[1] |
Fan CZ, Gao Y, Huang JP.Shaped graded materials with an apparent negative thermal conductivity.Appl Phys Lett 2008; 92(25):251907.
|
[2] |
Chen T, Weng CN, Chen JS.Cloak for curvilinearly anisotropic media in conduction.Appl Phys Lett 2008; 93(11):114103.
|
[3] |
Zheludev NI, Kivshar YS.From metamaterials to metadevices.Nat Mater 2012; 11(11):917-924.
|
[4] |
Li Y, Bai X, Yang T, Luo H, Qiu CW.Structured thermal surface for radiative camouflage.Nat Commun 2018; 9(1):273.
|
[5] |
Yang S, Wang J, Dai GL, Yang FB, Huang JP.Controlling macroscopic heat transfer with thermal metamaterials: theory, experiment and application.Phys Rep 2021; 908:1-65.
|
[6] |
Li Y, Qi M, Li J, Cao PC, Wang D, Zhu XF, et al.Heat transfer control using a thermal analogue of coherent perfect absorption.Nat Commun 2022; 13(1):2683.
|
[7] |
Martinez F, Maldovan M.Metamaterials: optical, acoustic, elastic, heat, mass, electric, magnetic, and hydrodynamic cloaking.Mater Today Phys 2022; 27:100819.
|
[8] |
Huang JP.Theoretical thermotics: transformation thermotics and extended theories for thermal metamaterials. Springer, Singapore (2020)
|
[9] |
Yeung WS, Yang RJ.Introduction to thermal cloaking: theory and analysis in conduction and convection. Springer, Singapore (2022)
|
[10] |
Jin P, Liu JR, Xu LJ, Wang J, Ouyang XP, Jiang JH, et al.Tunable liquid–solid hybrid thermal metamaterials with a topology transition.Proc Natl Acad Sci USA 2023; 120(3):e2217068120.
|
[11] |
Ju R, Xu GQ, Xu LJ, Qi MH, Wang D, Cao PC, et al.Convective thermal metamaterials: exploring high-efficiency, directional, and wave-like heat transfer.Adv Mater 2023; 35(23):2209123.
|
[12] |
Hu R, Xie B, Hu J, Chen Q, Luo X.Carpet thermal cloak realization based on the refraction law of heat flux.EPL 2015; 111(5):54003.
|
[13] |
Fujii G, Akimoto Y.Topology-optimized thermal carpet cloak expressed by an immersed-boundary level-set method via a covariance matrix adaptation evolution strategy.Int J Heat Mass Transf 2019; 137:1312-1322.
|
[14] |
Qin J, Luo W, Yang P, Wang B, Deng T, Han TC.Experimental demonstration of irregular thermal carpet cloaks with natural bulk material.Int J Heat Mass Transf 2019; 141:487-490.
|
[15] |
Yang FB, Zhang ZR, Xu LJ, Liu ZF, Jin P, Zhuang PF, et al.Controlling mass and energy diffusion with metamaterials.Rev Mod Phys 2024; 96(1):015002.
|
[16] |
Zhang ZR, Xu LJ, Qu T, Lei M, Lin ZK, Ouyang XP, et al.Diffusion metamaterials.Nat Rev Phys 2023; 5(4):218-235.
|
[17] |
Liu ZF, Jin P, Lei M, Wang CM, Marchesoni F, Jiang JH, et al.Topological thermal transport.Nat Rev Phys 2024; 6(9):554-565.
|
[18] |
Liu ZF, Cao PC, Xu LJ, Xu GQ, Li Y, Huang JP.Higher-order topological in-bulk corner state in pure diffusion systems.Phys Rev Lett 2024; 132(17):176302.
|
[19] |
Dai G, Shang J, Huang JP.Theory of transformation thermal convection for creeping flow in porous media: cloaking, concentrating, and camouflage.Phys Rev E 2018; 97(2):022129.
|
[20] |
Peng YG, Li Y, Cao PC, Zhu XF, Qiu CW.3D printed meta-helmet for wide-angle thermal camouflages.Adv Funct Mater 2020; 30(28):2002061.
|
[21] |
Xu L, Chen H.Transformation metamaterials.Adv Mater 2021; 33(52):2005489.
|
[22] |
Li Y, Li W, Han TC, Zheng X, Li JX, Li BW, et al.Transforming heat transfer with thermal metamaterials and devices.Nat Rev Mater 2021; 6(6):488-507.
|
[23] |
Xu LJ, Dai GL, Yang FB, Liu JR, Zhou YH, Wang J, et al.Free-form and multi-physical metamaterials with forward conformality-assisted tracing.Nat Comput Sci 2024; 4(7):532-541.
|
[24] |
Xu HY, Shi XH, Gao F, Sun HD, Zhang BL.Ultrathin three-dimensional thermal cloak.Phys Rev Lett 2014; 112(5):054301.
|
[25] |
Han TC, Bai X, Gao DL, Thong JTL, Li BW, Qiu CW.Experimental demonstration of a bilayer thermal cloak.Phys Rev Lett 2014; 112(5):054302.
|
[26] |
Ma YG, Liu YC, Raza M, Wang YD, He SL.Experimental demonstration of a multiphysics cloak: manipulating heat flux and electric current simultaneously.Phys Rev Lett 2014; 113(20):205501.
