S, Chen X, Wang ZL.Contact electrification at the liquid–solid interface.Chem Rev 2022; 122(5):5209-5232.
[24]
Zhan F, Wang AC, Xu L, Lin S, Shao J, Chen X, et al.Electron transfer as a liquid droplet contacting a polymer surface.ACS Nano 2020; 14(12):17565-17573.
[25]
Wang ZL, Wang AC.On the origin of contact-electrification.Mater Today 2019; 30:34-51.
[26]
Nie J, Ren Z, Xu L, Lin S, Zhan F, Chen X, et al.Probing contact-electrification-induced electron and ion transfers at a liquid–solid interface.Adv Mater 2020; 32(2):1905696.
[27]
Lin S, Xu L, Chi Wang A, Wang ZL.Quantifying electron-transfer in liquid–solid contact electrification and the formation of electric double-layer.Nat Commun 2020; 11(1):399.
[28]
Li S, Nie J, Shi Y, Tao X, Wang F, Tian J, et al.Contributions of different functional groups to contact electrification of polymers.Adv Mater 2020; 32(25):2001307.
[29]
Sun M, Lu Q, Wang ZL, Huang B.Understanding contact electrification at liquid–solid interfaces from surface electronic structure.Nat Commun 2021; 12(1):1752.
[30]
Zhang L, Li X, Zhang Y, Feng Y, Zhou F, Wang D.Regulation and influence factors of triboelectricity at the solid–liquid interface.Nano Energy 2020; 78:105370.
[31]
Wu H, Mendel N, van der Ham S, Shui L, Zhou G, Mugele F.Charge trapping-based electricity generator (CTEG): an ultrarobust and high efficiency nanogenerator for energy harvesting from water droplets.Adv Mater 2020; 32(33):2001699.
[32]
Digilov R.Charge-induced modification of contact angle: the secondary electrocapillary effect.Langmuir 2000; 16(16):6719-6723.
[33]
Woisetschläger J, Wexler AD, Holler G, Eisenhut M, Gatterer K, Fuchs EC.Horizontal bridges in polar dielectric liquids.Exp Fluids 2012; 52(1):193-205.
[34]
Jin Y, Xu W, Zhang H, Li R, Sun J, Yang S, et al.Electrostatic tweezer for droplet manipulation.Proc Natl Acad Sci USA 2022; 119(2):e2105459119.
[35]
Saitta AM, Saija F, Giaquinta PV.Ab initio molecular dynamics study of dissociation of water under an electric field.Phys Rev Lett 2012; 108(20):207801.
[36]
Sun Y, Huang X, Soh S.Solid-to-liquid charge transfer for generating droplets with tunable charge.Angew Chem Int Ed 2016; 55(34):9956-9960.
[37]
Jin Y, Liu X, Xu W, Sun P, Huang S, Yang S, et al.Charge-powered electrotaxis for versatile droplet manipulation.ACS Nano 2023; 17(11):10713-10720.
[38]
Jin Y, Wu C, Sun P, Wang M, Cui M, Zhang C, et al.Electrification of water: from basics to applications.Droplet 2022; 1(2):92-109.
PDF(2536 KB)

Accesses

Citation

Detail

段落导航
相关文章

/