可重构三维热穹

周宇鸿, 杨福宝, 须留钧, 庄鹏飞, 王栋, 欧阳晓平, 李鹰, 黄吉平

工程(英文) ›› 2025, Vol. 46 ›› Issue (3) : 236-244.

PDF(2276 KB)
PDF(2276 KB)
工程(英文) ›› 2025, Vol. 46 ›› Issue (3) : 236-244. DOI: 10.1016/j.eng.2024.07.021
研究论文
Article

可重构三维热穹

作者信息 +

Reconfigurable Three-Dimensional Thermal Dome

Author information +
History +

Abstract

Thermal metamaterial represents a groundbreaking approach to control heat conduction, and, as a crucial component, thermal invisibility is of utmost importance for heat management. Despite the flourishing development of thermal invisibility schemes, they still face two limitations in practical applications. First, objects are typically completely enclosed in traditional cloaks, making them difficult to use and unsuitable for objects with heat sources. Second, although some theoretical proposals have been put forth to change the thermal conductivity of materials to achieve dynamic invisibility, their designs are complex and rigid, making them unsuitable for large-scale use in real three-dimensional (3D) spaces. Here, we propose a concept of a thermal dome to achieve 3D invisibility. Our scheme includes an open functional area, greatly enhancing its usability and applicability. It features a reconfigurable structure, constructed with simple isotropic natural materials, making it suitable for dynamic requirements. The performance of our reconfigurable thermal dome has been confirmed through simulations and experiments, consistent with the theory. The introduction of this concept can greatly advance the development of thermal invisibility technology from theory to engineering and provide inspiration for other physical domains, such as direct current electric fields and magnetic fields.

Keywords

Thermal domes / Reconfigurable metamaterials / Three-dimensional invisibility

引用本文

导出引用
周宇鸿, 杨福宝, 须留钧. 可重构三维热穹. Engineering. 2025, 46(3): 236-244 https://doi.org/10.1016/j.eng.2024.07.021

