“嫦娥5号”月球样品在外部电场作用下的充电特性和粒子动力学

Junping Gu, Xiaoyu Qian, Yiwei Liu, Qinggong Wang, Yiyang Zhang, Xuan Ruan, Xiangjin Deng, Yaowen Lu, Jian Song, Hui Zhang, Yunning Dong, Mengmeng Wei, Wei Yao, Shuiqing Li, Weihua Wang, Zhigang Zou, Mengfei Yang

工程(英文) ›› 2024, Vol. 42 ›› Issue (11) : 267-277.

PDF(2390 KB)
PDF(2390 KB)
工程(英文) ›› 2024, Vol. 42 ›› Issue (11) : 267-277. DOI: 10.1016/j.eng.2024.08.003
研究论文
Article

“嫦娥5号”月球样品在外部电场作用下的充电特性和粒子动力学

作者信息 +

Charging Properties and Particle Dynamics of Chang’e-5 Lunar Sample in an External Electric Field

Author information +
History +

Abstract

Facing the challenges of in-situ utilization of lunar regolith resources, applying an external electric field to manipulate lunar particles has become a promising method for space particle control, which mainly depends on the particle charging properties in the applied electric field. Using the surficial lunar regolith samples brought back from the Moon by the Chang’e-5 mission (CE5 LS), this work successively studied their charging properties, particle dynamics, and their collision damages to aerospace materials under the action of an external electric field in high-vacuum conditions. The results indicated that the charging process and electrostatic projection of lunar regolith particles under high-vacuum conditions were different from those under atmosphere conditions. The particle diameter range of CE5 LS used in the experiment is 27.7-139.0 μm. For electric field strength of 3-12 kV·cm−1, the charge obtained by CE5 LS is 4.8 × 10−15-4.7 × 10−13 C and the charge-to-mass ratio is 1.2 × 10−5-6.8 × 10−4 C·kg−1. The CE5 LS is easier to be negatively charged in an external electric field. Furthermore, significant damages were observed on the target impact surfaces, indicating severe influences of lunar regolith particles on aerospace materials. Our work contributes to a more comprehensive understanding of physical mechanisms controlling the lunar regolith shielding and utilization, and will inspire broad efforts to develop the lunar in-situ engineering solutions.

Keywords

Chang’e-5 lunar regolith sample / Charging properties / External electric field / Particle dynamics / Particle collision

引用本文

导出引用
Junping Gu, Xiaoyu Qian, Yiwei Liu. “嫦娥5号”月球样品在外部电场作用下的充电特性和粒子动力学. Engineering. 2024, 42(11): 267-277 https://doi.org/10.1016/j.eng.2024.08.003

