[1] |
Smith GE.Nobel lecture: the invention and early history of the CCD.Rev Mod Phys 2010; 82(3):2307-2312.
|
[2] |
Mait JN, Euliss GW, Athale RA.Computational imaging.Adv Opt Photonics 2018; 10(2):409-483.
|
[3] |
Peng YE, Veeraraghavan A, Heidrich W, Wetzstein G.Deep optics: joint design of optics and image recovery algorithms for domain specific cameras.In: Proceedings of the ACM SIGGRAPH 2020 Courses; 2020 Aug 17–28; online. New York City: Association for Computing Machinery; 2020. p. 1–133.
|
[4] |
Zhang B, Yuan X, Deng C, Zhang Z, Suo J, Dai Q.End-to-end snapshot compressed super-resolution imaging with deep optics.Optica 2022; 9(4):451-454.
|
[5] |
Zhang Z, Dong K, Suo J, Dai Q.Deep coded exposure: end-to-end co-optimization of flutter shutter and deblurring processing for general motion blur removal.Photon Res 2023; 11(10):1678-1686.
|
[6] |
Baek SH, Ikoma H, Jeon DS, Li Y, Heidrich W, Wetzstein G, et al.Single-shot hyperspectral-depth imaging with learned diffractive optics.In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV); 2021 Oct 11–17; online. New York City: IEEE; 2021. p. 2651–60.
|
[7] |
Yuan X, Brady DJ, Katsaggelos AK.Snapshot compressive imaging: theory, algorithms, and applications.IEEE Signal Process Mag 2021; 38(2):65-88.
|
[8] |
Tang H, Men T, Liu X, Hu Y, Su J, Zuo Y, et al.Single-shot compressed optical field topography.Light Sci Appl 2022; 11:244.
|
[9] |
Zhang Z, Deng C, Liu Y, Yuan X, Suo J, Dai Q.Ten-mega-pixel snapshot compressive imaging with a hybrid coded aperture.Photon Res 2021; 9(11):2277-2287.
|
[10] |
Luo Y, Zhao Y, Li J, Rivenson Y, Jarrahi M, et al.Computational imaging without a computer: seeing through random diffusers at the speed of light.eLight 2022; 2:4.
|
[11] |
Sinha A, Lee J, Li S, Barbastathis G.Lensless computational imaging through deep learning.Optica 2017; 4(9):1117-1125.
|
[12] |
Llull P, Liao X, Yuan X, Yang J, Kittle D, Carin L, et al.Coded aperture compressive temporal imaging.Opt Express 2013; 21(9):10526-10545.
|
[13] |
Candes EJ, Tao T.Near-optimal signal recovery from random projections: universal encoding strategies?.IEEE Trans Inf Theory 2006; 52(12):5406-5425.
|
[14] |
Donoho D.Compressed sensing.IEEE Trans Inf Theory 2006; 52(4):1289-1306.
|
[15] |
Yao H, Dai F, Zhang S, Zhang Y, Tian Q, Xu C.DR2-Net: deep residual reconstruction network for image compressive sensing.Neurocomputing 2019; 359:483-493.
|
[16] |
Zhang J, Xiong T, Tran T, Chin S, Etienne-Cummings R.Compact all-CMOS spatiotemporal compressive sensing video camera with pixel-wise coded exposure.Opt Express 2016; 24(8):9013-9024.
|
[17] |
Wei M, Sarhangnejad N, Xia Z, Gusev N, Katic N, Genov R, et al.Coded two-bucket cameras for computer vision.In: Proceedings of the Computer Vision–ECCV 2018; 2018 Sep 8–14; Munich, Germany. Berlin: Springer; 2018. p. 54–71.
|
[18] |
Liu Y, Yuan X, Suo J, Brady DJ, Dai Q.Rank minimization for snapshot compressive imaging.IEEE Trans Pattern Anal Mach Intell 2019; 41(12):2990-3006.
|
[19] |
Yuan X, Liu Y, Suo J, Dai Q.Plug-and-play algorithms for large-scale snapshot compressive imaging.In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2020 Jun 13–19; Seattle, WA, USA. New York City: IEEE; 2020. p. 1444–54.
|
[20] |
Izadi S, Sutton D, Hamarneh G.Image denoising in the deep learning era.Artif Intell Rev 2023; 56(7):5929-5974.
