[1] |
J.M. Waller, H.I. Maibach. Age and skin structure and function, a quantitative approach (I): blood flow, pH, thickness, and ultrasound echogenicity. Skin Res Technol, 11 (4) (2005), pp. 221-235
|
[2] |
C. López-Otín, M.A. Blasco, L. Partridge, M. Serrano, G. Kroemer. The hallmarks of aging. Cell, 153 (6) (2013), pp. 1194-1217
|
[3] |
A.J. McLean, D.G. Le Couteur. Aging biology and geriatric clinical pharmacology. Pharmacol Rev, 56 (2) (2004), pp. 163-184
|
[4] |
T. Gracia-Cazaña, S. González, C. Parrado, Á. Juarranz, Y. Gilaberte. Influence of the exposome on skin cancer. Actas Dermosifiliogr, 111 (6) (2020), pp. 460-470
|
[5] |
N. Liu, H. Matsumura, T. Kato, S. Ichinose, A. Takada, T. Namiki, et al. Stem cell competition orchestrates skin homeostasis and ageing. Nature, 568 (7752) (2019), pp. 344-350
|
[6] |
J. Koester, Y.A. Miroshnikova, S. Ghatak, C.A. Chacón-Martínez, J. Morgner, X. Li, et al. Niche stiffening compromises hair follicle stem cell potential during ageing by reducing bivalent promoter accessibility. Nat Cell Biol, 23 (7) (2021), pp. 771-781
|
[7] |
S. Mahmoudi, E. Mancini, L. Xu, A. Moore, F. Jahanbani, K. Hebestreit, et al. Heterogeneity in old fibroblasts is linked to variability in reprogramming and wound healing. Nature, 574 (7779) (2019), pp. 553-558
|
[8] |
A. Giangreco, M. Qin, J.E. Pintar, F.M. Watt. Epidermal stem cells are retained in vivo throughout skin aging. Aging Cell, 7 (2) (2008), pp. 250-259
|
[9] |
J. Doles, M. Storer, L. Cozzuto, G. Roma, W.M. Keyes. Age-associated inflammation inhibits epidermal stem cell function. Genes Dev, 26 (19) (2012), pp. 2144-2153
|
[10] |
S.A. Benitah, P.S. Welz. Circadian regulation of adult stem cell homeostasis and aging. Cell Stem Cell, 26 (6) (2020), pp. 817-831
|
[11] |
E.H. Choi. Aging of the skin barrier. Clin Dermatol, 37 (4) (2019), pp. 336-345
|
[12] |
H.L. Zhang, H. Sun, Y.F. Yang, Y.M. Li. Skin substitutes comprised of recombinant human collagen hydrogel promote full-thickness skin defect reconstruction. Burns, 48 (6) (2022), pp. 1523-1524
|
[13] |
W.H. Truswell. Prescription skin care products and skin rejuvenation. Facial Plast Surg Clin North Am, 28 (1) (2020), pp. 59-65
|
[14] |
H. Murad, M.P. Tabibian. The effect of an oral supplement containing glucosamine, amino acids, minerals, and antioxidants on cutaneous aging: a preliminary study. J Dermatolog Treat, 12 (1) (2001), pp. 47-51
|
[15] |
S. Zhang, E. Duan. Fighting against skin aging: the way from bench to bedside. Cell Transplant, 27 (5) (2018), pp. 729-738
|
[16] |
J.Y. Jwo, Y.T. Chang, Y.C. Huang. Effects of probiotics supplementation on skin photoaging and skin barrier function: a systematic review and meta-analysis. Photodermatol Photoimmunol Photomed, 39 (2) (2023), pp. 122-131
|
[17] |
B. De Pessemier, L. Grine, M. Debaere, A. Maes, B. Paetzold, C. Callewaert. Gut-skin axis: current knowledge of the interrelationship between microbial dysbiosis and skin conditions. Microorganisms, 9 (2) (2021), p. 353
|
[18] |
L. Chen, J. Li, W. Zhu, Y. Kuang, T. Liu, W. Zhang, et al. Skin and gut microbiome in psoriasis: gaining insight into the pathophysiology of it and finding novel therapeutic strategies. Front Microbiol, 11 (2020), Article 589726
|
[19] |
Z. Fang, T. Pan, L. Li, H. Wang, J. Zhu, H. Zhang, et al. Bifidobacterium longum mediated tryptophan metabolism to improve atopic dermatitis via the gut-skin axis. Gut Microbes, 14 (1) (2022), Article 2044723
|
[20] |
Y. Yu, W. Wang, F. Zhang. The next generation fecal microbiota transplantation: to transplant bacteria or virome. Adv Sci, 10 (35) (2023), Article 2301097
|
[21] |
H. Junca, D.H. Pieper, E. Medina. The emerging potential of microbiome transplantation on human health interventions. Comput Struct Biotechnol J, 20 (2022), pp. 615-627
|
[22] |