参考文献

[1]
M. Anand, I.A. Crawford, M. Balat-Pichelin, S. Abanades, W. van Westrenen, G. Péraudeau, et al. A brief review of chemical and mineralogical resources on the Moon and likely initial in situ resource utilization (ISRU) applications. Planet Space Sci, 74 (1) (2012), pp. 42-48
[2]
E. Gibney. How to build a Moon base. Nature, 562 (7728) (2018), pp. 474-478
[3]
Gaier J. The effects of lunar dust on EVA systems during the Apollo missions. Report. Washington, DC: National Aeronautics and Space Administration; 2005 Apr. Report No.: NASA/TM-2005-213610/REV1.
[4]
Wagner SA. The Apollo experience lessons learned for constellation lunar dust management. Report. Washington, DC: National Aeronautics and Space Administration; 2006 Sep. Report No.: NASA/TP-2006-213726.
[5]
P. Zanon, M. Dunn, G. Brooks. Current lunar dust mitigation techniques and future directions. Acta Astronaut, 213 (2023), pp. 627-644
[6]
M.B. Duke, C.C. Woo, M.L. Bird, G.A. Sellers, R.B. Finkelman. Lunar soil: size distribution and mineralogical constituents. Science, 167 (3918) (1970), pp. 648-650
[7]
G.H. Morrison, J.T. Gerard, A.T. Kashuba, E.V. Gangadharam, A.M. Rothenberg, N.M. Potter, et al. Multielement analysis of lunar soil and rocks. Science, 167 (3918) (1970), pp. 505-507
[8]
Apollo 15 preliminary examination team. The Apollo 15 lunar samples: a preliminary description. Science 1972;175(4020):363-75.
[9]
H. Zhang, X. Zhang, G. Zhang, K. Dong, X. Deng, X. Gao, et al. Size, morphology, and composition of lunar samples returned by Chang’e-5 mission. Sci China Phys Mech Astron, 65 (2) (2022), Article 229511
[10]
C.L. Li, H. Hu, M.F. Yang, Z.Y. Pei, Q. Zhou, X. Ren, et al. Characteristics of the lunar samples returned by the Chang’e-5 mission. Natl Sci Rev, 9 (2) (2022), pp. 16-28
[11]
H.Q. Song, J. Zhang, D.D. Ni, Y. Sun, Y. Zheng, J. Kou, et al. Investigation on in-situ water ice recovery considering energy efficiency at the lunar south pole. Appl Energy, 298 (2021), Article 117136
[12]
L. Schlüter, A. Cowley. Review of techniques for in-situ oxygen extraction on the moon. Planet Space Sci, 181 (2020), Article 104753
[13]
F.J. Guerrero-Gonzalez, P. Zabel. System analysis of an ISRU production plant: extraction of metals and oxygen from lunar regolith. Acta Astronaut, 103 (2023), pp. 187-201
[14]
W.Z. Fa, Y.Q. Jin. Quantitative estimation of Helium-3 spatial distribution in the lunar regolith layer. Icarus, 190 (1) (2007), pp. 15-23
[15]
M. Isachenkov, S. Chugunov, I. Akhatov, I. Shishkovsky. Regolith-based additive manufacturing for sustainable development of lunar infrastructure—an overview. Acta Astronaut, 180 (2021), pp. 650-678
[16]
Y.W. Liu, T.R. Shen, X.C. Lv, G. Zhang, C. Wang, J. Gu, et al. Investigation on a lunar energy storage and conversion system based on the in-situ resources utilization. Energy, 268 (2023), Article 126681
[17]
G.H. Just, K. Smith, K.H. Joy, M.J. Roy. Parametric review of existing regolith excavation techniques for lunar in situ resource utilization (ISRU) and recommendations for future excavation experiments. Planet Space Sci, 180 (2020), Article 104746
[18]
Walton OR. Adhesion of lunar dust. Report. Washington, DC: National Aeronautics and Space Administration; 2007 Apr. Report No.: NASA/CR—2001-214685.
[19]
M. Horanyi. Charged dust dynamics in the solar system. Annu Rev Astron Astrophys, 34 (1) (1996), pp. 383-418
[20]
G. Arrhenius, S.K. Asunmaa. Aggregation of grains in space. Moon Planets, 8 (3) (1973), pp. 368-391
[21]
J.E. Colwell, S. Batiste, M. Horanyi, S. Robertson, S. Sture. Lunar surface: dust dynamics and regolith mechanics. Rev Geophys, 45 (2) (2007), pp. 1-26
[22]
Criswell DR. Horizon-glow and the motion of lunar dust. In: Proceedings of Photon and Particle Interactions with Surfaces in Space; 1972 Sep 26-29; Noordwijk, the Netherlands. Springer Dordrecht; 1973. p.545-56.
