[1] |
S.L. Chen, S.C. Hsu, C.T. Tseng, K.H. Yan, H.Y. Chou, T.M. Too. Analysis of rail potential and stray current for Taipei Metro. IEEE Trans Veh Technol, 55 (1) (2006), pp. 846-855.
|
[2] |
M. Regula, M. Siranec, A. Otcenasova, M. Hoger. Possibilities of the stray current measurement and corrosive risk evaluation. Electr Eng, 104 (4) (2022), pp. 2497-2513.
|
[3] |
A. Zaboli, B. Vahidi, S. Yousefi, M.M. Hosseini-Biyouki. Evaluation and control of stray current in DC-electrified railway systems. IEEE Trans Veh Technol, 66 (2) (2017), pp. 974-980.
|
[4] |
K. Tang. Corrosion of discontinuous reinforcement in concrete subject to railway stray alternating current. Cem Concr Compos, 109 (2020), Article 103552.
|
[5] |
Y.Q. Chen, X.Y. Ma, X.Y. Tong, X. Kang. Microstructures evolution and chloride migration characteristics of concrete under ultra-deep underground environment. Cem Concr Compos, 137 (2023), Article 104396.
|
[6] |
Y.Q. Chen, M.Y. Chen, X.Y. Tong, S.Q. Wang, X. Kang. Molecular insights into the interactions between chloride liquids and C-S-H nanopore surfaces under electric field-induced transport. J Mol Liq, 364 (2022), Article 119942.
|
[7] |
Y.Q. Chen, M.Y. Chen, R.P. Chen, X. Kang. Stray current induced ITZ effect on chloride transport in concrete. Constr Build Mater, 409 (15) (2023), Article 133759.
|
[8] |
K. Tang. Stray current induced corrosion of steel fibre reinforced concrete. Cem Concr Res, 100 (2017), pp. 445-456.
|
[9] |
Y.Q. Chen, M.Y. Chen, R.P. Chen, X. Kang. Deterioration mechanism of chloride attack on reinforced concrete under stray current and high hydraulic pressure coexistence environment. Mater Struct, 56 (9) (2023), p. 160.
|
[10] |
A. Leemann, R. Loser. Analysis of concrete in a vertical ventilation shaft exposed to sulfate-containing groundwater for 45 years: 74-83. Cem Concr Compos, 33 (1) (2011), pp. 74-83.
|
[11] |
S. Zhou, C. Wang, J.W. Ju. A numerical chemo-micromechanical damage model of sulfate attack in cementitious materials. Int J Damage Mech, 31 (10) (2022), pp. 1613-1638.
|
[12] |
R. Ragoug, O.O. Metalssi, F. Barberon, J.M. Torrenti, N. Roussel, L. Divet, et al. Durability of cement pastes exposed to external sulfate attack and leaching: physical and chemical aspects. Cem Concr Res, 116 (2019), pp. 134-145.
|
[13] |
M. Romer, L. Holzer, M. Pfiffner. Swiss tunnel structures: concrete damage by formation of thaumasite. Cem Concr Compos, 25 (8) (2003), pp. 1111-1117.
|
[14] |
S.U. Al-Dulaijan. Sulfate resistance of plain and blended cements exposed to magnesium sulfate solutions. Constr Build Mater, 21 (8) (2007), pp. 1792-1802.
|
[15] |
A.M. Hossack, M.D.A. Thomas. The effect of temperature on the rate of sulfate attack of Portland cement blended mortars in Na2SO4 solution. Cem Concr Res, 73 (2015), pp. 136-142.
|
[16] |
R. El-Hachem, E. Rozière, F. Grondin, A. Loukili. Multi-criteria analysis of the mechanism of degradation of Portland cement based mortars exposed to external sulphate attack. Cem Concr Res, 42 (10) (2012), pp. 1327-1335.
|
[17] |
B. Lothenbach, B. Bary, P. le Bescop, T. Schmidt, N. Leterrier. Sulfate ingress in Portland cement. Cem Concr Res, 40 (8) (2010), pp. 1211-1225.
|
[18] |
P.K. Mehta. Mechanism of expansion associated with ettringite formation. Cem Concr Res, 3 (1) (1973), pp. 1-6.