参考文献

[1]
Fan CZ, Gao Y, Huang JP.Shaped graded materials with an apparent negative thermal conductivity.Appl Phys Lett 2008; 92(25):251907.
[2]
Chen T, Weng CN, Chen JS.Cloak for curvilinearly anisotropic media in conduction.Appl Phys Lett 2008; 93(11):114103.
[3]
Zheludev NI, Kivshar YS.From metamaterials to metadevices.Nat Mater 2012; 11(11):917-924.
[4]
Li Y, Bai X, Yang T, Luo H, Qiu CW.Structured thermal surface for radiative camouflage.Nat Commun 2018; 9(1):273.
[5]
Yang S, Wang J, Dai GL, Yang FB, Huang JP.Controlling macroscopic heat transfer with thermal metamaterials: theory, experiment and application.Phys Rep 2021; 908:1-65.
[6]
Li Y, Qi M, Li J, Cao PC, Wang D, Zhu XF, et al.Heat transfer control using a thermal analogue of coherent perfect absorption.Nat Commun 2022; 13(1):2683.
[7]
Martinez F, Maldovan M.Metamaterials: optical, acoustic, elastic, heat, mass, electric, magnetic, and hydrodynamic cloaking.Mater Today Phys 2022; 27:100819.
[8]
Huang JP.Theoretical thermotics: transformation thermotics and extended theories for thermal metamaterials. Springer, Singapore (2020)
[9]
Yeung WS, Yang RJ.Introduction to thermal cloaking: theory and analysis in conduction and convection. Springer, Singapore (2022)
[10]
Jin P, Liu JR, Xu LJ, Wang J, Ouyang XP, Jiang JH, et al.Tunable liquid–solid hybrid thermal metamaterials with a topology transition.Proc Natl Acad Sci USA 2023; 120(3):e2217068120.
[11]
Ju R, Xu GQ, Xu LJ, Qi MH, Wang D, Cao PC, et al.Convective thermal metamaterials: exploring high-efficiency, directional, and wave-like heat transfer.Adv Mater 2023; 35(23):2209123.
[12]
Hu R, Xie B, Hu J, Chen Q, Luo X.Carpet thermal cloak realization based on the refraction law of heat flux.EPL 2015; 111(5):54003.
[13]
Fujii G, Akimoto Y.Topology-optimized thermal carpet cloak expressed by an immersed-boundary level-set method via a covariance matrix adaptation evolution strategy.Int J Heat Mass Transf 2019; 137:1312-1322.
[14]
Qin J, Luo W, Yang P, Wang B, Deng T, Han TC.Experimental demonstration of irregular thermal carpet cloaks with natural bulk material.Int J Heat Mass Transf 2019; 141:487-490.
[15]
Yang FB, Zhang ZR, Xu LJ, Liu ZF, Jin P, Zhuang PF, et al.Controlling mass and energy diffusion with metamaterials.Rev Mod Phys 2024; 96(1):015002.
[16]
Zhang ZR, Xu LJ, Qu T, Lei M, Lin ZK, Ouyang XP, et al.Diffusion metamaterials.Nat Rev Phys 2023; 5(4):218-235.
[17]
Liu ZF, Jin P, Lei M, Wang CM, Marchesoni F, Jiang JH, et al.Topological thermal transport.Nat Rev Phys 2024; 6(9):554-565.
[18]
Liu ZF, Cao PC, Xu LJ, Xu GQ, Li Y, Huang JP.Higher-order topological in-bulk corner state in pure diffusion systems.Phys Rev Lett 2024; 132(17):176302.
[19]
Dai G, Shang J, Huang JP.Theory of transformation thermal convection for creeping flow in porous media: cloaking, concentrating, and camouflage.Phys Rev E 2018; 97(2):022129.
[20]
Peng YG, Li Y, Cao PC, Zhu XF, Qiu CW.3D printed meta-helmet for wide-angle thermal camouflages.Adv Funct Mater 2020; 30(28):2002061.
[21]
Xu L, Chen H.Transformation metamaterials.Adv Mater 2021; 33(52):2005489.
[22]
Li Y, Li W, Han TC, Zheng X, Li JX, Li BW, et al.Transforming heat transfer with thermal metamaterials and devices.Nat Rev Mater 2021; 6(6):488-507.
[23]
Xu LJ, Dai GL, Yang FB, Liu JR, Zhou YH, Wang J, et al.Free-form and multi-physical metamaterials with forward conformality-assisted tracing.Nat Comput Sci 2024; 4(7):532-541.
[24]
Xu HY, Shi XH, Gao F, Sun HD, Zhang BL.Ultrathin three-dimensional thermal cloak.Phys Rev Lett 2014; 112(5):054301.
[25]
Han TC, Bai X, Gao DL, Thong JTL, Li BW, Qiu CW.Experimental demonstration of a bilayer thermal cloak.Phys Rev Lett 2014; 112(5):054302.
[26]
Ma YG, Liu YC, Raza M, Wang YD, He SL.Experimental demonstration of a multiphysics cloak: manipulating heat flux and electric current simultaneously.Phys Rev Lett 2014; 113(20):205501.
[27]
Han TC, Yang P, Li Y, Lei DY, Li BW, Hippalgaonkar K, et al.Full-parameter omnidirectional thermal metadevices of anisotropic geometry.Adv Mater 2018; 30(49):1804019.