[23]
Tatom FB, Srepel V, Johnson RD, Contaxes NA, Adams JG, Seaman H, et al. Lunar dust degradation effects and removal/prevention concepts. Report. Washington, DC: National Aeronautics and Space Administration; 1967 Jun. Report No.: TR-792-7-207A: 1-3.
[24]
Y. Yu, J. Cilliers, K. Hadler, S. Starr, Y. Wang. A review of particle transport and separation by electrostatic travelling wave method. J Electrost, 190 (2022), Article 103735
[25]
J.P. Gu, Q.G. Wang, Y.X. Wu, L. Feng, G. Zhang, S. Li, et al. Numerical study of particle transport by an alternating travelling-wave electrostatic field. Acta Astronaut, 188 (2021), pp. 505-517
[26]
J.P. Gu, G. Zhang, Q.G. Wang, C. Wang, Y. Liu, W. Yao, et al. Experimental study on particles directed transport by an alternating travelling-wave electrostatic field. Powder Technol, 397 (2022), Article 117107
[27]
H. Kawamoto, M. Kato, M. Adachi. Electrostatic transport of regolith particles for sample return mission from asteroids. J Electrost, 84 (2016), pp. 42-47
[28]
M. Adachi, H. Moroka, H. Kawamoto, S. Wakabayashi, T. Hoshino. Particle-size sorting system of lunar regolith using electrostatic traveling wave. J Electrost, 89 (2017), pp. 69-76
[29]
J.N. Rasera, J.J. Cilliers, J.A. Lamamy, K. Hadler. The beneficiation of lunar regolith for space resource utilization: a review. Planet Space Sci, 186 (2020), Article 104879
[30]
M. Adachi, H. Maezono, H. Kawamoto. Sampling of regolith on asteroids using electrostatic force. J Aerosp Eng, 29 (4) (2016), Article 04015081
[31]
M. Horanyi, B. Walch, S. Robertson, D. Alexander. Electrostatic charging properties of Apollo 17 lunar dust. J Geophys Res, 103 (E4) (1998), pp. 8575-8580
[32]
N. Ding, J. Wang, J. Polansky. Measurement of dust charging on a lunar regolith simulant surface. IEEE Trans Plasma Sci, 41 (12) (2013), pp. 3498-3504
[33]
M.M. Abbas, D. Tankosic, P.D. Craven, J.F. Spann, A. LeClair, E.A. West. Lunar dust charging by photoelectric emissions. Planet Space Sci, 55 (7-8) (2007), pp. 953-965
[34]
Orger NC, Cordova-Alarcon JR, Toyoda K, Cho M. Lunar surface charging and electrostatic lofting of lunar dust particles under different solar wind conditions and solar ultraviolet radiation. In: Proceedingsof 13th Space Environment Symposium; Nov 1-2 2016 ; Tokyo, Japan. 2016.
[35]
D. Tankosić, M. Abbas. Measurements on charging of Apollo 11 and 17 lunar dust grains by low energy electrons. Lunar Planet Sci Conf (2008), p. 1202
[36]
Stubbs TJ, Halekas JS, Farrell WM, Vondrak RR. Lunar surface charging:a global perspective using lunar prospector data. In: Proceedings of Dust in Planetary Systems; 2005 Sep 26-30; Kauai, HI, USA. 2005. p. ESA SP-643.
[37]
Champlain A, Mateo-Velez JC, Roussel JF, Hess S, Sarrailh P. Parametric study of lunar dust simulants charging and transport under VUV irradiation. In: Proceedings of 14th Spacecraft Charging Technology Conference; 2016 Apr 4- 8; Noordwijk, the Netherlands. 2016.
[38]
A.Y.H. Cho. Contact charging of micron-sized particles in intense electric fields. J Appl Phys, 35 (9) (1964), pp. 2561-2564
[39]
Y. Wu, G.S.P. Castle, I.I. Inculet, S. Petigny, G. Swei. Induction charge on freely levitating particles. Powder Technol, 135-136 (2003), pp. 59-64
[40]
A. Sayyah, M. Mirzadeh, Y. Jiang, W.V. Gleason, W.C. Rice, M.Z. Bazant. Physics of electrostatic projection revealed by high-speed video imaging. Phys Rev Appl, 13 (3) (2020), Article 034071
[41]
Y. Wu, G.S.P. Castle, I.I. Inculet, S. Petigny, G.S. Swei. The effect of electric field strength on the induction charge on freely levitating particles. IEEE Trans Ind Appl, 40 (6) (2004), pp. 1498-1503
[42]
Y. Wu, G.S.P. Castle, I.I. Inculet. Induction charging of granular materials in an electric field. IEEE Trans Ind Appl, 41 (5) (2005), pp. 1350-1357