|
[19] |
J. Haufe, A. Vollpracht. Tensile strength of concrete exposed to sulfate attack. Cem Concr Res, 116 (2019), pp. 81-88.
|
[20] |
Z. Liu, F. Zhang, D. Deng, Y. Xie, G. Long, X. Tang. Physical sulfate attack on concrete lining—a field case analysis. Case Stud Constr Mater, 6 (2017), pp. 206-212.
|
[21] |
M. Santhanam, M.D. Cohen, J. Olek. Mechanism of sulfate attack: a fresh look: part 1: summary of experimental results. Cem Concr Res, 32 (6) (2002), pp. 341-346.
|
[22] |
M. Santhanam, M.D. Cohen, J. Olek. Mechanism of sulfate attack: a fresh look: part 2. proposed mechanisms. Cem Concr Res, 33 (3) (2003), pp. 341-346.
|
[23] |
M. Santhanam, M.D. Cohen, J. Olek. Effects of gypsum formation on the performance of cement mortars during external sulfate attack. Cem Concr Res, 33 (3) (2003), pp. 325-332.
|
[24] |
B. Tian, M.D. Cohen. Does gypsum formation during sulfate attack on concrete lead to expansion?. Cem Concr Res, 30 (1) (2000), pp. 117-123.
|
[25] |
G. Li, B. Wang, D.K. Panesar. Effect of stray current on cement-based materials under sulfate attack. J Mater Civ Eng, 34 (2) (2022), p. 04021439.
|
[26] |
H. Chu, T. Wang, M.Z. Guo, Z. Zhu, L. Jiang, C. Pan, et al. Effect of stray current on stability of bound chlorides in chloride and sulfate coexistence environment. Constr Build Mater, 194 (2019), pp. 247-256.
|
[27] |
H. Ai, G. Li, B. Wang, D.K. Panesar, X. He. Degradation mechanism of cement-based materials under the effects of stray current, chloride and sulfate. Eng Failure Anal, 142 (2022), Article 106746.
|
[28] |
C. Li, J. Li, Q. Ren, Y. Zhao, Z. Jiang. Degradation mechanism of blended cement pastes in sulfate-bearing environments under applied electric fields: sulfate attack vs.decalcification. Composites Part B, 246 (2022), Article 110255.
|
[29] |
W. Li, J. Xiao, Z. Sun, S. Kawashima, S.P. Shah. Interfacial transition zones in recycled aggregate concrete with different mixing approaches. Constr Build Mater, 35 (2012), pp. 1045-1055.
|
[30] |
K.L. Scrivener, A.K. Crumbie, P. Laugesen. The interfacial transition zone (ITZ) between cement paste and aggregate in concrete. Interface Sci, 12 (4) (2004), pp. 411-421.
|
[31] |
S. Zheng, R. He, H. Chen, Z. Wang, X. Huang, S. Liu. Three-dimensional reconstruction and sulfate ions transportation of interfacial transition zone in concrete under dry-wet cycles. Constr Build Mater, 291 (2021), Article 123370.
|
[32] |
X. Tu, C. Pang, X. Zhou, A. Chen. Numerical study of ITZ contribution on diffusion of chloride and induced rebar corrosion: a discussion of three-dimensional multiscale approach. Comput Concr, 23 (1) (2019), pp. 69-80.
|
[33] |
R. He, S. Zheng, J.L. Gan, Z. Wang, J. Fang, Y. Shao. Damage mechanism and interfacial transition zone characteristics of concrete under sulfate erosion and dry-wet cycles. Constr Build Mater, 255 (2020), Article 119340.
|
[34] |
H. Ma, W. Gong, H. Yu, W. Sun. Durability of concrete subjected to dry-wet cycles in various types of salt lake brines. Constr Build Mater, 193 (2018), pp. 286-294.
|
[35] |
L. Jiang, D. Niu. Study of deterioration of concrete exposed to different types of sulfate solutions under drying-wetting cycles. Constr Build Mater, 117 (2016), pp. 88-98.
|
[36] |
K. Torii, M. Kawamura. Effects of fly ash and silica fume on the resistance of mortar to sulfuric acid and sulfate attack. Cem Concr Res, 24 (2) (1994), pp. 361-370.
|
[37] |
P. Liu, Y. Chen, Z. Yu, Z. Lu. Effect of sulfate solution concentration on the deterioration mechanism and physical properties of concrete. Constr Build Mater, 227 (2019), Article 116641.
