[1] |
M. Anand, I.A. Crawford, M. Balat-Pichelin, S. Abanades, W. van Westrenen, G. Péraudeau, et al. A brief review of chemical and mineralogical resources on the Moon and likely initial in situ resource utilization (ISRU) applications. Planet Space Sci, 74 (1) (2012), pp. 42-48
|
[2] |
E. Gibney. How to build a Moon base. Nature, 562 (7728) (2018), pp. 474-478
|
[3] |
Gaier J. The effects of lunar dust on EVA systems during the Apollo missions. Report. Washington, DC: National Aeronautics and Space Administration; 2005 Apr. Report No.: NASA/TM-2005-213610/REV1.
|
[4] |
Wagner SA. The Apollo experience lessons learned for constellation lunar dust management. Report. Washington, DC: National Aeronautics and Space Administration; 2006 Sep. Report No.: NASA/TP-2006-213726.
|
[5] |
P. Zanon, M. Dunn, G. Brooks. Current lunar dust mitigation techniques and future directions. Acta Astronaut, 213 (2023), pp. 627-644
|
[6] |
M.B. Duke, C.C. Woo, M.L. Bird, G.A. Sellers, R.B. Finkelman. Lunar soil: size distribution and mineralogical constituents. Science, 167 (3918) (1970), pp. 648-650
|
[7] |
G.H. Morrison, J.T. Gerard, A.T. Kashuba, E.V. Gangadharam, A.M. Rothenberg, N.M. Potter, et al. Multielement analysis of lunar soil and rocks. Science, 167 (3918) (1970), pp. 505-507
|
[8] |
Apollo 15 preliminary examination team. The Apollo 15 lunar samples: a preliminary description. Science 1972;175(4020):363-75.
|
[9] |
H. Zhang, X. Zhang, G. Zhang, K. Dong, X. Deng, X. Gao, et al. Size, morphology, and composition of lunar samples returned by Chang’e-5 mission. Sci China Phys Mech Astron, 65 (2) (2022), Article 229511
|
[10] |
C.L. Li, H. Hu, M.F. Yang, Z.Y. Pei, Q. Zhou, X. Ren, et al. Characteristics of the lunar samples returned by the Chang’e-5 mission. Natl Sci Rev, 9 (2) (2022), pp. 16-28
|
[11] |
H.Q. Song, J. Zhang, D.D. Ni, Y. Sun, Y. Zheng, J. Kou, et al. Investigation on in-situ water ice recovery considering energy efficiency at the lunar south pole. Appl Energy, 298 (2021), Article 117136
|
[12] |
L. Schlüter, A. Cowley. Review of techniques for in-situ oxygen extraction on the moon. Planet Space Sci, 181 (2020), Article 104753
|
[13] |
F.J. Guerrero-Gonzalez, P. Zabel. System analysis of an ISRU production plant: extraction of metals and oxygen from lunar regolith. Acta Astronaut, 103 (2023), pp. 187-201
|
[14] |
W.Z. Fa, Y.Q. Jin. Quantitative estimation of Helium-3 spatial distribution in the lunar regolith layer. Icarus, 190 (1) (2007), pp. 15-23
|
[15] |
M. Isachenkov, S. Chugunov, I. Akhatov, I. Shishkovsky. Regolith-based additive manufacturing for sustainable development of lunar infrastructure—an overview. Acta Astronaut, 180 (2021), pp. 650-678
|
[16] |
Y.W. Liu, T.R. Shen, X.C. Lv, G. Zhang, C. Wang, J. Gu, et al. Investigation on a lunar energy storage and conversion system based on the in-situ resources utilization. Energy, 268 (2023), Article 126681
|
[17] |
G.H. Just, K. Smith, K.H. Joy, M.J. Roy. Parametric review of existing regolith excavation techniques for lunar in situ resource utilization (ISRU) and recommendations for future excavation experiments. Planet Space Sci, 180 (2020), Article 104746
|
[18] |
Walton OR. Adhesion of lunar dust. Report. Washington, DC: National Aeronautics and Space Administration; 2007 Apr. Report No.: NASA/CR—2001-214685.
|
[19] |
M. Horanyi. Charged dust dynamics in the solar system. Annu Rev Astron Astrophys, 34 (1) (1996), pp. 383-418
|
[20] |
G. Arrhenius, S.K. Asunmaa. Aggregation of grains in space. Moon Planets, 8 (3) (1973), pp. 368-391
|
[21] |
J.E. Colwell, S. Batiste, M. Horanyi, S. Robertson, S. Sture. Lunar surface: dust dynamics and regolith mechanics. Rev Geophys, 45 (2) (2007), pp. 1-26
|
[22] |
Criswell DR. Horizon-glow and the motion of lunar dust. In: Proceedings of Photon and Particle Interactions with Surfaces in Space; 1972 Sep 26-29; Noordwijk, the Netherlands. Springer Dordrecht; 1973. p.545-56.