|
[21] |
Zhang K, Ren W, Luo W, Lai WS, Stenger B, Yang MH, et al.Deep image deblurring: a survey.Int J Comput Vis 2022; 130(9):2103-2130.
|
[22] |
Rawat W, Wang Z.Deep convolutional neural networks for image classification: a comprehensive review.Neural Comput 2017; 29(9):2352-2449.
|
[23] |
Zhu H, Wei H, Li B, Yuan X, Kehtarnavaz N.A review of video object detection: datasets, metrics and methods.Appl Sci 2020; 10(21):7834.
|
[24] |
Jiao L, Wang D, Bai Y, Chen P, Liu F.Deep learning in visual tracking: a review.IEEE Trans Neural Netw Learn Syst 2021; 34(9):5497-5516.
|
[25] |
Yuan X.Various plug-and-play algorithms with diverse total variation methods for video snapshot compressive imaging.In: Proceedings of the Artificial Intelligence: First CAAI International Conference; 2021 Jun 5–6; Hangzhou, China. Berlin: Springer; 2021. p. 335–46.
|
[26] |
Yuan X, Liu Y, Suo J, Durand F, Dai Q.Plug-and-play algorithms for video snapshot compressive imaging.IEEE Trans Pattern Anal Mach Intell 2021; 44(10):7093-7111.
|
[27] |
Chen Y, Gui X, Zeng J, Zhao XL, He W.Combining low-rank and deep plug-and-play priors for snapshot compressive imaging.IEEE Trans Neural Netw Learn Syst. In press.
|
[28] |
Meng Z, Yuan X, Jalali S.Deep unfolding for snapshot compressive imaging.Int J Comput Vis 2023; 131(11):2933-2958.
|
[29] |
Wu Z, Zhang J, Mou C.Dense deep unfolding network with 3D-CNN prior for snapshot compressive imaging.In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV); 2021 Oct 11–17; Montreal, BC, Canada. New York City: IEEE; 2021. p. 4892–901.
|
[30] |
Yang C, Zhang S, Yuan X.Ensemble learning priors driven deep unfolding for scalable video snapshot compressive imaging.In: Proceedings of the Computer Vision–ECCV 2022; 2022 Oct 23–27; Tel Aviv, Israel. Berlin: Springer; 2022. p. 600–18.
|
[31] |
Suo J, Zhang W, Gong J, Yuan X, Brady DJ, Dai Q, et al.Computational imaging and artificial intelligence: the next revolution of mobile vision.Proc IEEE 2023; 111(12):1607-1639.
|
[32] |
Kwan C, Chou B, Yang J, Rangamani A, Tran T, Zhang J, et al.Target tracking and classification using compressive measurements of MWIR and LWIR coded aperture cameras.JSIP 2019; 10(3):73-95.
|
[33] |
Okawara T, Yoshida M, Nagahara H, Yagi Y.Action recognition from a single coded image.In: Proceedings of the 2020 IEEE International Conference on Computational Photography (ICCP); 2020 Apr 24–26; Saint Louis, MO, USA. New York City: IEEE; 2020. p. 1–11.
|
[34] |
Hu C, Huang H, Chen M, Yang S, Chen H.Video object detection from one single image through opto-electronic neural network.APL Photonics 2021; 6(4):046104.
|
[35] |
Zhang Z, Zhang B, Yuan X, Zheng S, Su X, Suo J, et al.From compressive sampling to compressive tasking: retrieving semantics in compressed domain with low bandwidth.PhotoniX 2022; 3:19.
|
[36] |
Shannon C.Communication in the presence of noise.Proc IRE 1949; 37(1):10-21.
|
[37] |
Jalali S, Yuan X.Snapshot compressed sensing: performance bounds and algorithms.IEEE Trans Inf Theory 2019; 65(12):8005-8024.
|
[38] |
Yuan X.Generalized alternating projection based total variation minimization for compressive sensing.In: Proceedings of the 2016 IEEE International Conference on Image Processing (ICIP); 2016 Sep 25–28; Phoenix, AZ, USA. New York City: IEEE; 2016. p. 2539–43.
|
[39] |
Duarte MF, Davenport MA, Takhar D, Laska JN, Sun T, Kelly KF, et al.Single-pixel imaging via compressive sampling.IEEE Signal Process Mag 2008; 25(2):83-91.
|
[40] |
Jalali S, Maleki A.From compression to compressed sensing.Appl Comput Harmon Anal 2016; 40(2):352-385.