|
[38] |
Z. Wu, J. Zhang, H. Yu, Q. Fang, H. Ma, L. Chen. Three-dimensional mesoscopic investigation on the impact of specimen geometry and bearing strip size on the splitting-tensile properties of coral aggregate concrete. Engineering, 17 (2022), pp. 110-122.
|
[39] |
ASTM E92-16: Standard test methods for Vickers hardness and Knoop hardness of metallic materials. ASTM standard. West Conshohocken: ASTM International; 2016.
|
[40] |
A. Dehghan, K. Peterson, G. Riehm, L.H. Bromerchenkel. Application of X-ray microfluorescence for the determination of chloride diffusion coefficients in concrete chloride penetration experiments. Constr Build Mater, 148 (2017), pp. 85-95.
|
[41] |
ASTM C1556-11a: Standard test method for determining the apparent chloride diffusion coefficient of cementitious mixtures by bulk diffusion. ASTM standard. West Conshohocken: ASTM International; 2016.
|
[42] |
Y. Yang, R.A. Patel, S.V. Churakov, N.I. Prasianakis, G. Kosakowski, M. Wang. Multiscale modeling of ion diffusion in cement paste: electrical double layer effects. Cem Concr Compos, 96 (2019), pp. 55-65.
|
[43] |
S.W. Tang, Y. Yao, C. Andrade, Z.J. Li. Recent durability studies on concrete structure. Cem Concr Res, 78 (2015), pp. 143-154.
|
[44] |
P.W. Brown. Review of “sulfate attack on concrete”. Cem Concr Res, 33 (3) (2003), p. 459.
|
[45] |
Q. Wang, W. Wilson, K. Scrivener. Unidirectional penetration approach for characterizing sulfate attack mechanisms on cement mortars and pastes. Cem Concr Res, 169 (2023), Article 107166.
|
[46] |
W. Yang, H. Liu, P. Zhu, X. Zhu, X. Liu, X. Yan. Effect of recycled coarse aggregate quality on the interfacial property and sulfuric acid resistance of geopolymer concrete at different acidity levels. Constr Build Mater, 375 (2023), Article 130919.
|
[47] |
W. Kunther, B. Lothenbach, K.L. Scrivener. On the relevance of volume increase for the length changes of mortar bars in sulfate solutions. Cem Concr Res, 46 (2013), pp. 23-29.
|
[48] |
E.M.J. Bérodier, A.C.A. Muller, K.L. Scrivener. Effect of sulfate on C-S-H at early age. Cem Concr Res, 138 (2020), Article 106248.
|
[49] |
G.J. Yin, X.B. Zuo, X.H. Sun, Y.J. Tang. Macro-microscopically numerical analysis on expansion response of hardened cement paste under external sulfate attack. Constr Build Mater, 207 (2019), pp. 600-615.
|
[50] |
R. Tixier, B. Mobasher. Modeling of damage in cement-based materials subjected to external sulfate attack. I: formulation. J Mater Civ Eng, 15 (4) (2003), pp. 314-322.
|
[51] |
A.E. Idiart, C.M. López, I. Carol. Chemo-mechanical analysis of concrete cracking and degradation due to external sulfate attack: a meso-scale model. Cem Concr Compos, 33 (3) (2011), pp. 411-423.
|
[52] |
D. Sun, K. Wu, H. Shi, L. Zhang, L. Zhang. Effect of interfacial transition zone on the transport of sulfate ions in concrete. Constr Build Mater, 192 (2018), pp. 28-37.
|
[53] |
T. Ikumi, S.H.P. Cavalaro, I. Segura, A. Aguado. Alternative methodology to consider damage and expansions in external sulfate attack modeling. Cem Concr Res, 63 (2014), pp. 105-116.
|
[54] |
J.G. Wang. Sulfate attack on hardened cement paste. Cem Concr Res, 24 (4) (1994), pp. 735-742.
|
[55] |
K. Wan, Y. Li, W. Sun. Experimental and modelling research of the accelerated calcium leaching of cement paste in ammonium nitrate solution. Constr Build Mater, 40 (2013), pp. 832-846.
|
[56] |
E.J. Garboczi. Permeability, diffusivity, and microstructural parameters: a critical review. Cement Concr Res, 20 (4) (1990), pp. 591-601.
|
[57] |
Q. Huang, G. Xiong, Z. Fang, S. Wang, C. Wang, H. Sun, et al. Long-term performance and microstructural characteristics of cement mortars containing nano-SiO2 exposed to sodium sulfate attack. Constr Build Mater, 364 (2023), Article 130011.