|
[23] |
Tatom FB, Srepel V, Johnson RD, Contaxes NA, Adams JG, Seaman H, et al. Lunar dust degradation effects and removal/prevention concepts. Report. Washington, DC: National Aeronautics and Space Administration; 1967 Jun. Report No.: TR-792-7-207A: 1-3.
|
[24] |
Y. Yu, J. Cilliers, K. Hadler, S. Starr, Y. Wang. A review of particle transport and separation by electrostatic travelling wave method. J Electrost, 190 (2022), Article 103735
|
[25] |
J.P. Gu, Q.G. Wang, Y.X. Wu, L. Feng, G. Zhang, S. Li, et al. Numerical study of particle transport by an alternating travelling-wave electrostatic field. Acta Astronaut, 188 (2021), pp. 505-517
|
[26] |
J.P. Gu, G. Zhang, Q.G. Wang, C. Wang, Y. Liu, W. Yao, et al. Experimental study on particles directed transport by an alternating travelling-wave electrostatic field. Powder Technol, 397 (2022), Article 117107
|
[27] |
H. Kawamoto, M. Kato, M. Adachi. Electrostatic transport of regolith particles for sample return mission from asteroids. J Electrost, 84 (2016), pp. 42-47
|
[28] |
M. Adachi, H. Moroka, H. Kawamoto, S. Wakabayashi, T. Hoshino. Particle-size sorting system of lunar regolith using electrostatic traveling wave. J Electrost, 89 (2017), pp. 69-76
|
[29] |
J.N. Rasera, J.J. Cilliers, J.A. Lamamy, K. Hadler. The beneficiation of lunar regolith for space resource utilization: a review. Planet Space Sci, 186 (2020), Article 104879
|
[30] |
M. Adachi, H. Maezono, H. Kawamoto. Sampling of regolith on asteroids using electrostatic force. J Aerosp Eng, 29 (4) (2016), Article 04015081
|
[31] |
M. Horanyi, B. Walch, S. Robertson, D. Alexander. Electrostatic charging properties of Apollo 17 lunar dust. J Geophys Res, 103 (E4) (1998), pp. 8575-8580
|
[32] |
N. Ding, J. Wang, J. Polansky. Measurement of dust charging on a lunar regolith simulant surface. IEEE Trans Plasma Sci, 41 (12) (2013), pp. 3498-3504
|
[33] |
M.M. Abbas, D. Tankosic, P.D. Craven, J.F. Spann, A. LeClair, E.A. West. Lunar dust charging by photoelectric emissions. Planet Space Sci, 55 (7-8) (2007), pp. 953-965
|
[34] |
Orger NC, Cordova-Alarcon JR, Toyoda K, Cho M. Lunar surface charging and electrostatic lofting of lunar dust particles under different solar wind conditions and solar ultraviolet radiation. In: Proceedingsof 13th Space Environment Symposium; Nov 1-2 2016 ; Tokyo, Japan. 2016.
|
[35] |
D. Tankosić, M. Abbas. Measurements on charging of Apollo 11 and 17 lunar dust grains by low energy electrons. Lunar Planet Sci Conf (2008), p. 1202
|
[36] |
Stubbs TJ, Halekas JS, Farrell WM, Vondrak RR. Lunar surface charging:a global perspective using lunar prospector data. In: Proceedings of Dust in Planetary Systems; 2005 Sep 26-30; Kauai, HI, USA. 2005. p. ESA SP-643.
|
[37] |
Champlain A, Mateo-Velez JC, Roussel JF, Hess S, Sarrailh P. Parametric study of lunar dust simulants charging and transport under VUV irradiation. In: Proceedings of 14th Spacecraft Charging Technology Conference; 2016 Apr 4- 8; Noordwijk, the Netherlands. 2016.
|
[38] |
A.Y.H. Cho. Contact charging of micron-sized particles in intense electric fields. J Appl Phys, 35 (9) (1964), pp. 2561-2564
|
[39] |
Y. Wu, G.S.P. Castle, I.I. Inculet, S. Petigny, G. Swei. Induction charge on freely levitating particles. Powder Technol, 135-136 (2003), pp. 59-64
|
[40] |
A. Sayyah, M. Mirzadeh, Y. Jiang, W.V. Gleason, W.C. Rice, M.Z. Bazant. Physics of electrostatic projection revealed by high-speed video imaging. Phys Rev Appl, 13 (3) (2020), Article 034071
|
[41] |
Y. Wu, G.S.P. Castle, I.I. Inculet, S. Petigny, G.S. Swei. The effect of electric field strength on the induction charge on freely levitating particles. IEEE Trans Ind Appl, 40 (6) (2004), pp. 1498-1503
|
[42] |
Y. Wu, G.S.P. Castle, I.I. Inculet. Induction charging of granular materials in an electric field. IEEE Trans Ind Appl, 41 (5) (2005), pp. 1350-1357
|
[43] |
Y. Wu, G.S.P. Castle, I.I. Inculet. Particle size analysis in the study of induction charging of granular materials. J Electrost, 63 (3-4) (2005), pp. 189-202
|
[44] |
J.C. Maxwell. A treatise on electricity and magnetism. Clarendon press, New York (1873)
|
[45] |
Yu D, Castle GSP, Adamiak K. Dynamic induction charging of particles with finite conductivity. IEEE Trans Ind Appl; 46(3):1159-65.