[43]
Y. Wu, G.S.P. Castle, I.I. Inculet. Particle size analysis in the study of induction charging of granular materials. J Electrost, 63 (3-4) (2005), pp. 189-202
[44]
J.C. Maxwell. A treatise on electricity and magnetism. Clarendon press, New York (1873)
[45]
Yu D, Castle GSP, Adamiak K. Dynamic induction charging of particles with finite conductivity. IEEE Trans Ind Appl; 46(3):1159-65.
[46]
D.J. Lacks, R.M. Sankaran. Contact electrification of insulating materials. J Phys D Appl Phys, 44 (45) (2011), Article 453001
[47]
M. Shoyama, S. Nishida, S. Matsusaka. Quantitative analysis of agglomerates levitated from particle layers in a strong electric field. Adv Powder Technol, 30 (10) (2019), pp. 2052-2058
[48]
Y. Zhang, T. Pähtz, Y. Liu, X. Wang, R. Zhang, Y. Shen, et al. Electric field and humidity trigger contact electrification. Phys Rev X, 5 (1) (2015), Article 011002
[49]
D.W. Howell, I.S. Aronson, G.W. Crabtree. Dynamics of electrostatically driven granular media: effects of humidity. Phys Rev E Stat Nonlin Soft Matter Phys, 63 (5) (2001), Article 050301
[50]
Z. Sternovsky, M. Horányi, S. Robertson. Charging of dust particles on surfaces. J Vac Sci Technol A, 19 (5) (2001), pp. 2533-2541
[51]
G. Arrhenius, S.K. Asunmaa, R.W. Fitzgerald. Electrostatic properties of lunar regolith. Lunar Planet Sci Conf (1972), pp. 30-32
[52]
M. Leslie. China’s latest moon mission returns new lunar rocks. Engineering, 7 (5) (2021), pp. 544-546
[53]
Y. Chen, S. Hu, J.H. Li, Q.L. Li, X. Li, Y. Li, et al. Chang’e-5 lunar samples shed new light on the Moon. Innovation Geosci, 1 (1) (2023), Article 100014
[54]
He XX, Xiao L, Huang J, Wan CH, Wu T, Gao R, et al. Lunar regolith simulant CUG-1A. In: Proceedingsof 41st Lunar and Planetary Science Conference; Mar 1-5 ; Woodlands TX, USA. 2010 ADS; 2010.
[55]
W. Brooks, R. Clark, J. Yong, M. Hopkins, J. Dickens, J. Stephens, et al. Exploring the basic physical mechanisms of cathode- and anode-initiated high-voltage surface flashover. IEEE Trans Plasma Sci, 50 (10) (2022), pp. 3361-3370
[56]
M. Mizutani, M. Yasuda, S. Matsusaka. Advanced characterization of particles triboelectrically charged by a two-stage system with vibrations and external electric fields. Adv Powder Technol, 26 (2) (2015), pp. 454-461
[57]
C.X. Xu, W.W. Zhang, S. Hu, P. Li, S. Jiang, Z. Deng. Measuring the electrostatic charges of a single particle in contact electrification. Powder Technol, 393 (2021), pp. 619-629
[58]
J.S. Marshall, S.Q. Li. Adhesive particle flow:a discrete-element approach. Cambridge University Press, Cambridge (2014)
[59]
X. Ruan, S.Q. Li. Effect of electrostatic interaction on impact breakage of agglomerates formed by charged dielectric particles. Phys Rev E, 106 (3) (2022), Article 034905
[60]
S. Chen, S.Q. Li, M.M. Yang. Sticking/rebound criterion for collisions of small adhesive particles: effects of impact parameter and particle size. Powder Technol, 274 (2015), pp. 431-440
[61]
Z. Fang, Y.Y. Zhang, X.X. Wu, L. Sun, S. Li. New explicit correlations for the critical sticking velocity and restitution coefficient of small adhesive particles: a finite element study and validation. J Aerosol Sci, 160 (2022), Article 105918
[62]
I. Finnie. Erosion of surfaces by solid particles. Wear, 3 (2) (1960), pp. 87-103
[63]
H.C. Meng, K.C. Ludema. Wear models and predictive equations: their form and content. Wear, 181-182 (1995), pp. 443-457
[64]
Christoffersen R, Lindsay JF, Noble SF, Meador MA, Kosmo JJ, Lawrence JA, et al. Lunar dust effects on spacesuit systems:insights from the Apollo spacesuits. Report. Washington, DC: National Aeronautics and Space Administration; 2008 Jan. Report No.: NASA/TP-2009-214786.
PDF(2390 KB)

Accesses

Citation

Detail

段落导航
相关文章

/