|
[58] |
C. Sun, J. Chen, J. Zhu, M. Zhang, J. Ye. A new diffusion model of sulfate ions in concrete. Constr Build Mater, 39 (2013), pp. 39-45.
|
[59] |
S. Caré, E. Hervé. Application of a n-phase model to the diffusion coefficient of chloride in mortar. Transp Porous Media, 56 (2) (2004), pp. 119-135.
|
[60] |
W. Xu, M. Jia, W. Guo, W. Wang, B. Zhang, Z. Liu, et al. GPU-based discrete element model of realistic non-convex aggregates: mesoscopic insights into ITZ volume fraction and diffusivity of concrete. Cem Concr Res, 164 (2023), Article 107048.
|
[61] |
B. Bary. A polydispersed particle system representation of the porosity for non-saturated cementitious materials. Cem Concr Res, 36 (11) (2006), pp. 2061-2073.
|
[62] |
B. Lu, S. Torquato. Nearest-surface distribution functions for polydispersed particle systems. Phys Rev A, 45 (8) (1992), pp. 5530-5544.
|
[63] |
H. Li, J. Yang, X. Yu, Y. Zhang, L. Zhang. Permeability prediction of pervious concrete based on mix proportions and pore characteristics. Constr Build Mater, 395 (2023), Article 132247.
|
[64] |
Y. Zhang, K. Wu, Z. Yang, G. Ye. A reappraisal of the ink-bottle effect and pore structure of cementitious materials using intrusion-extrusion cyclic mercury porosimetry. Cem Concr Res, 161 (2022), Article 106942.
|
[65] |
Y. Gao, G. de Schutter, G. Ye, H. Huang, Z. Tan, K. Wu. Porosity characterization of ITZ in cementitious composites: concentric expansion and overflow criterion. Constr Build Mater, 38 (2013), pp. 1051-1057.
|
[66] |
S. Diamond, J. Huang. The ITZ in concrete—a different view based on image analysis and SEM observations. Cem Concr Compos, 23 (2,3) (2001), pp. 179-188.
|
[67] |
Y. Yu, Y.X. Zhang, A. Khennane. Numerical modelling of degradation of cement-based materials under leaching and external sulfate attack. Comput Struct, 158 (2015), pp. 1-14.
|
[68] |
S. Sarkar, S. Mahadevan, J.C.L. Meeussen, H. van der Sloot, D.S. Kosson. Numerical simulation of cementitious materials degradation under external sulfate attack. Cem Concr Compos, 32 (3) (2010), pp. 241-252.
|
[69] |
K. Nakarai, T. Ishida, K. Maekawa. Modeling of calcium leaching from cement hydrates coupled with micro-pore formation. J Adv Concr Technol, 4 (3) (2006), pp. 395-407.
|
[70] |
P. Gospodinov, R. Kazandjiev, M. Mironova. The effect of sulfate ion diffusion on the structure of cement stone. Cem Concr Compos, 18 (6) (1996), pp. 401-407.
|
[71] |
X.B. Zuo, W. Sun, C. Yu. Numerical investigation on expansive volume strain in concrete subjected to sulfate attack. Constr Build Mater, 36 (2012), pp. 404-410.
|
[72] |
Y. Jianhong, F.Q. Wu, J.Z. Sun. Estimation of the tensile elastic modulus using Brazilian disc by applying diametrically opposed concentrated loads. Int J Rock Mech Min Sci, 46 (3) (2009), pp. 568-576.
|
[73] |
H. Tang, J. He, Z. Gan, J. Li, W. Hua, S. Dong. Tensile strength and elastic modulus determined in the Brazilian test: theory and experiment. Meccanica, 57 (10) (2022), pp. 2533-2552.
|
[74] |
Y.G. Huang, L.G. Wang, Y.L. Lu, J.R. Chen, J.H. Zhang. Semi-analytical and numerical studies on the flattened brazilian splitting test used for measuring the indirect tensile strength of rocks. Rock Mech Rock Eng, 48 (5) (2015), pp. 1849-1866.
|
[75] |
N. Erarslan, Z.Z. Liang, D.J. Williams. Experimental and numerical studies on determination of indirect tensile strength of rocks. Rock Mech Rock Eng, 45 (2011), pp. 739-751.