|
[41] |
Yuan X, Llull P, Liao X, Yang J, Brady DJ, Sapiro G, et al.Low-cost compressive sensing for color video and depth.In: Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2014 Jun 23–28; Columbus, OH, USA. New York City: IEEE; 2014. p. 3318–25.
|
[42] |
Koller R, Schmid L, Matsuda N, Niederberger T, Spinoulas L, Cossairt O, et al.High spatio–temporal resolution video with compressed sensing.Opt Express 2015; 23(12):15992-16007.
|
[43] |
Reddy D, Veeraraghavan A, Chellappa R.P2C2: programmable pixel compressive camera for high speed imaging.In: Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2011 Jun 21–23; Springs, CO, USA. New York City: IEEE; 2011. p. 329–36.
|
[44] |
Hitomi Y, Gu J, Gupta M, Mitsunaga T, Nayar SK.Video from a single coded exposure photograph using a learned over-complete dictionary.In: Proceedings of the 2011 International Conference on Computer Vision (ICCV); 2011 Nov 6–13; Barcelona, Spain. New York City: IEEE; 2011. p. 287–94.
|
[45] |
Liu D, Gu J, Hitomi Y, Gupta M, Mitsunaga T, Nayar S.Efficient space–time sampling with pixel-wise coded exposure for high-speed imaging.IEEE Trans Pattern Anal Mach Intell 2014; 36(2):248-260.
|
[46] |
Qiao M, Meng Z, Ma J, Yuan X.Deep learning for video compressive sensing.APL Photonics 2020; 5(3):030801.
|
[47] |
Guzmán F, Meza P, Vera E.Compressive temporal imaging using a rolling shutter camera array.Opt Express 2021; 29(9):12787-12800.
|
[48] |
Vera E, Guzmán F, Díaz N.Shuffled rolling shutter for snapshot temporal imaging.Opt Express 2022; 30(2):887-901.
|
[49] |
Sun Y, Yuan X, Pang S.High-speed compressive range imaging based on active illumination.Opt Express 2016; 24(20):22836-22846.
|
[50] |
Guzmán F, Skowronek J, Vera E, Brady DJ.Compressive video via IR-pulsed illumination.Opt Express 2023; 31(23):39201-39212.
|
[51] |
Luo Y, Jiang J, Cai M, Mirabbasi S.CMOS computational camera with a two-tap coded exposure image sensor for single-shot spatial–temporal compressive sensing.Opt Express 2019; 27(22):31475-31489.
|
[52] |
Yoshida M, Sonoda T, Nagahara H, Endo K, Sugiyama Y, Taniguchi R.High-speed imaging using CMOS image sensor with quasi pixel-wise exposure.IEEE Trans Comput Imaging 2020; 6:463-476.
|
[53] |
Qiao M, Liu X, Yuan X.Snapshot spatial–temporal compressive imaging.Opt Lett 2020; 45(7):1659-1662.
|
[54] |
Deng C, Zhang Y, Mao Y, Fan J, Suo J, Zhang Z, et al.Sinusoidal sampling enhanced compressive camera for high speed imaging.IEEE Trans Pattern Anal Mach Intell 2021; 43(4):1380-1393.
|
[55] |
Liang J, Zhu L, Wang LV.Single-shot real-time femtosecond imaging of temporal focusing.Light Sci Appl 2018; 7:42.
|
[56] |
Gao L, Liang J, Li C, Wang LV.Single-shot compressed ultrafast photography at one hundred billion frames per second.Nature 2014; 516(7529):74-77.
|
[57] |
Czajkowski KM, Pastuszczak A, Koty Rński.Real-time single-pixel video imaging with Fourier domain regularization.Opt Express 2018; 26(16):20009-20022.
|
[58] |
Higham CF, Murray-Smith R, Padgett MJ, Edgar MP.Deep learning for real-time single-pixel video.Sci Rep 2018; 8:2369.
|
[59] |
Wang P, Liang J, Wang LV.Single-shot ultrafast imaging attaining 70 trillion frames per second.Nat Commun 2020; 11:2091.
|
[60] |
Lu R, Chen B, Liu G, Cheng Z, Qiao M, Yuan X.Dual-view snapshot compressive imaging via optical flow aided recurrent neural network.Int J Comput Vis 2021; 129(12):3279-3298.