D.L. Suskind, M.J. Brittnacher, G. Wahbeh, M.L. Shaffer, H.S. Hayden, X. Qin, et al. Fecal microbial transplant effect on clinical outcomes and fecal microbiome in active Crohn’s disease. Inflamm Bowel Dis, 21 (3) (2015), pp. 556-563
|
[23] |
T. Vongsavath, R. Rahmani, K.M. Tun, V. Manne. The use of fecal microbiota transplant in overcoming and modulating resistance to anti-pd-1 therapy in patients with skin cancer. Cancers, 16 (3) (2024), p. 499
|
[24] |
X. Jiang, Z. Liu, Y. Ma, L. Miao, K. Zhao, D. Wang, et al. Fecal microbiota transplantation affects the recovery of AD-skin lesions and enhances gut microbiota homeostasis. Int Immunopharmacol, 118 (2023), Article 110005
|
[25] |
Y. Mou, Y. Du, L. Zhou, J. Yue, X. Hu, Y. Liu, et al. Gut microbiota interact with the brain through systemic chronic inflammation: implications on neuroinflammation, neurodegeneration, and aging. Front Immunol, 13 (2022), Article 796288
|
[26] |
A. Parker, S. Romano, R. Ansorge, A. Aboelnour, G. Le Gall, G.M. Savva, et al. Fecal microbiota transfer between young and aged mice reverses hallmarks of the aging gut, eye, and brain. Microbiome, 10 (1) (2022), p. 68
|
[27] |
J. Shin, J.R. Noh, D. Choe, N. Lee, Y. Song, S. Cho, et al. Ageing and rejuvenation models reveal changes in key microbial communities associated with healthy ageing. Microbiome, 9 (1) (2021), p. 240
|
[28] |
M. Boehme, K.E. Guzzetta, T.F.S. Bastiaanssen, M. van de Wouw, G.M. Moloney, A. Gual-Grau, et al. Microbiota from young mice counteracts selective age-associated behavioral deficits. Nat Aging, 1 (8) (2021), pp. 666-676
|
[29] |
J. Lee, J. d’Aigle, L. Atadja, V. Quaicoe, P. Honarpisheh, B.P. Ganesh, et al. Gut microbiota-derived short-chain fatty acids promote poststroke recovery in aged mice. Circ Res, 127 (4) (2020), pp. 453-465
|
[30] |
K.H. Kim, Y. Chung, J.W. Huh, D.J. Park, Y. Cho, Y. Oh, et al. Gut microbiota of the young ameliorates physical fitness of the aged in mice. Microbiome, 10 (1) (2022), p. 238
|
[31] |
W. Wei, C.C. Wong, Z. Jia, W. Liu, C. Liu, F. Ji, et al.. Parabacteroides distasonis uses dietary inulin to suppress NASH via its metabolite pentadecanoic acid. Nat Microbiol, 8 (8) (2023), pp. 1534-1548
|
[32] |
Q. Li, H. Chan, W.X. Liu, C.A. Liu, Y. Zhou, D. Huang, et al. Carnobacterium maltaromaticum boosts intestinal vitamin D production to suppress colorectal cancer in female mice. Cancer Cell, 41 (8) (2023), pp. 1450-1465
|
[33] |
X. Shen, R. Wang, X. Xiong, Y. Yin, Y. Cai, Z. Ma, et al. Metabolic reaction network-based recursive metabolite annotation for untargeted metabolomics. Nat Commun, 10 (1) (2019), p. 1516
|
[34] |
J. Yu, Y. Luo, Z. Zhu, Y. Zhou, L. Sun, J. Gao, et al. A tryptophan metabolite of the skin microbiota attenuates inflammation in patients with atopic dermatitis through the aryl hydrocarbon receptor. J Allergy Clin Immunol, 143 (6) (2019), pp. 2108-2119
|
[35] |
T. Wang, Y. Qin, J. Qiao, Y. Liu, L. Wang, X. Zhang. Overexpression of SIRT6 regulates NRF2/HO-1 and NF-κB signaling pathways to alleviate UVA-induced photoaging in skin fibroblasts. J Photochem Photobiol B, 249 (2023), Article 112801
|
[36] |
Y. Jing, Y. Yu, F. Bai, L. Wang, D. Yang, C. Zhang, et al. Effect of fecal microbiota transplantation on neurological restoration in a spinal cord injury mouse model: involvement of brain-gut axis. Microbiome, 9 (1) (2021), p. 59
|
[37] |
W. Li, Z. Wang, J. Cao, Y. Dong, Y. Chen. Melatonin improves skin barrier damage caused by sleep restriction through gut microbiota. J Pineal Res, 75 (1) (2023), p. 12874
|
[38] |
Q. Zhang, G. Li, W. Zhao, X. Wang, J. He, L. Zhou, et al. Efficacy of bifidobacterium animalis subsp. lactis BL-99 in the treatment of functional dyspepsia: a randomized placebo-controlled clinical trial. Nat Commun, 15 (1) (2024), p. 227
|
[39] |