|
[46] |
D.J. Lacks, R.M. Sankaran. Contact electrification of insulating materials. J Phys D Appl Phys, 44 (45) (2011), Article 453001
|
[47] |
M. Shoyama, S. Nishida, S. Matsusaka. Quantitative analysis of agglomerates levitated from particle layers in a strong electric field. Adv Powder Technol, 30 (10) (2019), pp. 2052-2058
|
[48] |
Y. Zhang, T. Pähtz, Y. Liu, X. Wang, R. Zhang, Y. Shen, et al. Electric field and humidity trigger contact electrification. Phys Rev X, 5 (1) (2015), Article 011002
|
[49] |
D.W. Howell, I.S. Aronson, G.W. Crabtree. Dynamics of electrostatically driven granular media: effects of humidity. Phys Rev E Stat Nonlin Soft Matter Phys, 63 (5) (2001), Article 050301
|
[50] |
Z. Sternovsky, M. Horányi, S. Robertson. Charging of dust particles on surfaces. J Vac Sci Technol A, 19 (5) (2001), pp. 2533-2541
|
[51] |
G. Arrhenius, S.K. Asunmaa, R.W. Fitzgerald. Electrostatic properties of lunar regolith. Lunar Planet Sci Conf (1972), pp. 30-32
|
[52] |
M. Leslie. China’s latest moon mission returns new lunar rocks. Engineering, 7 (5) (2021), pp. 544-546
|
[53] |
Y. Chen, S. Hu, J.H. Li, Q.L. Li, X. Li, Y. Li, et al. Chang’e-5 lunar samples shed new light on the Moon. Innovation Geosci, 1 (1) (2023), Article 100014
|
[54] |
He XX, Xiao L, Huang J, Wan CH, Wu T, Gao R, et al. Lunar regolith simulant CUG-1A. In: Proceedingsof 41st Lunar and Planetary Science Conference; Mar 1-5 ; Woodlands TX, USA. 2010 ADS; 2010.
|
[55] |
W. Brooks, R. Clark, J. Yong, M. Hopkins, J. Dickens, J. Stephens, et al. Exploring the basic physical mechanisms of cathode- and anode-initiated high-voltage surface flashover. IEEE Trans Plasma Sci, 50 (10) (2022), pp. 3361-3370
|
[56] |
M. Mizutani, M. Yasuda, S. Matsusaka. Advanced characterization of particles triboelectrically charged by a two-stage system with vibrations and external electric fields. Adv Powder Technol, 26 (2) (2015), pp. 454-461
|
[57] |
C.X. Xu, W.W. Zhang, S. Hu, P. Li, S. Jiang, Z. Deng. Measuring the electrostatic charges of a single particle in contact electrification. Powder Technol, 393 (2021), pp. 619-629
|
[58] |
J.S. Marshall, S.Q. Li. Adhesive particle flow:a discrete-element approach. Cambridge University Press, Cambridge (2014)
|
[59] |
X. Ruan, S.Q. Li. Effect of electrostatic interaction on impact breakage of agglomerates formed by charged dielectric particles. Phys Rev E, 106 (3) (2022), Article 034905
|
[60] |
S. Chen, S.Q. Li, M.M. Yang. Sticking/rebound criterion for collisions of small adhesive particles: effects of impact parameter and particle size. Powder Technol, 274 (2015), pp. 431-440
|
[61] |
Z. Fang, Y.Y. Zhang, X.X. Wu, L. Sun, S. Li. New explicit correlations for the critical sticking velocity and restitution coefficient of small adhesive particles: a finite element study and validation. J Aerosol Sci, 160 (2022), Article 105918
|
[62] |
I. Finnie. Erosion of surfaces by solid particles. Wear, 3 (2) (1960), pp. 87-103
|
[63] |
H.C. Meng, K.C. Ludema. Wear models and predictive equations: their form and content. Wear, 181-182 (1995), pp. 443-457
|
[64] |
Christoffersen R, Lindsay JF, Noble SF, Meador MA, Kosmo JJ, Lawrence JA, et al. Lunar dust effects on spacesuit systems:insights from the Apollo spacesuits. Report. Washington, DC: National Aeronautics and Space Administration; 2008 Jan. Report No.: NASA/TP-2009-214786.
|