|
[76] |
C. Jakob, D. Jansen, J. Dengler, J. Neubauer. Controlling ettringite precipitation and rheological behavior in ordinary Portland cement paste by hydration control agent, temperature and mixing. Cem Concr Res, 166 (2023), Article 107095.
|
[77] |
L.F.M. Sanchez, T. Drimalas, B. Fournier, D. Mitchell, J. Bastien. Comprehensive damage assessment in concrete affected by different internal swelling reaction (ISR) mechanisms. Cem Concr Res, 107 (2018), pp. 284-303.
|
[78] |
H. Lee, R.D. Cody, A.M. Cody, P.G. Spry. The formation and role of ettringite in Iowa highway concrete deterioration. Cem Concr Res, 35 (2) (2005), pp. 332-343.
|
[79] |
Q. Chen, J. Zhang, Z. Wang, T. Zhao, Z. Wang. A review of the interfacial transition zones in concrete: identification, physical characteristics, and mechanical properties. Eng Fract Mech, 300 (2024), Article 109979.
|
[80] |
M. Eik, A. Antonova, J. Puttonen. Phase contrast tomography to study near-field effects of polypropylene fibres on hardened cement paste. Cem Concr Compos, 114 (2020), Article 103800.
|
[81] |
K. Liu, M. Ostadhassan. Multi-scale fractal analysis of pores in shale rocks. J Appl Geophys, 140 (2017), pp. 1-10.
|
[82] |
S. Li, O.M. Jensen, Z. Wang, Q. Yu. Influence of micromechanical property on the rate-dependent flexural strength of ultra-high performance concrete containing coarse aggregates (UHPC-CA). Composites Part B, 227 (2021), Article 109394.
|
[83] |
X. Chen, G. Wang, Q. Dong, X. Zhao, Y. Wang. Microscopic characterizations of pervious concrete using recycled Steel Slag Aggregate. J Cleaner Prod, 254 (2020), Article 120149.
|
[84] |
J.A. Rossignolo, M.S. Rodrigues, M. Frias, S.F. Santos, H.S. Junior. Improved interfacial transition zone between aggregate-cementitious matrix by addition sugarcane industrial ash. Cem Concr Compos, 80 (2017), pp. 157-167.
|
[85] |
S. Zhai, X. Zhou, Y. Zhang, B. Pang, G. Liu, L. Zhang, et al. Effect of multifunctional modification of waste rubber powder on the workability and mechanical behavior of cement-based materials. Constr Build Mater, 363 (2023), Article 129880.
|
[86] |
L. Xu, F. Deng, Y. Chi. Nano-mechanical behavior of the interfacial transition zone between steel-polypropylene fiber and cement paste. Constr Build Mater, 145 (2017), pp. 619-638.
|
[87] |
A. Hosan, F.U.A. Shaikh, P. Sarker, F. Aslani. Nano- and micro-scale characterisation of interfacial transition zone (ITZ) of high volume slag and slag-fly ash blended concretes containing nano SiO2 and nano CaCO3. Constr Build Mater, 269 (2021), Article 121311.
|
[88] |
S. Chen, C. Duffield, S. Miramini, B. Nasim Khan Raja, L. Zhang. Life-cycle modelling of concrete cracking and reinforcement corrosion in concrete bridges: a case study. Eng Struct, 237 (2021), Article 112143.
|
[89] |
D. Sun, Z. Cao, C. Huang, K. Wu, G. de Schutter, L. Zhang. Degradation of concrete in marine environment under coupled chloride and sulfate attack: a numerical and experimental study. Case Stud Constr Mat, 17 (2022), Article e01218.
|
[90] |
Y.Q. Chen, M.Y. Chen, R.P. Chen, X. Kang. Deterioration mechanism of chloride attack on reinforced concrete under stray current and high hydraulic pressure coexistence environment. Mater Struct, 56 (2023), p. 160.
|
[91] |
Y.Q. Chen, M.Y. Chen, R.P. Chen, X. Kang. A liquid-solid-chemical coupled mass transport model for concrete considering phase assemblages and microstructure evolution. Constr Build Mater, 409 (2023), Article 133939.
|
[92] |
D. Sun, C. Huang, Z. Cao, K. Wu, L. Zhang. Reliability assessment of concrete under external sulfate attack. Case Stud Constr Mat, 15 (2021), Article e00690.
|