|
[61] |
Liu X, Zhu M, Zheng S, Luo R, Wu H, Yuan X.Video snapshot compressive imaging using adaptive progressive coding for high-quality reconstruction under different illumination circumstances.Opt Lett 2024; 49(1):85-88.
|
[62] |
Wang P, Wang L, Qiao M, Yuan X.Full-resolution and full-dynamic-range coded aperture compressive temporal imaging.Opt Lett 2023; 48(18):4813-4816.
|
[63] |
Hahamovich E, Monin S, Hazan Y, Rosenthal A.Single pixel imaging at megahertz switching rates via cyclic hadamard masks.Nat Commun 2021; 12:4516.
|
[64] |
Kilcullen P, Ozaki T, Liang J.Compressed ultrahigh-speed single-pixel imaging by swept aggregate patterns.Nat Commun 2022; 13:7879.
|
[65] |
Mur AL, Peyrin F, Ducros N.Recurrent neural networks for compressive video reconstruction.In: Proceedings of the 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI); 2020 Apr 3–7; Iowa City, IA, USA. New York City: IEEE; 2020. p. 1651–4.
|
[66] |
Ma X, Yuan X, Arce GR.High resolution LED-based snapshot compressive spectral video imaging with deep neural networks.IEEE Trans Comput Imaging 2023; 9:869-880.
|
[67] |
Martel JNP, Muller LK, Carey SJ, Dudek P, Wetzstein G.Neural sensors: learning pixel exposures for HDR imaging and video compressive sensing with programmable sensors.IEEE Trans Pattern Anal Mach Intell 2020; 42(7):1642-1653.
|
[68] |
Carey SJ, Lopich A, Barr DRW, Wang B, Dudek PA.100,000 fps vision sensor with embedded 535GOPS/W 256×256 SIMD processor array.In: Proceedings of the 2013 Symposium on VLSI Circuits; 2013 Jun 12–14; Kyoto, Japan. New York City: IEEE; 2013. p. C182–3.
|
[69] |
Sarhangnejad N, Katic N, Xia Z, Wei M, Gusev N, Dutta G, et al.5.5 Dual-tap pipelined-code-memory coded-exposure-pixel CMOS image sensor for multi-exposure single-frame computational imaging. In: Proceedings of the 2019 IEEE International Solid-State Circuits Conference (ISSCC); 2019 Feb 17–21; San Francisco, CA, USA. New York City: IEEE; 2019. p. 102–4.
|
[70] |
Luo Y, Ho D, Mirabbasi S.Exposure-programmable CMOS pixel with selective charge storage and code memory for computational imaging.IEEE Trans Circuits Syst 2018; 65(5):1555-1566.
|
[71] |
Shedligeri P, Anupama S, Mitra K.A unified framework for compressive video recovery from coded exposure techniques.In: Proceedings of the 2021 IEEE Winter Conference on Applications of Computer Vision (WACV); 2021 Jan 3–8; Waikoloa, HI, USA. New York City: IEEE; 2021. p. 1599–608.
|
[72] |
Gulve R, Sarhangnejad N, Dutta G, Sakr M, Nguyen D, Rangel R, et al.A 39,000 subexposures/s CMOS image sensor with dual-tap coded-exposure data-memory pixel for adaptive single-shot computational imaging.In: Proceedings of the 2022 IEEE Symposium on VLSI Technology and Circuits; 2022 Jun 12–17; Honolulu, HI, USA. New York City: IEEE; 2022. p. 78–9.
|
[73] |
Gulve R, Rangel R, Barman A, Nguyen D, Wei M, Skar MA, et al.Dual-port CMOS image sensor with regression-based HDR flux-to-digital conversion and 80 ns rapid-update pixel-wise exposure coding.In: Proceedings of the 2023 IEEE International Solid State Circuits Conference (ISSCC); 2023 Feb 19–23; San Francisco, CA, USA. New York City: IEEE; 2023. p. 104–6.
|
[74] |
Wagadarikar A, John R, Willett R, Brady D.Single disperser design for coded aperture snapshot spectral imaging.Appl Opt 2008; 47(10):B44-B51.
|
[75] |
Qi D, Zhang S, Yang C, He Y, Cao F, Yao J, et al.Single-shot compressed ultrafast photography: a review.Adv Photonics 2020; 2(1):014003.
|
[76] |
Tsai TH, Llull P, Yuan X, Carin L, Brady DJ.Spectral–temporal compressive imaging.Opt Lett 2015; 40(17):4054-4057.