D.H. Stones, A.M. Krachler. Against the tide: the role of bacterial adhesion in host colonization. Biochem Soc Trans, 44 (6) (2016), pp. 1571-1580
|
[40] |
L. Wang, N. Alammar, R. Singh, J. Nanavati, Y. Song, R. Chaudhary, et al. Gut microbial dysbiosis in the irritable bowel syndrome: a systematic review and meta-analysis of case-control studies. J Acad Nutr Diet, 120 (4) (2020), pp. 565-586
|
[41] |
H. Gill, J. Prasad. Probiotics, immunomodulation, and health benefits. Adv Exp Med Biol, 606 (2008), pp. 423-454
|
[42] |
M. Uccello, G. Malaguarnera, F. Basile, V. D'agata, M. Malaguarnera, G. Bertino, et al. Potential role of probiotics on colorectal cancer prevention. BMC Surg, 12 (Suppl 1) (2012), p. S35
|
[43] |
Y. Liu, K. Chen, F. Li, Z. Gu, Q. Liu, L. He, et al. Probiotic lactobacillus rhamnosus GG prevents liver fibrosis through inhibiting hepatic bile acid synthesis and enhancing bile acid excretion in mice. Hepatology, 71 (6) (2020), pp. 2050-2066
|
[44] |
T. Levkovich, T. Poutahidis, C. Smillie, B.J. Varian, Y.M. Ibrahim, J.R. Lakritz, et al. Probiotic bacteria induce a ‘glow of health’. PLoS One, 8 (1) (2013), p. 53867
|
[45] |
K. Hashimoto. Emerging role of the host microbiome in neuropsychiatric disorders: overview and future directions. Mol Psychiatry, 28 (9) (2023), pp. 3625-3637
|
[46] |
H. Shinno-Hashimoto, Y. Hashimoto, Y. Wei, L. Chang, Y. Fujita, T. Ishima, et al. Abnormal composition of microbiota in the gut and skin of imiquimod-treated mice. Sci Rep, 11 (1) (2021), p. 11265
|
[47] |
C. Xue, G. Li, Q. Zheng, X. Gu, Q. Shi, Y. Su, et al. Tryptophan metabolism in health and disease. Cell Metab, 35 (8) (2023), pp. 1304-1326
|
[48] |
J. Yin, B. Zhang, Z. Yu, Y. Hu, H. Lv, X. Ji, et al. Ameliorative effect of dietary tryptophan on neurodegeneration and inflammation in D-galactose-induced aging mice with the potential mechanism relying on AMPK/SIRT1/PGC-1α pathway and gut microbiota. J Agric Food Chem, 69 (16) (2021), pp. 4732-4744
|
[49] |
L. Guenin-Macé, J.D. Morel, J.M. Doisne, A. Schiavo, L. Boulet, V. Mayau, et al. Dysregulation of tryptophan catabolism at the host-skin microbiota interface in hidradenitis suppurativa. JCI Insight, 5 (20) (2020), Article 140598
|
[50] |
Q. Zhang, Q. Zhao, T. Li, L. Lu, F. Wang, H. Zhang, et al. Lactobacillus plantarum-derived indole-3-lactic acid ameliorates colorectal tumorigenesis via epigenetic regulation of CD8+ T cell immunity. Cell Metab, 35 (6) (2023), pp. 943-960
|
[51] |
R. Huang, F. Wu, Q. Zhou, W. Wei, J. Yue, B. Xiao, et al. Lactobacillus and intestinal diseases: mechanisms of action and clinical applications. Microbiol Res, 260 (2022), Article 127019
|
[52] |
S. Eyerich, K. Eyerich, C. Traidl-Hoffmann, T. Biedermann. Cutaneous barriers and skin immunity: differentiating a connected network. Trends Immunol, 39 (4) (2018), pp. 315-327
|
[53] |
C.L. Simpson, D.M. Patel, K.J. Green. Deconstructing the skin: cytoarchitectural determinants of epidermal morphogenesis. Nat Rev Mol Cell Biol, 12 (9) (2011), pp. 565-580
|
[54] |
M. Furue, A. Hashimoto-Hachiya, G. Tsuji. Aryl hydrocarbon receptor in atopic dermatitis and psoriasis. Int J Mol Sci, 20 (21) (2019), p. 5424
|
[55] |
P. Di Meglio, J.H. Duarte, H. Ahlfors, N.D. Owens, Y. Li, F. Villanova, et al. Activation of the aryl hydrocarbon receptor dampens the severity of inflammatory skin conditions. Immunity, 40 (6) (2014), pp. 989-1001
|
[56] |
E.H. Van den Bogaard, J.G. Bergboer, M. Vonk-Bergers, I.M. van Vlijmen-Willems, S.V. Hato, P.G. van der Valk, et al. Coal tar induces AHR-dependent skin barrier repair in atopic dermatitis. J Clin Invest, 123 (2) (2013), pp. 917-927
|
[57] |
T. Zelante, R.G. Iannitti, C. Cunha, A. De Luca, G. Giovannini, G. Pieraccini, et al. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity, 39 (2) (2013), pp. 372-385
|