[28]
Dai GL, Zhou YH, Wang J, Yang FB, Qu T, Huang JP.Convective cloak in Hele-Shaw cells with bilayer structures: hiding objects from heat and fluid motion simultaneously.Phys Rev Appl 2022; 17(4):044006.
[29]
Fujii G, Akimoto Y, Takahashi M.Exploring optimal topology of thermal cloaks by CMA-ES.Appl Phys Lett 2018; 112(6):061108.
[30]
Sha W, Xiao M, Zhang JH, Ren XC, Zhu Z, Zhang Y, et al.Robustly printable freeform thermal metamaterials.Nat Commun 2021; 12(1):7228.
[31]
Ji Q, Chen X, Liang J, Fang G, Laude V, Arepolage T, et al.Deep learning based design of thermal metadevices.Int J Heat Mass Transf 2022; 196:123149.
[32]
Hirasawa K, Nakami I, Ooinoue T, Asaoka T, Fujii G.Experimental demonstration of thermal cloaking metastructures designed by topology optimization.Int J Heat Mass Transf 2022; 194:123093.
[33]
Sha W, Xiao M, Huang M, Gao L.Topology-optimized freeform thermal metamaterials for omnidirectionally cloaking sensors.Mater Today Phys 2022; 28:100880.
[34]
Wu X, Wu S, Chen X, Lin H, Forsberg E, He S.An ultra-compact and reproducible fiber tip Michelson interferometer for high-temperature sensing.Prog Electromagn Res 2021; 172:89-99.
[35]
Pendry J, Zhou J, Sun J.Metamaterials: from engineered materials to engineering materials.Engineering 2022; 17:1-2.
[36]
Lu QB, Li X, Zhang XJ, Lu MH, Chen YF.Perspective: acoustic metamaterials in future engineering.Engineering 2022; 17:22-30.
[37]
Xing XC, Cao Y, Tian XY, Wu L.A thermo-tunable metamaterial as an actively controlled broadband absorber.Engineering 2023; 20:143-152.
[38]
Imran M, Zhang L, Gain AK.Advanced thermal metamaterial design for temperature control at the cloaked region.Sci Rep 2020; 10(1):11763.
[39]
Gao Y, Huang JP.Unconventional thermal cloak hiding an object outside the cloak.EPL 2013; 104(4):44001.
[40]
Yang S, Xu LJ, Huang JP.Thermal magnifier and external cloak in ternary component structure.J Appl Phys 2019; 125(5):055103.
[41]
Li Y, Shen XY, Wu ZH, Huang JY, Chen YX, Ni YS, et al.Temperature-dependent transformation thermotics: from switchable thermal cloaks to macroscopic thermal diodes.Phys Rev Lett 2015; 115(19):195503.
[42]
Xu LJ, Yang S, Huang JP.Passive metashells with adaptive thermal conductivities: chameleonlike behavior and its origin.Phys Rev Appl 2019; 11(5):054071.
[43]
Yang FB, Tian BY, Xu LJ, Huang JP.Experimental demonstration of thermal chameleonlike rotators with transformation-invariant metamaterials.Phys Rev Appl 2020; 14(5):054024.
[44]
Li Y, Zhu KJ, Peng YG, Li W, Yang TZ, Xu HX, et al.Thermal meta-device in analogue of zero-index photonics.Nat Mater 2019; 18(1):48-54.
[45]
Xu GQ, Dong KC, Li Y, Li HG, Liu KP, Li LQ, et al. Tunable analog thermal material. Nat Commun, 11 (1) (2020), p. 6028
[46]
Li JX, Li Y, Cao PC, Yang TZ, Zhu XF, Wang WY, et al.A continuously tunable solid-like convective thermal metadevice on the reciprocal line.Adv Mater 2020; 32(42):2003823.
[47]
Guo J, Xu GQ, Tian D, Qu Z, Qiu CW.A real-time self-adaptive thermal metasurface.Adv Mater 2022; 34(24):2200329.
[48]
Han TC, Nangong JY, Li Y.ITR-free thermal cloak.Int J Heat Mass Transf 2023; 203:123779.
[49]
Ren W, Sun Y, Zhao DL, Aili A, Zhang S, Shi CQ, et al.High-performance wearable thermoelectric generator with self-healing, recycling, and Lego-like reconfiguring capabilities.Sci Adv 2021; 7(7):eabe0586.
[50]
Xiang JL, Tao ZY, Li XF, Zhao YT, He Y, Guo XH, et al.Metamaterial-enabled arbitrary on-chip spatial mode manipulation.Light Sci Appl 2022; 11(1):168.
[51]
Schittny R, Kadic M, Guenneau S, Wegener M.Experiments on transformation thermodynamics: molding the flow of heat.Phys Rev Lett 2013; 110(19):195901.
[52]
Milton GW.The theory of composite. Cambridge University Press, Cambridge (2002)
[53]
Ji QX, Qi YC, Liu CW, Meng SH, Liang J, Kadic M, et al.Design of thermal cloaks with isotropic materials based on machine learning.Int J Heat Mass Transf 2022; 189:122716.
PDF(2276 KB)

Accesses

Citation

Detail

段落导航
相关文章

/