|
[77] |
Sun Y, Yuan X, Pang S.Compressive high-speed stereo imaging.Opt Express 2017; 25(15):18182.
|
[78] |
Dou Y, Cao M, Wang X, Liu X, Yuan X.Coded aperture temporal compressive digital holographic microscopy.Opt Lett 2023; 48(20):5427-5430.
|
[79] |
Luo R, Cao M, Liu X, Yuan X.Snapshot compressive structured illumination microscopy.Opt Lett 2024; 49(2):186-189.
|
[80] |
Chen Z, Zheng S, Wang W, Song J, Yuan X.Temporal structured illumination and vision-transformer enables large field-of-view binary snapshot ptychography.Opt Express 2024; 32(2):1540-1551.
|
[81] |
Hu M, Wu Z, Huang Q, Yuan X, Brady D.Sampling for snapshot compressive imaging.Intell Comput 2023; 2:0038.
|
[82] |
Qiao M, Liu X, Yuan X.Snapshot temporal compressive microscopy using an iterative algorithm with untrained neural networks.Opt Lett 2021; 46(8):1888-1891.
|
[83] |
Yang J, Yuan X, Liao X, Llull P, Brady DJ, Sapiro G, et al.Video compressive sensing using gaussian mixture models.IEEE Trans Image Process 2014; 23(11):4863-4878.
|
[84] |
Wu Z, Yang C, Su X, Yuan X.Adaptive deep PnP algorithm for video snapshot compressive imaging.Int J Comput Vis 2023; 131(7):1662-1679.
|
[85] |
Cheng Z, Lu R, Wang Z, Zhang H, Chen B, Meng Z, et al.BIRNAT: bidirectional recurrent neural networks with adversarial training for video snapshot compressive imaging.In: Proceedings of the Computer Vision—ECCV 2020; 2020 Aug 23–28; Glasgow, UK. Berlin: Springer; 2020. p. 258–75.
|
[86] |
Cheng Z, Chen B, Liu G, Zhang H, Lu R, Wang Z.Memory-efficient network for large-scale video compressive sensing.In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2021 Jun 20–25; Nashville, TN, USA. New York City: IEEE; 2021. p. 16241–50.
|
[87] |
Wang Z, Zhang H, Cheng Z, Chen B, Yuan X.MetaSCI: scalable and adaptive reconstruction for video compressive sensing.In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2021 Jun 20–25; Nashville, TN, USA. New York City: IEEE; 2021. p. 2083–92.
|
[88] |
Meng Z, Jalali S, Yuan X.GAP-Net for snapshot compressive imaging.2020. arXiv: 2012.08364.
|
[89] |
Ma J, Liu XY, Shou Z, Yuan X.Deep tensor ADMM-net for snapshot compressive imaging.In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV); 2019 Oct 27–Nov 2; Seoul, Republic of Korea. New York City: IEEE; 2019. p. 10222–31.
|
[90] |
Zhao Y, Zheng S, Yuan X.Deep equilibrium models for snapshot compressive imaging.In: Proceedings of the AAAI Conference on Artificial Intelligence (AAAI); 2023 Feb 7–14; Washington, DC, USA. Pennsylvania Ave: The Association for the Advancement of Artificial Intelligence; 2023. p. 3642–50.
|
[91] |
Zheng S, Yuan X.Unfolding framework with prior of convolution-transformer mixture and uncertainty estimation for video snapshot compressive imaging.In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV); 2023 Oct 2–6; Paris, France. New York City: IEEE; 2023. p. 12738–49.
|
[92] |
Wang L, Cao M, Yuan X.EfficientSCI: densely connected network with space–time factorization for large-scale video snapshot compressive imaging.In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2023 Jun 17–24; Vancouver, BC, Canada. New York City: IEEE; 2023. p. 18477–86.
|
[93] |
Iliadis M, Spinoulas L, Katsaggelos AK.Deep fully-connected networks for video compressive sensing.Digit Signal Process 2018; 72:9-18.
|
[94] |
Dong W, Shi G, Li X, Ma Y, Huang F.Compressive sensing via nonlocal low-rank regularization.IEEE Trans Image Process 2014; 23(8):3618-3632.