|
[27] |
Han TC, Yang P, Li Y, Lei DY, Li BW, Hippalgaonkar K, et al.Full-parameter omnidirectional thermal metadevices of anisotropic geometry.Adv Mater 2018; 30(49):1804019.
|
[28] |
Dai GL, Zhou YH, Wang J, Yang FB, Qu T, Huang JP.Convective cloak in Hele-Shaw cells with bilayer structures: hiding objects from heat and fluid motion simultaneously.Phys Rev Appl 2022; 17(4):044006.
|
[29] |
Fujii G, Akimoto Y, Takahashi M.Exploring optimal topology of thermal cloaks by CMA-ES.Appl Phys Lett 2018; 112(6):061108.
|
[30] |
Sha W, Xiao M, Zhang JH, Ren XC, Zhu Z, Zhang Y, et al.Robustly printable freeform thermal metamaterials.Nat Commun 2021; 12(1):7228.
|
[31] |
Ji Q, Chen X, Liang J, Fang G, Laude V, Arepolage T, et al.Deep learning based design of thermal metadevices.Int J Heat Mass Transf 2022; 196:123149.
|
[32] |
Hirasawa K, Nakami I, Ooinoue T, Asaoka T, Fujii G.Experimental demonstration of thermal cloaking metastructures designed by topology optimization.Int J Heat Mass Transf 2022; 194:123093.
|
[33] |
Sha W, Xiao M, Huang M, Gao L.Topology-optimized freeform thermal metamaterials for omnidirectionally cloaking sensors.Mater Today Phys 2022; 28:100880.
|
[34] |
Wu X, Wu S, Chen X, Lin H, Forsberg E, He S.An ultra-compact and reproducible fiber tip Michelson interferometer for high-temperature sensing.Prog Electromagn Res 2021; 172:89-99.
|
[35] |
Pendry J, Zhou J, Sun J.Metamaterials: from engineered materials to engineering materials.Engineering 2022; 17:1-2.
|
[36] |
Lu QB, Li X, Zhang XJ, Lu MH, Chen YF.Perspective: acoustic metamaterials in future engineering.Engineering 2022; 17:22-30.
|
[37] |
Xing XC, Cao Y, Tian XY, Wu L.A thermo-tunable metamaterial as an actively controlled broadband absorber.Engineering 2023; 20:143-152.
|
[38] |
Imran M, Zhang L, Gain AK.Advanced thermal metamaterial design for temperature control at the cloaked region.Sci Rep 2020; 10(1):11763.
|
[39] |
Gao Y, Huang JP.Unconventional thermal cloak hiding an object outside the cloak.EPL 2013; 104(4):44001.
|
[40] |
Yang S, Xu LJ, Huang JP.Thermal magnifier and external cloak in ternary component structure.J Appl Phys 2019; 125(5):055103.
|
[41] |
Li Y, Shen XY, Wu ZH, Huang JY, Chen YX, Ni YS, et al.Temperature-dependent transformation thermotics: from switchable thermal cloaks to macroscopic thermal diodes.Phys Rev Lett 2015; 115(19):195503.
|
[42] |
Xu LJ, Yang S, Huang JP.Passive metashells with adaptive thermal conductivities: chameleonlike behavior and its origin.Phys Rev Appl 2019; 11(5):054071.
|
[43] |
Yang FB, Tian BY, Xu LJ, Huang JP.Experimental demonstration of thermal chameleonlike rotators with transformation-invariant metamaterials.Phys Rev Appl 2020; 14(5):054024.
|
[44] |
Li Y, Zhu KJ, Peng YG, Li W, Yang TZ, Xu HX, et al.Thermal meta-device in analogue of zero-index photonics.Nat Mater 2019; 18(1):48-54.
|
[45] |
Xu GQ, Dong KC, Li Y, Li HG, Liu KP, Li LQ, et al. Tunable analog thermal material. Nat Commun, 11 (1) (2020), p. 6028
|
[46] |
Li JX, Li Y, Cao PC, Yang TZ, Zhu XF, Wang WY, et al.A continuously tunable solid-like convective thermal metadevice on the reciprocal line.Adv Mater 2020; 32(42):2003823.
|
[47] |
Guo J, Xu GQ, Tian D, Qu Z, Qiu CW.A real-time self-adaptive thermal metasurface.Adv Mater 2022; 34(24):2200329.
|
[48] |
Han TC, Nangong JY, Li Y.ITR-free thermal cloak.Int J Heat Mass Transf 2023; 203:123779.
|
[49] |
Ren W, Sun Y, Zhao DL, Aili A, Zhang S, Shi CQ, et al.High-performance wearable thermoelectric generator with self-healing, recycling, and Lego-like reconfiguring capabilities.Sci Adv 2021; 7(7):eabe0586.
|
[50] |
Xiang JL, Tao ZY, Li XF, Zhao YT, He Y, Guo XH, et al.Metamaterial-enabled arbitrary on-chip spatial mode manipulation.Light Sci Appl 2022; 11(1):168.
|
[51] |
Schittny R, Kadic M, Guenneau S, Wegener M.Experiments on transformation thermodynamics: molding the flow of heat.Phys Rev Lett 2013; 110(19):195901.
|
[52] |
Milton GW.The theory of composite. Cambridge University Press, Cambridge (2002)
|
[53] |
Ji QX, Qi YC, Liu CW, Meng SH, Liang J, Kadic M, et al.Design of thermal cloaks with isotropic materials based on machine learning.Int J Heat Mass Transf 2022; 189:122716.
|