|
[95] |
Maggioni M, Boracchi G, Foi A, Egiazarian K.Video denoising, deblocking, and enhancement through separable 4D nonlocal spatiotem-poral transforms.IEEE Trans Image Process 2012; 21(9):3952-3966.
|
[96] |
Yang J, Liao X, Yuan X, Llull P, Brady DJ, Sapiro G, et al.Compressive sensing by learning a gaussian mixture model from measurements.IEEE Trans Image Process 2015; 24(1):106-119.
|
[97] |
Venkatakrishnan SV, Bouman CA, Wohlberg B.Plug-and-play priors for model based reconstruction.In: Proceedings of the 2013 IEEE Global Conference on Signal and Information Processing; 2013 Dec 3–5; Austin, TX, USA. New York City: IEEE; 2013. p. 945–8.
|
[98] |
Boyd S, Parikh N, Chu E, Peleato B, Eckstein J.Distributed optimization and statistical learning via the alternating direction method of multipliers. Now Foundations and Trends, Norwell (2011)
|
[99] |
Liao X, Li H, Carin L.Generalized alternating projection for weighted-ℓ2,1 minimization with applications to model-based compressive sensing.SIAM J Imaging Sci 2014; 7(2):797-823.
|
[100] |
Li Y, Qi M, Wei M, Genov R, Kutulakos KN, Heidrich W, et al.End-to-end video compressive sensing using Anderson-accelerated unrolled networks.In: Proceedings of the 2020 IEEE International Conference on Computational Photography (ICCP); 2020 Apr 24–26; Saint Louis, MO, USA. New York City: IEEE; 2020. p. 1–12.
|
[101] |
Zheng S, Yang X, Yuan X.Two-stage is enough: a concise deep unfolding reconstruction network for flexible video compressive sensing.2022. arXiv: 2201.05810.
|
[102] |
Wang L, Cao M, Zhong Y, Yuan X.Spatial–temporal transformer for video snapshot compressive imaging.IEEE Trans Pattern Anal Mach Intell 2022; 45(7):9072-9089.
|
[103] |
Cao M, Wang L, Zhu M, Yuan X.Hybrid CNN-transformer architecture for efficient large-scale video snapshot compressive imaging.Int J Comput Vis 2024;132:4521–40.
|
[104] |
Ronneberger O, Fischer P, Brox T.U-net: convolutional networks for biomedical image segmentation.In: Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015; 2015 Oct 5–9; Munich, Germany. Berlin: Springer; 2015. p. 234–41.
|
[105] |
Cheng Z, Chen B, Lu R, Wang Z, Zhang H, Meng Z, et al.Recurrent neural networks for snapshot compressive imaging.IEEE Trans Pattern Anal Mach Intell 2023; 45(2):2264-2281.
|
[106] |
Cai Y, Zheng Y, Lin J, Yuan X, Zhang Y, Wang H.Binarized spectral compressive imaing.In: Proceedings of the Thirty-Seventh Conference on Neural Information Processing Systems (NeurIPS-2023); 2023 Dec 10; New Orleans, LA, USA. San Diego: NeurIPS Proceedings; 2023. p. 1–9.
|
[107] |
Wang P, Wang L, Yuan X.Deep optics for video snapshot compressive imaging.In: Proceedings of the Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV); 2023 Oct 1–6; Paris, France. New York City: IEEE; 2023. p. 10646–56.
|
[108] |
Lu S, Yuan X, Shi W.Edge compression: an integrated framework for compressive imaging processing on CAVs.In: Proceedings of the 2020 IEEE/ACM Symposium on Edge Computing (SEC); .2020 Nov 11–13; San Jose, CA, USA. New York City: IEEE; 2020. p. 125–38.
|
[109] |
Lu S, Yuan X, Katsaggelos AK, Shi W.Reinforcement learning for adaptive video compressive sensing.ACM Trans Intell Syst Technol 2023; 14(5):1-21.
|
[110] |
Bethi YRT, Narayanan S, Rangan V, Chakraborty A, Thakur CS.Real-time object detection and localization in compressive sensed video.In: Proceedings of the 2021 IEEE International Conference on Image Processing (ICIP); 2021 Sep 19–22; Anchorage, AK, USA. New York City: IEEE; 2021. p. 1489–93.
|
[111] |
Gallego G, Delbruck T, Orchard G, Bartolozzi C, Taba B, Censi A, et al.Event-based vision: a survey.IEEE Trans Pattern Anal Mach Intell 2022; 44(1):154-180.
|